The Karhunen Loève Transform

$$\boldsymbol{\mathcal{C}}_{SS} = \left[\begin{array}{cccccc} 1.000 & 0.900 & 0.810 & 0.729 \\ 0.900 & 1.000 & 0.900 & 0.810 \\ 0.810 & 0.900 & 1.000 & 0.900 \\ 0.729 & 0.810 & 0.900 & 1.000 \end{array} \right]$$

$$\mathbf{u} = \mathbf{A}_{KLT} \cdot \mathbf{s}$$

$$\mathbf{C}_{UU} = \begin{bmatrix} 3.527 & 0 & 0 & 0 \\ 0 & 0.310 & 0 & 0 \\ 0 & 0 & 0.102 & 0 \\ 0 & 0 & 0 & 0.061 \end{bmatrix}$$

Last Lecture: Basic Concept Transform Coding

- Transform removes (or reduces) linear dependencies between samples before scalar quantization
- For correlated sources: Scalar quantization in transform domain is more efficient

Encoder (block-wise)

- → Forward transform: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s}$
- → Scalar quantization: $q_k = \alpha_k(u_k)$
- → Entropy coding: $\boldsymbol{b} = \gamma(\{\boldsymbol{q}_k\})$

Decoder (block-wise)

- → Entropy decoding: $\{q_k\} = \gamma^{-1}(\boldsymbol{b})$
- → Inverse quantization: $u'_k = \beta_k(q_k)$
- → Inverse transform: $s' = A^{-1} \cdot u'$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

Last Lecture: Orthogonal Block Transforms

Transform matrix has property: $\mathbf{A}^{-1} = \mathbf{A}^{T}$ (special case of unitary matrix)

$$\boldsymbol{A} = \begin{bmatrix} \begin{array}{c} & \boldsymbol{b}_{0} & & \\ & \boldsymbol{b}_{1} & & \\ & \boldsymbol{b}_{2} & & \\ & \vdots & \\ & & \boldsymbol{b}_{N-1} & \\ \end{bmatrix} \qquad \qquad \boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}} = \begin{bmatrix} \begin{array}{c} & & & \\ & & \\ & \boldsymbol{b}_{0} & \boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \cdots & \boldsymbol{b}_{N-1} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{bmatrix}$$

→ Basis vectors (rows of **A**, columns of $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$) form an orthonormal basis

→ Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

Properties of Orthogonal Transforms

- Preservation of signal energy / vector length:
- Same MSE distortion in sample and transform space:
- Auto-covariance matrix of transform coefficients:
- Sum of variances of transform coefficients:

$$||\mathbf{A} \cdot \mathbf{s}||_2 = ||\mathbf{s}||_2$$
$$||\mathbf{u}' - \mathbf{u}||_2^2 = ||\mathbf{s}' - \mathbf{s}||_2^2$$
$$\mathbf{C}_{UU} = \mathbf{A} \cdot \mathbf{C}_{SS} \cdot \mathbf{A}^{\mathrm{T}}$$
$$\sum_k \sigma_k^2 = N \cdot \sigma_S^2$$

Last Lecture: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

Optimal bit allocation: Pareto condition

$$rac{\partial}{\partial R_k}\, D_k(R_k) = -\lambda = {\sf const}$$

High-Rate Approximation

Optimal bit allocation for high-rate case

$$D_k(R_k) = D = \text{const}$$

High-rate distortion rate function for transform coding

$$\mathcal{D}(R) = ilde{arepsilon}^2 \cdot ilde{\sigma}^2 \cdot 2^{-2R}$$
 with $ilde{arepsilon}^2 = \left(\prod_k arepsilon_k^2\right)^{ar{n}}, \quad ilde{\sigma}^2 = \left(\prod_k \sigma_k^2\right)^{ar{n}}$

.

High-rate transform coding gain

$$G_{T} = \frac{D_{SQ}(R)}{D_{TC}(R)} = \frac{\varepsilon_{S}^{2} \cdot \sigma_{S}^{2}}{\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2}}, \qquad \qquad \text{Gaussian sources:} \quad G_{T} = \frac{\sigma_{S}^{2}}{\tilde{\sigma}^{2}} = \frac{\frac{1}{N} \sum_{k} \sigma_{k}^{2}}{\tilde{\sigma}^{2}}$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

How To Choose The Transform?

Open Questions

- What is the best orthogonal transform for a given source?
- Is there a low-complex transform that is close to optimal for typical sources?

Goal: Minimize overall distortion for a given rate (or vice versa)

High-rate approximation of distortion-rate function (MSE & optimal bit allocation)

$$D(R) = \tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R}$$

 \Rightarrow High rates: Transform should be designed to minimize geometric mean $\tilde{\varepsilon}^2\cdot\tilde{\sigma}^2$

Optimal Orthogonal Transform for General Stationary Signals

- Difficult interdependencies between transform and scalar quantization (due to factors ε_k^2)
- → Optimal transform very difficult to determine (does also depend on bit rate)
- → Possible: Iterative algorithms for designing both transform and scalar quantizers together

Decorrelating Transforms

Nearly Optimal Transform

- Most important aspect of transform coding: Utilize dependencies between samples
- Linear transform: Can only remove linear dependendencies (correlation)
- \rightarrow **Design criterion**: Uncorrelated transform coefficients u_k

$$\forall i, k \neq i: \quad \operatorname{cov}(U_i, U_k) = 0 \qquad \Longleftrightarrow \qquad \boldsymbol{C}_{UU} = \begin{bmatrix} \sigma_0^2 & 0 & \cdots & 0 \\ 0 & \sigma_1^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{N-1}^2 \end{bmatrix}$$

Question

Is it possible to find an orthogonal transform matrix **A** that generates completely decorrelated transform coefficients

$$u = A \cdot s$$

Measure for Energy Compaction

High-Rate Approximations

• High-rate distortion rate function D(R) and transform coding gain G_T

$$D(R) = \tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R} \qquad \Rightarrow \qquad G_T = \frac{\varepsilon_S^2 \cdot \sigma_S^2}{\tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2}$$

• Neglect impact of pdf shape: Assume $\varepsilon_k^2 = \varepsilon_s^2$ (valid for Gaussian sources)

Remember: Trace of a matrix is similarity-invariant

$$\operatorname{tr}(\boldsymbol{C}_{SS}) = \operatorname{tr}(\boldsymbol{A} \, \boldsymbol{C}_{SS} \, \boldsymbol{A}^{-1}) = \operatorname{tr}(\boldsymbol{C}_{UU})$$

Measure for Energy Compaction of Orthogonal Transforms

→ Ratio of arithmetic and geometric means for transform coefficient variances

$$G_{EC} = \frac{\sigma_{S}^{2}}{\tilde{\sigma}^{2}} = \frac{\bar{\sigma}^{2}}{\tilde{\sigma}^{2}} = \frac{\frac{1}{N} \sum_{k=0}^{N-1} \sigma_{k}^{2}}{\sqrt[N]{\prod_{k=0}^{N-1} \sigma_{k}^{2}}}$$

 \rightarrow Goal of Transform: Maximize energy compaction G_{EC}

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

The Karhunen Loève Transform (KLT)

Remember: Relationship between auto-covariance matrices for linear transforms ($u = A \cdot s$)

$$\begin{aligned} \boldsymbol{C}_{\boldsymbol{U}\boldsymbol{U}} &= \mathrm{E}\Big\{\left(\boldsymbol{U} - \mathrm{E}\{\boldsymbol{U}\}\right)\left(\boldsymbol{U} - \mathrm{E}\{\boldsymbol{U}\}\right)^{\mathrm{T}}\Big\} \\ &= \mathrm{E}\Big\{\left(\boldsymbol{A}\boldsymbol{S} - \mathrm{E}\{\boldsymbol{A}\boldsymbol{S}\}\right)\left(\boldsymbol{A}\boldsymbol{S} - \mathrm{E}\{\boldsymbol{A}\boldsymbol{S}\}\right)^{\mathrm{T}}\Big\} \\ &= \boldsymbol{A} \cdot \mathrm{E}\Big\{\left(\boldsymbol{S} - \mathrm{E}\{\boldsymbol{S}\}\right)\left(\boldsymbol{S} - \mathrm{E}\{\boldsymbol{S}\}\right)^{\mathrm{T}}\Big\} \cdot \boldsymbol{A}^{\mathrm{T}} \\ &= \boldsymbol{A} \cdot \boldsymbol{C}_{\boldsymbol{S}\boldsymbol{S}} \cdot \boldsymbol{A}^{\mathrm{T}} \end{aligned}$$

Karhunen Loève Transform (KLT)

• Orthogonal transform $(\mathbf{A}^{-1} = \mathbf{A}^{T})$ that produces completely decorrelated transform coefficients

→ Transform matrix A in chosen in a way that auto-covariance matrix

 $\boldsymbol{C}_{UU} = \boldsymbol{A} \cdot \boldsymbol{C}_{SS} \cdot \boldsymbol{A}^{\mathrm{T}}$ becomes a diagonal matrix

→ Such an orthogonal transform also maximizes the energy compaction $G_{EC} = \bar{\sigma}^2 / \tilde{\sigma}^2$

Basis Vectors of the Karhunen Loève Transform

Required property for the orthogonal transform matrix A

 $\mathbf{A} \cdot \mathbf{C}_{ss} \cdot \mathbf{A}^{T} = \mathbf{C}_{uu}$ (with C_{III} being a diagonal matrix) $(\mathbf{A}^{\mathrm{T}} \cdot \mathbf{A}) \cdot \mathbf{C}_{\mathrm{SS}} \cdot \mathbf{A}^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} \cdot \mathbf{C}_{UU}$ (orthogonal transform: $\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}$) $\boldsymbol{C}_{\boldsymbol{c}\boldsymbol{c}}\cdot\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}^{\mathrm{T}}\cdot\boldsymbol{C}_{\boldsymbol{u}\boldsymbol{u}}$ (rows of **A**: basis vectors \boldsymbol{b}_k) $\boldsymbol{C}_{SS} \cdot \begin{bmatrix} \boldsymbol{|} & \boldsymbol{|} & \boldsymbol{|} \\ \boldsymbol{b}_0 \ \boldsymbol{b}_1 \ \cdots \ \boldsymbol{b}_{N-1} \\ \boldsymbol{|} & \boldsymbol{|} & \boldsymbol{|} \end{bmatrix} = \begin{bmatrix} \boldsymbol{|} & \boldsymbol{|} & \boldsymbol{|} \\ \boldsymbol{b}_0 \ \boldsymbol{b}_1 \ \cdots \ \boldsymbol{b}_{N-1} \\ \boldsymbol{|} & \boldsymbol{|} & \boldsymbol{|} \end{bmatrix} \cdot \begin{bmatrix} \sigma_0^2 \ 0 \ \cdots \ 0 \\ 0 \ \sigma_1^2 \ \cdots \ 0 \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \cdots \ \sigma_{N-1}^2 \end{bmatrix}$

Consider individual columns of matrix equation

$$\forall k: \boldsymbol{C}_{SS} \cdot \boldsymbol{b}_k = \sigma_k^2 \cdot \boldsymbol{b}_k$$

KLT: Determination of Transform Matrix as Eigenvector Problem

Necessary Condition for KLT Basis Vectors

For each basis vector \boldsymbol{b}_k , we have an equation of the form

$$\boldsymbol{C}_{SS} \cdot \boldsymbol{b}_k = \sigma_k^2 \cdot \boldsymbol{b}_k$$

→ General form of an **Eigenvector equation**

$$C_{SS} \cdot \mathbf{v} = \xi \cdot \mathbf{v}$$
 with eigenvalue $\xi = \sigma_k^2$ and
eigenvector $\mathbf{v} = \mathbf{b}_k$

Note: Eigenvectors \boldsymbol{v} are not unique (can be scaled by any non-zero factor), but basis vectors \boldsymbol{b}_k must have an ℓ_2 -norm equal to $\|\boldsymbol{b}_k\|_2 = 1$

KLT Basis Vectors

→ Basis vectors $\boldsymbol{b}_k = \boldsymbol{v}_k / \|\boldsymbol{v}_k\|_2$ are the unit-norm eigenvectors of \boldsymbol{C}_{SS}

→ Transform coefficient variances $\sigma_k^2 = \xi_k$ are given by the associated eigenvalues of C_{SS}

Existence and Uniqueness of the Karhunen Loève Transform

Existence of the KLT

- Linear algebra: Symmetric matrices (such as C_{SS}) are always orthogonally diagonalizable
- → KLT exists for all random sources

Uniqueness of the KLT

- Matrix rows (basis vectors) can be permuted or multiplied by -1
- Additional degrees of freedom if two or more eigenvalues are the same
- → There are multiple KLT transform matrices (with same decorrelation property)

Related Problems

- KLT is also known as eigenvector transform or Hotelling transform
- KLT is closely related to principal component analysis (PCA)
- KLT is a special case of singular value decomposition (SVD)

KLT Transform Matrix for Data Compression

- Determination of eigenvectors \boldsymbol{v}_k for given auto-covariance matrix $\boldsymbol{\mathcal{C}}_{SS}$
- Unit-norm eigenvectors \boldsymbol{b}_k are sorted in decreasing order of the associated eigenvalues ξ_k

$$\boldsymbol{A} = \begin{bmatrix} - & \boldsymbol{b}_0 & - \\ - & \boldsymbol{b}_1 & - \\ \vdots \\ - & \boldsymbol{b}_{N-1} & - \end{bmatrix} \quad \text{with} \quad \boldsymbol{b}_k = \frac{\boldsymbol{v}_k}{\|\boldsymbol{v}_k\|_2} \quad \text{and} \quad \xi_k \ge \xi_{k+1}$$

→ Resulting transform coefficients u_k are sorted in decreasing order of their variances $\sigma_k^2 = \xi_k$

$$\boldsymbol{C}_{UU} = \begin{bmatrix} \sigma_0^2 & 0 & \cdots & 0 \\ 0 & \sigma_1^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{N-1}^2 \end{bmatrix} \quad \text{with} \quad \sigma_k^2 = \xi_k \quad \text{and} \quad \xi_k \ge \xi_{k+1}$$

→ Typical: Order is suitable for entropy coding of quantization indexes (e.g., run-level coding)

KLT Basis Vectors: Determination of Eigenvectors

Calculation of Eigenvalues and Eigenvectors

General form of Eigenvalue problem

$$C_{SS} \cdot \boldsymbol{v} = \xi \cdot \boldsymbol{v}$$

$$C_{SS} \cdot \boldsymbol{v} = \xi \cdot \boldsymbol{l} \cdot \boldsymbol{v}$$
(identity matrix \boldsymbol{l})
$$(C_{SS} - \xi \boldsymbol{l}) \cdot \boldsymbol{v} = \boldsymbol{0}$$

Exact Symbolic Calculation

- Homogeneous linear equation system is solvable if and only if $det(C_{SS} \xi I) = 0$
- → Determine the N eigenvalues ξ_k by solving the characteristic polynomial (of degree N)

$$\det \left(\boldsymbol{C}_{SS} - \xi \boldsymbol{I}
ight) = 0$$

→ For each ξ_k , solve linear equation system (any non-trivial solution $\boldsymbol{\nu}_k$)

$$\left(oldsymbol{\mathcal{C}}_{SS}-\xi_koldsymbol{I}
ight)\cdotoldsymbol{v}_k=oldsymbol{0}$$

Given: Autocovariance matrix (of order 2) for source samples

$$\boldsymbol{\mathcal{C}}_{SS} = \left[\begin{array}{cc} \sigma_{S}^{2} & \varrho \, \sigma_{S}^{2} \\ \varrho \, \sigma_{S}^{2} & \sigma_{S}^{2} \end{array} \right]$$

→ Eigenvector equation

$$(\boldsymbol{C}_{SS} - \xi \boldsymbol{I}) \boldsymbol{v} = \begin{bmatrix} \sigma_{S}^{2} - \xi & \varrho \sigma_{S}^{2} \\ \varrho \sigma_{S}^{2} & \sigma_{S}^{2} - \xi \end{bmatrix} \boldsymbol{v} = \boldsymbol{0}$$

➡ Characteristic polynomial

det
$$(\mathbf{C}_{55} - \xi \mathbf{I}) = (\sigma_5^2 - \xi)^2 - (\varrho \sigma_5^2)^2$$

= $\xi^2 - 2\xi \cdot \sigma_5^2 + \sigma_5^4 (1 - \varrho^2) = 0$

➡ Eigenvalues

$$\begin{aligned} \xi_{0/1} &= \sigma_{S}^{2} \pm \sqrt{\sigma_{S}^{4} - \sigma_{S}^{4} (1 - \varrho^{2})} = \sigma_{S}^{2} \pm \sqrt{\sigma_{S}^{4} \varrho^{2}} \\ \xi_{0/1} &= \sigma_{S}^{2} (1 \pm \varrho) \end{aligned}$$

→ Eigenvector equation for first eigenvalue $\xi_0 = \sigma_S^2 (1 + \varrho)$

$$(\boldsymbol{C}_{SS} - \xi_0 \boldsymbol{I}) \boldsymbol{v}_0 = \begin{bmatrix} \sigma_S^2 - \sigma_S^2 (1 + \varrho) & \varrho \sigma_S^2 \\ \varrho \sigma_S^2 & \sigma_S^2 - \sigma_S^2 (1 + \varrho) \end{bmatrix} \boldsymbol{v}_0$$
$$= \sigma_S^2 \begin{bmatrix} -\varrho & \varrho \\ \varrho & -\varrho \end{bmatrix} \boldsymbol{v}_0 = \boldsymbol{0}$$

→ Equation for vector components $\mathbf{v}_0 = (u_0, v_0)$

$$-\varrho \cdot u_0 + \varrho \cdot v_0 = 0 \qquad \Longrightarrow \qquad v_0 = u_0$$

➡ Eigenvector

$$oldsymbol{
u}_0=\mu\left[egin{array}{c}1\\1\end{array}
ight] \qquad {
m with}\qquad \mu
eq 0$$

 \rightarrow Basis vector **b**₀ is given by a unit-norm eigenvector

$$oldsymbol{b}_0 = rac{oldsymbol{v}_0}{\left\|oldsymbol{v}_0
ight\|_2} = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$

→ Eigenvector equation for second eigenvalue $\xi_1 = \sigma_S^2 (1 - \varrho)$

$$(\boldsymbol{C}_{SS} - \xi_1 \boldsymbol{I}) \boldsymbol{v}_0 = \begin{bmatrix} \sigma_S^2 - \sigma_S^2(1 - \varrho) & \varrho \sigma_S^2 \\ \varrho \sigma_S^2 & \sigma_S^2 - \sigma_S^2(1 - \varrho) \end{bmatrix} \boldsymbol{v}_1 \\ = \sigma_S^2 \begin{bmatrix} \varrho & \varrho \\ \varrho & \varrho \end{bmatrix} \boldsymbol{v}_1 = \boldsymbol{0}$$

→ Equation for vector components $\boldsymbol{v}_1 = (u_1, v_1)$

$$\varrho \cdot u_1 + \varrho \cdot v_1 = 0 \qquad \Longrightarrow \qquad v_1 = -u_1$$

➡ Eigenvector

$$oldsymbol{
u}_1=\mu \left[egin{array}{c} 1\ -1 \end{array}
ight] \qquad ext{with} \qquad \mu
eq 0$$

 \rightarrow Basis vector **b**₁ is given by a unit-norm eigenvector

$$oldsymbol{b}_1 = rac{oldsymbol{v}_1}{\|oldsymbol{v}_1\|_2} = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \ -1 \end{array}
ight]$$

• Eigenvalues and eigenvectors (with $\mu \neq 0$)

$$\xi_0 = \sigma_S^2 (1 + \varrho) \qquad \qquad \xi_1 = \sigma_S^2 (1 - \varrho)$$
$$\boldsymbol{v}_0 = \mu \begin{bmatrix} 1\\1 \end{bmatrix} \qquad \qquad \boldsymbol{v}_1 = \mu \begin{bmatrix} 1\\-1 \end{bmatrix}$$

➡ Basis vectors and transform matrix

$$\boldsymbol{A} = \begin{bmatrix} -\boldsymbol{b}_0 - \boldsymbol{b}_1 \\ -\boldsymbol{b}_1 - \boldsymbol{b}_1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

→ Covariance matrix of transform coefficients

$$\boldsymbol{C}_{SS} = \sigma_{S}^{2} \begin{bmatrix} 1 & \varrho \\ \varrho & 1 \end{bmatrix} \implies \boldsymbol{C}_{UU} = \sigma_{S}^{2} \begin{bmatrix} 1 + \varrho & 0 \\ 0 & 1 - \varrho \end{bmatrix}$$

➡ Energy compaction

$${\sf G}_{EC} = rac{ar\sigma^2}{ ilde\sigma^2} = rac{1}{\sqrt{1-arrho^2}}$$

Numerical Algorithms for Eigenvector Computation

Classical Jacobi Algorithm (Carl Gustav Jacob Jacobi, 1846)

Diagonalize symmetric matrix \boldsymbol{C} by iterative multiplication with elementary rotation matrices \boldsymbol{R}

$$\boldsymbol{C}^{(k+1)} = \boldsymbol{R}_k \, \boldsymbol{C}^{(k)} \, \boldsymbol{R}_k^{\mathrm{T}} = \underbrace{\boldsymbol{R}_k \, \boldsymbol{R}_{k-1} \cdots \boldsymbol{R}_0}_{\boldsymbol{A}_k} \, \boldsymbol{C} \, \underbrace{\boldsymbol{R}_0^{\mathrm{T}} \cdots \boldsymbol{R}_{k-1}^{\mathrm{T}} \cdots \boldsymbol{R}_k^{\mathrm{T}}}_{\boldsymbol{A}_k^{\mathrm{T}}}$$

➡ Conceptually simple, but slow convergence (unsuitable for large matrices)

Numerous Advanced Numerical Algorithms (particularly for real symmetric matrices)

- Typical: Two Steps
 - 1 Transform matrix into Hessenberg / tridiagonal form
 - 2 Determine eigenvectors of simpler matrix using fast algorithms
- Some examples:
 - Given rotations + divide and conquer
 - Householder transformation + QR algorithm
 - Householder transformation + MRRR algorithm

Auto-Covariance Matrix for AR(1) Sources

AR(1) Sources

Remember: Auto-covariance function for AR(1) sources

$$\operatorname{cov}(S_k, S_\ell) = \phi_{|k-\ell|} = \operatorname{E}\{(S_k - \mu)(S_\ell - \mu)\} = \sigma_5^2 \cdot \varrho^{|k-\ell|}$$

with ϱ being the first-order correlation coefficient

→ *N*-th order auto-covariance matrix $\pmb{C}_{SS} = \mathrm{E} ig\{ \left(\pmb{S} - \pmb{\mu}
ight) \left(\pmb{S} - \pmb{\mu}
ight)^{\mathrm{T}} ig\}$

$$\boldsymbol{\mathcal{C}}_{SS} = \begin{bmatrix} \phi_{0} & \phi_{1} & \phi_{2} & \phi_{3} & \cdots & \phi_{N-1} \\ \phi_{1} & \phi_{0} & \phi_{1} & \phi_{2} & \cdots & \phi_{N-2} \\ \phi_{2} & \phi_{1} & \phi_{0} & \phi_{1} & \cdots & \phi_{N-3} \\ \phi_{3} & \phi_{2} & \phi_{1} & \phi_{0} & \cdots & \phi_{N-4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{N-1} & \phi_{N-2} & \phi_{N-3} & \phi_{N-4} & \cdots & \phi_{0} \end{bmatrix} = \sigma_{S}^{2} \begin{bmatrix} 1 & \varrho & \varrho^{2} & \varrho^{3} & \cdots & \varrho^{N-1} \\ \varrho & 1 & \varrho & \varrho^{2} & \cdots & \varrho^{N-2} \\ \varrho^{2} & \varrho & 1 & \varrho & \cdots & \varrho^{N-3} \\ \varrho^{3} & \varrho^{2} & \varrho & 1 & \cdots & \varrho^{N-4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \varrho^{N-1} & \varrho^{N-2} & \varrho^{N-3} & \varrho^{N-4} & \cdots & 1 \end{bmatrix}$$

 \rightarrow KLT Transform matrix only depends on correlation coefficient ϱ and the transform size N

KLT of size N = 4 for AR(1) Source with Correlation Coefficient $\rho = 0.5$

KLT of size N = 4 for AR(1) Source with Correlation Coefficient $\rho = 0.9$

KLT of size N = 4 for AR(1) Source with Correlation Coefficient $\rho = 0.95$

Gauss-Markov with $\rho = 0.95$: KLT of size N = 4

Optimality of KLT

Properties of KLT

- KLT produces uncorrelated transform coefficients
- KLT minimizes geometric mean of transform coefficient variances $\tilde{\sigma}^2$ (diagonal elements of C_{UU})
- KLT achieves maximum possible energy compaction $G_{EC} = \sigma_s^2 / \tilde{\sigma}^2$

Gaussian Sources

- Obviously, KLT maximizes high-rate transform gain $G_T = G_{EC}$
- More general: For Gaussian sources and MSE distortion, the KLT is the optimal orthogonal transform
 - → Valid for all possible rate allocations (including the optimal one)
 - → Proof can be found in [Goyal, 2000] or [Wiegand, Schwarz, 2011]

Non-Gaussian Sources

- Other transforms may yield a better coding efficiency
- For most sources, KLT still provides good coding efficiency

KLT for Gauss-Markov: Geometric Mean of Variances

High-rate distortion-rate function for KLT of size N

$$D(R) = \varepsilon^2 \cdot \tilde{\sigma} \cdot 2^{-2R} = \varepsilon^2 \cdot \tilde{\xi} \cdot 2^{-2R}$$

Linear algebra: Product of eigenvalues = determinant

$$ilde{\xi} = \left(\prod_{k=0}^{N-1} \xi_k\right)^{rac{1}{N}} = |oldsymbol{\mathcal{C}}_N|^{rac{1}{N}}$$

Determinant of Gauss-Markov source (or general AR(1) sources)

$$|\mathbf{C}_{N}| = \begin{vmatrix} \sigma_{5}^{2} & \varrho \cdot \sigma_{5}^{2} & \varrho^{2} \cdot \sigma_{5}^{2} & \cdots & \varrho^{N-1} \cdot \sigma_{5}^{2} \\ \varrho \cdot \sigma_{5}^{2} & \sigma_{5}^{2} & \varrho \cdot \sigma_{5}^{2} & \cdots & \varrho^{N-2} \cdot \sigma_{5}^{2} \\ \varrho^{2} \cdot \sigma_{5}^{2} & \varrho \cdot \sigma_{5}^{2} & \sigma_{5}^{2} & \cdots & \varrho^{N-3} \cdot \sigma_{5}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \varrho^{N-1} \cdot \sigma_{5}^{2} & \varrho^{N-2} \cdot \sigma_{5}^{2} & \varrho^{N-3} \cdot \sigma_{5}^{2} & \cdots & \sigma_{5}^{2} \end{vmatrix}$$

KLT for Gauss-Markov: Laplace Expansion of Determinant

Expand determinant along the first column using Laplace's formula

$$|\boldsymbol{C}_{N}| = \sum_{k=0}^{N-1} (-1)^{k} c_{k,0} \left| \boldsymbol{C}_{N}^{(k,0)} \right| = \sum_{k=0}^{N-1} (-1)^{k} \sigma_{S}^{2} \varrho^{k} \left| \boldsymbol{C}_{N}^{(k,0)} \right|$$

with $c_{k,\ell}$ being the element at row k and column ℓ , and $C_N^{(k,\ell)}$ being the matrix that is obtained by removing the k-th row and ℓ -th column from C_N

- Consider matrices $\boldsymbol{C}_N^{(k,0)}$ with k > 1
 - \bullet First row is equal to second row multiplied by ϱ
 - First row is linearly dependent of second row and, hence, we have

$$\forall k > 1, \qquad \left| \boldsymbol{C}_{N}^{(k,0)} \right| = 0$$

➔ Above formula simplifies to

$$|\boldsymbol{C}_{N}| = \sigma_{S}^{2} \left| \boldsymbol{C}_{N}^{(0,0)} \right| - \sigma_{S}^{2} \varrho \left| \boldsymbol{C}_{N}^{(1,0)} \right|$$

KLT for Gauss-Markov: Determinants of Sub-Matrices

- Matrix $\boldsymbol{C}_{N}^{(0,0)}$ is equal to \boldsymbol{C}_{N-1}
- Matrix $\boldsymbol{C}_{N}^{(1,0)}$ has the form

$$\boldsymbol{C}_{N}^{(1,0)} = \begin{vmatrix} \varrho \cdot \sigma_{s}^{2} & \varrho^{2} \cdot \sigma_{s}^{2} & \varrho^{3} \cdot \sigma_{s}^{2} & \cdots & \varrho^{N-1} \cdot \sigma_{s}^{2} \\ \varrho \cdot \sigma_{s}^{2} & \sigma_{s}^{2} & \varrho \cdot \sigma_{s}^{2} & \cdots & \varrho^{N-3} \cdot \sigma_{s}^{2} \\ \varrho^{2} \cdot \sigma_{s}^{2} & \varrho \cdot \sigma_{s}^{2} & \sigma_{s}^{2} & \cdots & \varrho^{N-4} \cdot \sigma_{s}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \varrho^{N-2} \cdot \sigma_{s}^{2} & \varrho^{N-3} \cdot \sigma_{s}^{2} & \varrho^{N-4} \cdot \sigma_{s}^{2} & \cdots & \sigma_{s}^{2} \end{vmatrix}$$

- → Same as C_{N-1} except that first row is multiplied by ϱ
- → Determinant is given by $|\boldsymbol{C}_N^{(1,0)}| = \varrho |\boldsymbol{C}_{N-1}|$
- \rightarrow Recursive formula for $|C_N|$

$$\begin{aligned} |\boldsymbol{C}_{N}| &= \sigma_{S}^{2} \left| \boldsymbol{C}_{N}^{(0,0)} \right| - \sigma_{S}^{2} \varrho \left| \boldsymbol{C}_{N}^{(1,0)} \right| \\ &= \sigma_{S}^{2} \left| \boldsymbol{C}_{N-1} \right| - \sigma_{S}^{2} \varrho \cdot \varrho \left| \boldsymbol{C}_{N-1} \right| \\ &= \sigma_{S}^{2} \left(1 - \varrho^{2} \right) \left| \boldsymbol{C}_{N-1} \right| \end{aligned}$$

KLT for Gauss-Markov: High-Rate Distortion-Rate Function

• Formula for determinant of auto-covariance matrix $|\boldsymbol{C}_N|$ $|\boldsymbol{C}_N| = \sigma_5^2 (1 - \varrho^2) |\boldsymbol{C}_{N-1}|$ $= (\sigma_5^2 (1 - \varrho^2))^{N-1} \cdot |\boldsymbol{C}_1|$ (note: $\boldsymbol{C}_1 = [\sigma_5^2]$) $= \sigma_5^{2N} \cdot (1 - \varrho^2)^{N-1}$

→ Geometric mean of transform coefficient variances $\tilde{\sigma^2} = |\boldsymbol{C}_N|^{\frac{1}{N}} = \sigma_c^2 \cdot (1 - \rho^2)^{\frac{N-1}{N}}$

→ High-rate distortion-rate function for KLT of size N $D_{KLT}^{N}(R) = \varepsilon^{2} \cdot \sigma_{S}^{2} \cdot (1 - \varrho^{2})^{\frac{N-1}{N}} \cdot 2^{-2R} \qquad (\text{ECSQ: } \varepsilon^{2} = \pi e/6)$

➡ High-rate transform coding gain for KLT of size N

$$G_{KLT}^{N} = \frac{D_{SC}(R)}{D_{KLT}^{N}(R)} = \frac{\varepsilon^{2} \cdot \sigma_{S}^{2} \cdot 2^{-2R}}{\varepsilon^{2} \cdot \sigma_{S}^{2} \cdot (1 - \varrho^{2})^{\frac{N-1}{N}} \cdot 2^{-2R}} = \left(\frac{1}{1 - \varrho^{2}}\right)^{\frac{N-1}{N}}$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

KLT + ECSQ for Gauss-Markov at High Rates: Asymptotic Limits

Comparison to Rate-Distortion Bound

• Combination of KLT and ECSQ: Distortion increase relative to Shannon lower bound $D_L(R)$

$$\frac{D_{KLT}^{N}(R)}{D_{L}(R)} = \frac{\frac{\pi e}{6} \cdot \sigma_{S}^{2} \cdot (1 - \varrho^{2})^{\frac{N-1}{N}} \cdot 2^{-2R}}{\sigma_{S}^{2} \cdot (1 - \varrho^{2}) \cdot 2^{-2R}} = \frac{\pi e}{6} \cdot \left(\frac{1}{1 - \varrho^{2}}\right)^{\frac{1}{N}}$$

Asymptotic Limits for Large Transforms $(N o \infty)$

➡ Transform coding gain

$$G_{\mathcal{K}\mathcal{LT}}^{\infty} = \lim_{N o \infty} \left(rac{1}{1 - arrho^2}
ight)^{rac{N-1}{N}} = rac{1}{1 - arrho^2}$$

Distortion-rate function for KLT and ECSQ

$$D_{KLT}^{\infty}(R) = \frac{\pi e}{6} \cdot \sigma_S^2 \cdot (1 - \varrho^2) \cdot 2^{-2R} \quad \Rightarrow \quad \frac{D_{KLT}^{\infty}(R)}{D_L(R)} = \frac{\pi e}{6} \approx 1.42 \quad (1.53 \,\mathrm{dB})$$

 \rightarrow Gap to rate-distortion bound reduces to space-filling advantage of VQ

KLT for Gauss-Markov: High-Rate Transform Coding Gain

→ Identical to memory advantage of unconstrained vector quantization !

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

Asymptotic Transform Gain for Gauss-Markov Processes

Coding Experiment: KLT Coding of Gauss-Markov ($\rho = 0.9$)

Image Coding: 2D Transform

Image Coding

- Statistical dependencies in multiple directions (e.g., between vertically and horizontally adjacent samples)
- → Images are typically coded using $N \times M$ blocks of samples

Straightforward Extension to Two Dimensions

• Arrange samples of $N \times M$ block into vector of size NM

$$\boldsymbol{s}_{blk} = \begin{bmatrix} s_{00} & s_{01} & s_{02} \\ s_{10} & s_{11} & s_{12} \\ s_{20} & s_{21} & s_{22} \\ s_{30} & s_{31} & s_{32} \end{bmatrix} \rightarrow \boldsymbol{s}_{vec} = \begin{bmatrix} s_{00} & s_{01} & s_{02} & s_{10} & s_{11} & s_{12} & s_{20} & s_{21} & s_{22} & s_{30} & s_{31} & s_{32} \end{bmatrix}^{\mathrm{T}}$$

Design transform matrix **A** for vectors s_{vec} of size NM

→ Transform matrix has the size
$$(NM) \times (NM)$$

Image Coding: Separable 2D Transform

Separable 2D Transform

- **■** Successive 1D transform for rows and columns of an $N \times M$ image block
- → Separable orthogonal transform

$$\begin{bmatrix} u_{00} & u_{01} & u_{02} \\ u_{10} & u_{11} & u_{12} \\ u_{20} & u_{21} & u_{22} \\ u_{30} & u_{31} & u_{32} \end{bmatrix} = \boldsymbol{A}_{ver} \cdot \begin{bmatrix} s_{00} & s_{01} & s_{02} \\ s_{10} & s_{11} & s_{12} \\ s_{20} & s_{21} & s_{22} \\ s_{30} & s_{31} & s_{32} \end{bmatrix} \cdot \boldsymbol{A}_{hor}^{\mathrm{T}}$$

- with A_{ver} being an $N \times N$ transform matrix for transforming the columns, and A_{hor} being an $M \times M$ transform matrix for transforming the rows
- Inverse transform is also separable

$$m{s'} = m{A}_{ver}^{ ext{T}} \cdot m{u'} \cdot m{A}_{hor}$$

- Independent design of horizontal and vertical transform matrix
- → Great importance: Significant reduction in complexity

Image Example: Comparison of Separable and Non-Separable 2D KLT

 $G_{EC} = 23.804 \text{ dB}$

 $G_{EC} = 23.635 \text{ dB}$

→ Energy compaction gain decreases by 0.17 dB due to usage of separable transform

→ Corresponds to distortion increase of about 1.04 (at same rate)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

Convergence of KLT for AR(1) Sources

→ KLT transform matrix converges for $\rho \rightarrow 1$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

The Discrete Cosine Transform (DCT)

Transform Matrix of the Discrete Cosine Transform (DCT)

- The DCT is an orthogonal transform
- The transform matrix $\boldsymbol{A}_{DCT} = \{\boldsymbol{a}_{kn}\}$ has the elements

$$a_{kn} = \alpha_k \cdot \cos\left(\frac{\pi}{N} k\left(n + \frac{1}{2}\right)\right)$$
 with $\alpha_k = \begin{cases} \sqrt{1/N} & : k = 0\\ \sqrt{2/N} & : k \neq 0 \end{cases}$

• The basis vectors $\boldsymbol{b}_k = \{a_{kn}\}$ represent sampled cosine functions of different frequencies

Relation to KLT

Unit-norm eigenvectors of C_{SS} approach DCT basis vectors for $\varrho
ightarrow 1$

Advantages of DCT

- Transform matrix does not depends on the input signal
- Fast algorithms for computing the forward and inverse transforms

Basis Functions of the DCT (Example for N = 8)

$$\boldsymbol{b_k}[n] = \alpha_k \cdot \cos\left(\frac{\pi}{8} k\left(n + \frac{1}{2}\right)\right)$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: The Karhunen Loève Transform

AR(1) Sources: KLT Convergence Towards DCT for $\rho \rightarrow 1$

AR(1) Sources: Energy Compaction of KLT and DCT for N = 8

Image Example: Comparison of 2D DCT and Separable 2D KLT

 $G_{EC} = 23.6350 \text{ dB}$

 $G_{EC} = 23.6285 \text{ dB}$

→ Energy compaction gain decreases by 0.0065 dB due to usage of DCT instead of separable KLT
 → Corresponds to distortion increase of about 1.0015 (at same rate)

Summary of Lecture

Karhunen Loève Transform (KLT)

- Orthogonal transform that produces uncorrelated transform coefficients
- Basis vectors are the unit-norm eigenvectors of auto-covariance matrix
- Minimizes geometric mean of transform coefficients, maximizes energy compaction
- Optimal transform for Gaussian sources

Discrete Cosine Transform (DCT)

- Signal independent orthogonal transform
- Basis vectors: Samples cosine functions of different frequencies
- KLT for AR(1) approaches DCT for arrho
 ightarrow 1
- Typical: Energy compaction very close to that of KLT

2D Transforms

- Separable transforms for reducing implementation complexity
- Typically, small loss versus non-separable KLT

Exercise 1: Transform Coding Gain for Gauss-Markov Sources

In the video coding standard ITU-T Rec. H.264 the following forward transform is used:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & -2 \\ 1 & -1 & -1 & 1 \\ 1 & -2 & 2 & -1 \end{bmatrix}$$

- 1 How large is the high-rate transform coding gain (in dB) for a zero-mean Gauss-Markov process with the correlation factor $\rho = 0.9$?
- **2** By what amount (in dB) can the high-rate transform coding gain be increased if the transform is replaced by a KLT?
- NOTE: The basis functions of the given transform are orthogonal to each other, but they don't have the same norm. This has to be taken into account in the calculations.

Exercise 2: High-Rate Bit Allocation for KLT

Consider a zero-mean Gauss-Markov process with variance $\sigma_s^2 = 1$ and correlation coefficient $\rho = 0.9$. As transform a KLT of size 3 is used, the resulting transform coefficient variances are

$$\sigma_0^2 = 2.7407, \qquad \sigma_1^2 = 0.1900, \qquad \sigma_2^2 = 0.0693$$

Consider high-rate quantization with optimal entropy-constrained scalar quantizers.

1 Derive the high-rate operational distortion rate function.

- 2 What is the optimal high-rate bit allocation scheme for a given overall rate R?
- **3** Determine the component rates, the overall distortion, and the SNR for a given overall bit rate *R* of 4 bit per sample.
- **4** Determine the high-rate transform coding gain.

Exercise 3: Transform of Image Blocks using the DCT (Implementation)

Prepare a lossy image codec for PPM images. Implement the following:

1 Reading and writing of PPM images

- For details on the PPM format, see older exercises
- Re-use code from older exercises (see KVV)

2 Transform coding for sample blocks

- (a) Apply a separable 8×8 DCT for an image block (or make the block size $N \times N$ variable)
- **b** Quantize the resulting transform coefficient by simple rounding (using a fixed quantization step size)
- C Reconstruct transform coefficients (multiplication with quantization step size)
- **d** Apply the inverse transform (inverse DCT)

3 Test Your Implementation

- Apply the transform coding to all sample blocks of an image (without writing a bitstream)
- ➡ Test the transforms without quantization
- → Test the transform coding with different quantization step sizes (look at reconstructed images)