Transform Coding in Practice

Last Lectures: Basic Concept Transform Coding

- Transform reduces linear dependencies (correlation) between samples before scalar quantization
- For correlated sources: Scalar quantization in transform domain is more efficient

Encoder (block-wise)

- → Forward transform: $\mu = \mathbf{A} \cdot \mathbf{s}$
- \rightarrow Scalar quantization: $q_k = \alpha_k(u_k)$
- \rightarrow Entropy coding: $\boldsymbol{b} = \gamma(\{q_k\})$

$$oldsymbol{b} = \gamma(\{q_k\})$$

Decoder (block-wise)

- **→** Entropy decoding: $\{q_k\} = \gamma^{-1}(b)$
- \rightarrow Inverse quantization: $u'_k = \beta_k(q_k)$
- $s' \Delta^{-1} \cdot u'$ → Inverse transform:

Last Lectures: Orthogonal Block Transforms

■ Transform matrix has property: $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$ (special case of unitary matrix: $\mathbf{A}^{-1} = (\mathbf{A}^*)^{\mathrm{T}}$)

$$m{A} = \left[egin{array}{cccc} m{b_0} & m{b_1} & m{b_2} & m{b$$

- Basis vectors $\boldsymbol{b_k}$ (rows of \boldsymbol{A} , columns of $\boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}}$) form an orthonormal basis
- Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

Why Orthogonal Transforms?

- Same MSE distortion in sample and transform space: $||u' u||_2^2 = ||s' s||_2^2$
- → Minimum MSE in signal space can be achieved by minimization of MSE for each individual transform coefficient

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

■ Optimal bit allocation: Pareto condition

$$\frac{\partial}{\partial R_k} D_k(R_k) = -\lambda = {\sf const} \qquad \Longrightarrow \qquad {\sf high\ rates:} \quad D_k(R_k) = {\sf const}$$

High-Rate Approximation

■ High-rate distortion rate function for transform coding with optimal bit allocation

$$D(R) = \tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R}$$
 with $\tilde{\varepsilon}^2 = \left(\prod_k \varepsilon_k^2\right)^{\frac{1}{N}}, \quad \tilde{\sigma}^2 = \left(\prod_k \sigma_k^2\right)^{\frac{1}{N}}$

■ High-rate transform coding gain G_T and energy compaction measure G_{EC}

$$G_T = \frac{D_{SQ}(R)}{D_{TC}(R)} = \frac{\varepsilon_S^2 \cdot \sigma_S^2}{\tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2}, \qquad G_{EC} = \frac{\sigma_S^2}{\tilde{\sigma}^2} = \frac{\frac{1}{N} \sum_{k=0}^{N-1} \sigma_k^2}{\sqrt[N]{\prod_{k=0}^{N-1} \sigma_k^2}}$$

Last Lectures: Karhunen Loève Transform (KLT)

■ Design criterion: Orthogonal transform **A** that yields uncorrelated transform coefficients

$$m{\mathcal{C}}_{UU} = m{A} \cdot m{\mathcal{C}}_{SS} \cdot m{A}^{\mathrm{T}} = \left[egin{array}{cccc} \sigma_0^2 & 0 & \cdots & 0 \\ 0 & \sigma_1^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{N-1}^2 \end{array}
ight] \qquad \Longrightarrow \qquad m{\mathcal{C}}_{SS} \cdot m{b}_k = \sigma_k^2 \cdot m{b}_k$$

- \rightarrow Eigenvector equation for all basis vectors \boldsymbol{b}_k (rows of transform matrix \boldsymbol{A})
- \rightarrow Rows of KLT matrix **A** are the unit-norm eigenvectors of C_{SS}
- \rightarrow Transform coefficient variances σ_k^2 are the eigenvalues of C_{SS}

$$\mathbf{A} = \begin{bmatrix} \mathbf{--} & \mathbf{b}_0 & \mathbf{--} \\ \mathbf{--} & \mathbf{b}_1 & \mathbf{--} \\ \vdots & \vdots & \vdots \\ \mathbf{--} & \mathbf{b}_{N-1} & \mathbf{--} \end{bmatrix} \qquad \mathbf{C}_{UU} = \begin{bmatrix} \sigma_0^2 & 0 & \cdots & 0 \\ 0 & \sigma_1^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{N-1}^2 \end{bmatrix}$$

Last Lectures: Maximum Energy Compaction and Optimality

High-Rate Approximation for KLT and Gauss-Markov

■ High-rate operational distortion-rate function

$$D_N(R) = \varepsilon^2 \cdot \sigma_S^2 \cdot (1 - \varrho^2)^{\frac{N-1}{N}} \cdot 2^{-2R}$$

→ High-rate transform coding gain: Increases with transform size N

$$G_T^N = G_{EC}^N = (1 - \varrho^2)^{\frac{1-N}{N}} \qquad \Longrightarrow \qquad G_T^\infty = \frac{1}{1 - \varrho^2}$$

 \rightarrow For $N \to \infty$, gap to fundamental lower bound reduces to space-filling gain (1.53 dB)

On Optimality of KLT

- \blacksquare KLT yields uncorrelated transform coefficients and maximizes energy compaction G_{EC}
- → KLT is the optimal transform for stationary Gaussian sources
- Other sources: Optimal transform is hard to find (iterative algorithm)

Transform Selection in Practice

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
- → Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
- → Increased side information may lead to sub-optimal overall coding efficiency
- → Simple variant: Switched transforms (e.g., in H.266/VVC)

Signal-Independent Transforms

- Choose transform that provides good performance for variety of signals
- → Not optimal, but often close to optimal for typical signal
- → Most often used design in practice

Walsh-Hadamard Transform

 \blacksquare For transform sizes N that are positive integer powers of 2

$$m{A}_N = rac{1}{\sqrt{2}} \left[egin{array}{cc} m{A}_{N/2} & m{A}_{N/2} \ m{A}_{N/2} & -m{A}_{N/2} \end{array}
ight] \qquad ext{with} \qquad m{A}_1 = \left[egin{array}{cc} 1 \end{array}
ight].$$

Examples: Transform matrices for N = 2, N = 4, and N = 8

→ Very simple orthogonal transform (only additions, subtractions, and final scaling)

Basis Functions of the WHT (Example for N = 8)

Media coding: Walsh-Hadamard transform with strong quantization

→ Piece-wise constant basis vectors yield subjectively disturbing artifacts

Discrete Version of the Fourier Transform

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-2\pi i f t} dt \qquad \Longleftrightarrow \qquad x(t) = \mathcal{F}^{-1}\{x(t)\} = \int_{-\infty}^{\infty} X(f) \cdot e^{2\pi i f t} df$$

ightharpoonup Basis functions are complex exponentials $b_f(t)=e^{2\pi\mathrm{i}ft}$

Discrete Version of the Fourier Transform

- Fourier transform for finite discrete signals
- Could also be useful for coding of discrete signals
- Can be derived using sampling and windowing

Important Properties of the Fourier Transform

- Linearity:
- Scaling:
- Translation:
- Modulation:
- Duality:
- Convolution:
- Multiplication:

$$\mathcal{F}\Big\{a\cdot h(t)+b\cdot g(t)\Big\}\ =\ a\cdot H(f)+b\cdot G(f)$$

$$\mathcal{F}\Big\{h(a\cdot t)\Big\} \;=\; rac{1}{|a|}\cdot Higg(rac{f}{a}igg)$$

$$\mathcal{F}\Big\{h(t-t_0)\Big\} = e^{-2\pi \mathrm{i} t_0 f} \cdot H(f)$$

$$\mathcal{F}\Big\{e^{2\pi\mathrm{i}tf_{\mathbf{0}}}\cdot h(t)\Big\} \ = \ H(f-f_{\mathbf{0}})$$

$$\mathcal{F}\big\{H(t)\big\} = h(-f)$$

$$\mathcal{F}\Big\{h(t)*g(t)\Big\} = \mathcal{F}\left\{\int_{-\infty}^{\infty} g(\tau) h(t-\tau) d\tau\right\} = H(f) \cdot G(f)$$

$$\mathcal{F}\Big\{h(t)\cdot g(t)\Big\} = H(f)*G(f)$$

The Dirac Delta Function

Dirac Delta Function

- Not a function in traditional sense → Dirac delta distribution
- Can be thought of function with the following properties

$$\delta(x) = \begin{cases} +\infty & : & x = 0 \\ 0 & : & x \neq 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1$$

Important Properties

■ Sifting:

$$\int_{-\infty}^{\infty} h(t) \, \delta(t-t_0) \, \mathrm{d}t = h(t_0)$$

■ Convolution:

$$h(t) * \delta(t-t_0) = \int_{-\infty}^{\infty} h(\tau) \, \delta(t-t_0-\tau) \, d\tau = h(t-t_0)$$

■ Sampling: $\int_{-\infty}^{\infty} h(t) \left(\sum_{k=-\infty}^{\infty} \delta(t-k \cdot t_0) \right) dt = \sum_{k=-\infty}^{\infty} h(k \cdot t_0)$

Selected Fourier Transform Pairs

Selected Fourier Transform Pairs

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (2) Time Restriction

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

The Discrete Fourier Transform

 \rightarrow N samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

■ Forward and inverse transform are given by

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{2\pi kn}{N}}$$

 $\quad \text{and} \quad$

$$s[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot e^{i\frac{2\pi kn}{N}}$$

- → Unitary transform that produces complex transform coefficients
- → Basis vectors are sampled complex exponentials

Complex Basis Functions of the DFT (Example for N=8)

$$\boldsymbol{b_k[n]} = \frac{1}{\sqrt{N}} e^{\mathrm{i}\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + \mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r_k[n]} + \mathrm{i} \cdot \boldsymbol{i_k[n]}$$

Complex Basis Functions of the DFT (Example for N = 8)

$$\boldsymbol{b_k[n]} = \frac{1}{\sqrt{N}} e^{\mathrm{i}\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + \mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r_k[n]} + \mathrm{i} \cdot \boldsymbol{i_k[n]}$$

DFT for Real Signals

Symmetry of complex coefficients

$$u[k] = u^*[N-k]$$

Vanishing imaginary parts

$$k \in \left\{0, \frac{N}{2}\right\}: \quad \Im\left\{u[k]\right\} = 0$$

- → N real samples are mapped to N real coefficients
- Fast algorithm: Fast Fourier transform (FFT)

Disadvantage of DFT for Transform Coding

- → Sampling of frequency spectrum causes implicit periodic signal extension
- → Often: Large differences between left and right signal boundary
- → Large difference reduces rate of convergence of Fourier series
- → Strong quantization yields significant high-frequency artefacts

Overcome DFT Disadvantage: Discrete Cosine Transform

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)
- Apply DFT of approximately double size (or four times the size)
- → No discontinuities in periodic signal extension
- → Ensure symmetry around zero: Only cosine terms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
 - → Imaginary sine terms get eliminated
 - → Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
 - 2 cases for left side: Whole sample or half-sample symmetry
 - 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry
- Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

- Introduce anti-symmetry around zero and apply DFT of larger size
 - → Real cosine terms get eliminated
 - → Only imaginary sine terms remain
- Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

The Discrete Cosine Transform (DCT) Family

The Discrete Sine Transform (DST) Family

Signal for applying the DFT

- Given: Discrete signal s[n] of size N (i.e., $0 \le n < N$)
- Mirror signal with sample repetition at both sides (size 2N)

$$s^{m}[n] = \begin{cases} s[n] & : & 0 \le n < N \\ s[2N-n-1] & : & N \le n < 2N \end{cases}$$

■ Ensure symmetry around zero by adding half-sample shift

$$s^{+}[n] = s^{m}[n-1/2] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

 \rightarrow Apply DFT of size 2N to new signal $s^+[n]$

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

⇒ DFT of size
$$2N$$
: $u^+[k] = \frac{1}{\sqrt{(2N)}} \sum_{n=0}^{(2N)-1} s^+[n] \cdot e^{-i\frac{2\pi kn}{(2N)}}$ $\left(\begin{array}{c} s^+ \text{ only known at half-sample} \\ \text{positions} \to \text{ use } m = n - 1/2 \end{array}\right)$

$$= \frac{1}{\sqrt{2N}} \sum_{m=0}^{2N-1} s^+ \left[m + \frac{1}{2}\right] \cdot e^{-i\frac{\pi k}{N} \left(m + \frac{1}{2}\right)}$$

$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{m=N}^{2N-1} s[2N - m - 1] \cdot e^{-i\frac{\pi k}{N} \left(m + \frac{1}{2}\right)} \right)$$

$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{m=N}^{2N-1} s[2N - m - 1] \cdot e^{-i\frac{\pi k}{N} \left(m + \frac{1}{2}\right)} \right)$$

$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} (n+\frac{1}{2})} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} (2N-n-\frac{1}{2})} \right)$$

Continue derivation

$$u^{+}[k] = \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} (n + \frac{1}{2})} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} (2N - n - \frac{1}{2})} \right)$$

$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} (n + \frac{1}{2})} + \sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-i2\pi k} \cdot e^{i\frac{\pi k}{N} (n + \frac{1}{2})}}_{2\cos(\frac{\pi k}{N} (n + \frac{1}{2}))} \right)$$

$$= \frac{1}{\sqrt{2N}} \sum_{n=0}^{N-1} s[n] \cdot \underbrace{\left(e^{-i\frac{\pi k}{N} (n + \frac{1}{2})} + e^{i\frac{\pi k}{N} (n + \frac{1}{2})} \right)}_{2\cos(\frac{\pi k}{N} (n + \frac{1}{2}))}$$

→ DFT of extended signal

$$u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

■ DFT of extended signal (2N real samples) has 2N real transform coefficients

$$k = 0, \ldots, 2N - 1:$$
 $u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$

1 Signal s[n] is completely described by first N transform coefficients

$$k = 0, \ldots, N-1:$$
 $u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$

- 2 Basis functions of derived transform are orthogonal to each other, but don't have the same norm
- \rightarrow Introduce factors α_k so that transform matrix becomes orthogonal

$$k = 0, \ldots, N-1:$$
 $u[k] = \alpha_k \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$

Discrete Cosine Transform of Type II (DCT-II)

Specification of DCT-II

Forward transform (DCT-II) and inverse transform (IDCT-II) are given by

$$u[k] = \alpha_k \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

$$u[k] = \alpha_k \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k\left(n + \frac{1}{2}\right)\right) \quad \text{and} \quad s[n] = \sum_{k=0}^{N-1} \alpha_k \cdot u[k] \cdot \cos\left(\frac{\pi}{N} k\left(n + \frac{1}{2}\right)\right)$$

with scaling factors

$$\alpha_k = \begin{cases} \sqrt{1/N} : & k = 0 \\ \sqrt{2/N} : & k \neq 0 \end{cases}$$

■ The orthogonal transform matrix $\mathbf{A} = \{a_{kn}\}$ has the elements

$$a_{kn} = \alpha_k \cdot \cos\left(\frac{\pi}{N} \, k \left(n + \frac{1}{2}\right)\right)$$

Comparions of DFT and DCT-II Basis Functions (Example for N = 8)

DFT:
$$b_k[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = r_k[n] + i \cdot i_k[n]$$

DCT-II:
$$b_k[n] = \alpha_k \cdot \cos\left(\frac{\pi}{N}k\left(n + \frac{1}{2}\right)\right)$$

Image & Video Coding: 2D Transforms

Separable Transforms

- Successive 1D transforms of rows and columns of image block
- → Separable forward and inverse transforms

$$oldsymbol{u} = oldsymbol{A} \cdot oldsymbol{s} \cdot oldsymbol{B}^{\mathrm{T}}$$
 and $oldsymbol{s} = oldsymbol{A}^{\mathrm{T}} \cdot oldsymbol{u} \cdot oldsymbol{B}$

$$oldsymbol{s} = oldsymbol{\mathcal{A}}^{\mathrm{T}} \cdot oldsymbol{u} \cdot oldsymbol{\mathcal{B}}$$

with $s - N \times M$ block of image samples

 $\mathbf{A} - \mathbf{N} \times \mathbf{N}$ transform matrix (typically DCT-II)

 $B - M \times M$ transform matrix (typically DCT-II)

 $u - N \times M$ block of transform coefficients

Great practical importance:

- Two matrix multiplications of size $N \times N$ instead of one multiplication of a vector of size $1 \times N^2$ with a matrix of size $N^2 \times N^2$
- \rightarrow Complexity reduction from $\mathcal{O}(N^4)$ to $\mathcal{O}(N^3)$ [also fast algorithms for DCT-II]

Example: Basis Images of Separable 8×8 DCT-II

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\mathbf{u} = \mathbf{A} \cdot \mathbf{s} \cdot \mathbf{A}^{\mathrm{T}}$

Example calculation of 2d DCT-II:

- 1 Horizontal DCT of input block: $\mathbf{u}^* = \mathbf{s} \cdot \mathbf{A}^{\mathrm{T}}$
- 2 Vertical DCT of intermediate result: $\mathbf{u} = \mathbf{A} \cdot \mathbf{u}^* = \mathbf{A} \cdot \mathbf{s} \cdot \mathbf{A}^T$

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources $(\varrho \rightarrow 1)$
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size 8×8 is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

- Video coding standard H.264/AVC $(4 \times 4 \text{ and } 8 \times 8)$
- Video coding standard H.265/HEVC $(4\times4, 8\times8, 16\times16, 32\times32)$
- New standardization project H.266/VVC (from 4×4 to 64×64, including non-square blocks)

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

- Uniform reconstruction quantizers (or very similar designs)
- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

- Zig-zag scan (or similar scan) for 2D transforms
- Simple: Run-level coding, run-level-last coding, or similar approach
- Better coding efficiency: Adaptive arithmetic coding

Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

Remember: Optimal bit allocation: Pareto condition

$$\frac{\partial D_k(R_k)}{\partial R_k} = \text{const}$$

Pareto condition for high rates

$$D_k = \varepsilon_k^2 \cdot \sigma_k^2 \cdot 2^{-2R_k} \implies D_k(R_k) = \text{const}$$

■ High rate distortion approximation for URQs

$$D_k = \frac{1}{12}\Delta_k^2$$

→ Quantization step sizes for optimal bit allocation at high rates

$$D_k = \frac{1}{12}\Delta_k^2 = \text{const} \implies \Delta_k = \text{const} = \Delta$$

→ In practice, (nearly) optimal bit allocation is typically achieved by using the same quantization step size Δ for all transform coefficients

Color Transform for Image & Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)
- \rightarrow Example: RGB \rightarrow YCbCr transform used in JPEG

$$\begin{bmatrix} Y \\ Cb-128 \\ Cr-128 \end{bmatrix} = \begin{bmatrix} 0.2990 & 0.5870 & 0.1140 \\ -0.1687 & -0.3313 & 0.5000 \\ 0.5000 & -0.4187 & -0.0813 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.4020 \\ 1 & -0.3441 & -0.7141 \\ 1 & 1.7720 & 0 \end{bmatrix} \cdot \begin{bmatrix} Y \\ Cb - 128 \\ Cr & -128 \end{bmatrix}$$

Energy Compaction for Example Image

$$\sigma_{\mathsf{R}}^2 = 3862.28$$
 $\sigma_{\mathsf{Y}}^2 = 3099.67$ $\sigma_{\mathsf{G}}^2 = 4250.44$ \Rightarrow $\sigma_{\mathsf{Cb}}^2 = 83.94$ $\sigma_{\mathsf{B}}^2 = 5869.39$ $\sigma_{\mathsf{Cr}}^2 = 70.10$

YCbCr

The YCbCr Chroma Sampling Format

- Human being are less sensitive to color differences (at same luminance)
- → In most applications: Color difference components are downsampled

The Image Compression Standard JPEG

■ Partition color components (Y, Cb, Cr) into blocks of 8 × 8 samples

■ Transform coding of 8 × 8 blocks of samples

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

■ Inverse transform (in decoder)

→ Effect of transform: Compaction of signal energy (for typical blocks)

JPEG: Quantization

Uniform Reconstruction Quantizers

- **Equally spaced reconstruction levels (indicated by step size \Delta)**
- Simple decoder mapping

$$t' = \Delta \cdot a$$

■ Simplest (but not best) encoder:

$$q = \mathsf{round}(t/\Delta)$$

- Better encoders use Lagrangian optimization (minimization of $D + \lambda R$)
- → Quantization step size △ determines tradeoff between quality and bit rate

JPEG: Entropy Coding

0.242	0.108	0.053	0.009
0.105	0.053	0.022	0.002
0.046	0.017	0.006	0.001
0.009	0.002	0.001	0.000

probabilities $P(q_k \neq 0)$

zig-zag scan (JPEG)

1 Scanning of Quantization indexes

- Convert matrix of quantization indexes into sequence
- Traverse quantization indexes from low to high frequency positions
- JPEG: Zig-zag scan

JPEG: Entropy Coding

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
- → Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

 Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol

level: value of next non-zero symbol

run: number of zero symbols that precede next non-zero symbol

eob: all following symbols are equal to zero (end-of-block)

- → Assign codewords to (run,level) pairs (including eob symbol)
- **Example**: 64 symbols: 5 3 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 ... (run,level) pairs: (0,5) (0,3) (3,1) (1,1) (2,1) (eob)

Original Image (960×720 image points, RGB: 2 MByte)

100%

Lossy Compressed: JPEG (Quality 94)

Lossy Compressed: JPEG (Quality 66)

Lossy Compressed: JPEG (Quality 27)

Lossy Compressed: JPEG (Quality 6)

Audio Compression Example: MPEG-2 Advanced Audio Coding (AAC)

Main Component: Transform Coding of Sample Blocks

Transform: Modified DCT for overlapping blocks

Quantization: Scalar quantization with psycho-acoustic model

■ Entropy Coding: Variant of Huffman coding

Linear Transform

- Audio signal is coded based on overlapping blocks of samples
- Transform: Modified discrete cosine transform (MDCT)

Quantization of Transform Coefficients

- Scalar quantization of transform coefficients (spectral coefficients)
- Utilization of psycho-acoustic models by noise shaping

Entropy Coding of Quantization Indexes

- Grouping and interleaving
- Huffman coding for tuples of n quantization indexes (n is variable)

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

■ The forward transform maps 2N samples to N transform coefficients

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{2N-1} s[n] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{N+1}{2}\right) \left(k + \frac{1}{2}\right)\right)$$

Inverse Transform (IMDCT)

■ The inverse transform maps N transform coefficients to 2N samples

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{N+1}{2}\right) \left(k + \frac{1}{2}\right)\right)$$

Perfect Reconstruction

- Neighboring blocks of samples s[n] overlap by 50% (at each side)
- lacksquare Perfect reconstruction of s[n] is achieved by adding the inverse transformed blocks x[n]
- → Property of time-domain aliasing cancellation

Summary of Lecture

Signal-Independent Transforms

Walsh-Hadamard Transform (WHT): Perceptual disturbing artefacts

■ Discrete Fourier Transform (DFT): Problem due to implicit periodic signal extension

■ Discrete Trigonometric Transforms: Family of Sine and Cosine transforms

Discrete Cosine Transform of Type II (DCT-II)

- DFT of mirrored signal with half-sample symmetry at both sides
- Reduced blocking artifacts compared to DFT
- Good approximation of KLT for highly-correlated signals

Transform Coding in Practice

- Color transforms in image and video coding: RGB to YCbCr conversion
- JPEG image compression: 2D DCT-II + URQ + Run-level coding
- AAC audio compression: MDCT for overlapped blocks + scalar quantization + Huffman coding

Exercise 1: Correlation of Transform Coefficients

Given is a zero-mean AR(1) sources with a variance σ^2 and a correlation coefficient $\varrho=0.9$

Consider transform coding of blocks of 2 samples using the transform

$$\left[\begin{array}{c} u_{k,0} \\ u_{k,1} \end{array}\right] = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right] \cdot \left[\begin{array}{c} s_{2k} \\ s_{2k+1} \end{array}\right],$$

where k represents the index of the transform block

 Determine the following variances and covariances of the transform coefficients (inside a block and between neighbouring blocks):

$$E\{U_{k,0}\} = ?$$
 $E\{U_{k,0}U_{k+1,0}\} = ?$ $E\{U_{k,1}U_{k+1,1}\} = ?$ $E\{U_{k,0}U_{k,1}\} = ?$ $E\{U_{k,0}U_{k,1}\} = ?$

■ Is it worth to exploit the correlations between the transform coefficients of neighboring block (e.g., for typical correlation factors of $\rho \approx 0.9$)?

Exercise 2: First Version of Lossy Image Codec (Implementation)

Implement a first lossy image codec for PPM images:

- 1 Use the source code of last weeks exercise as basis (see KVV)
- 2 Add some variant of entropy coding for the quantization indexes, for example:
 - Simple Rice coding or Exp-Golomb coding (see lossless codec example in KVV)
 - Adaptive binary arithmetic coding using a unary binarization (see lossless coding example in KVV)
 - ...
- 3 Implement an encoder that converts a PPM image into a bitstream file
- 4 Implement a corresponding decoder that converts a bitstream file into a PPM image
- 5 Test your encoder with some example images and multiple quantization step sizes
- 6 (Optional) Try to improve your codec by using the YCbCr color format
 - Implement an RBG-to-YCbCr transform before the actual encoding
 - Implement the inverse YCbCr-to-RGB transform after the actual decoding
 - Possible extension: Sub-sampling of chroma components