Transform Coding in Practice



Last Lectures: Basic Concept Transform Coding

m Transform reduces linear dependencies (correlation) between samples before scalar quantization

® For correlated sources: Scalar quantization in transform domain is more efficient

encoder decoder ,
Yo | o 9o | | o
Qg Bo
forward | a [ b entropy an u inverse ,
s AT Qaq coding decoding b1 transform S
5 —1 H 1
A Un—1 m an-1 v g an-1 |5—| Uy | A
| I [PN-1]
Encoder (block-wise) Decoder (block-wise)
=» Forward transform: u=A-s = Entropy decoding:  {qx} = v 1(b)
=> Scalar quantization: qx = ax(uk) => Inverse quantization: v, = Bx(qk)
=» Entropy coding: b=~({qx}) = Inverse transform: s’ = A" l.u’
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Last Lecture

Last Lectures: Orthogonal Block Transforms

® Transform matrix has property: A~! = AT (special case of unitary matrix: A~* = (A*)T)

n |1
—_ b —

A1=AT=| bobyi by --- by_4

= Basis vectors by (rows of A, columns of A~* = A™) form an orthonormal basis

=> Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

A= b,

by-1—

Why Orthogonal Transforms ?
m Same MSE distortion in sample and transform space: ||u’ — ul|3 = ||s’ — s]|3

=» Minimum MSE in signal space can be achieved by
minimization of MSE for each individual transform coefficient
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Last Lecture

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients
m Optimal bit allocation: Pareto condition

0

IR, Dy(Ry) = —A = const = high rates: Dy (Rx) = const
K

High-Rate Approximation

B High-rate distortion rate function for transform coding with optimal bit allocation

D(R) =22 .5%.272R with 2 _ (Hk si)ﬁ . (Hk U;%)%

B High-rate transform coding gain Gt and energy compaction measure Ggc

GT:DSQ(R):5.2<;'U_29 GEC:U§: NZk on
Drc(R) &2-52° b2 N—1
k=0 Uk
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Last Lectures: Karhunen Loéve Transform (KLT)

m Design criterion: Orthogonal transform A that yields uncorrelated transform coefficients

op O 0
2
B v |0 a0 e
Ciw=A-Css-A =| . | | : = Css - by = o} - by
0 0 o3 4

=> Eigenvector equation for all basis vectors by (rows of transform matrix A)

=> Rows of KLT matrix A are the unit-norm eigenvectors of Css
=> Transform coefficient variances o7 are the eigenvalues of Css

— by — os 0 .- 0
— by — 0 Uf

A= ) Cuy =
—by_1— 0 0 (7,2\/,1
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Last Lectures: Maximum Energy Compaction and Optimality

High-Rate Approximation for KLT and Gauss-Markov
m High-rate operational distortion-rate function

Dn(R) =202 (1—¢g?)'" .27 2R

=» High-rate transform coding gain: Increases with transform size N

1N oo 1
GH=Gl=(1-N" =  GF-i

= For N — oo, gap to fundamental lower bound reduces to space-filling gain (1.53 dB)

On Optimality of KLT
m KLT yields uncorrelated transform coefficients and maximizes energy compaction Ggc
=» KLT is the optimal transform for stationary Gaussian sources

m Other sources: Optimal transform is hard to find (iterative algorithm)
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Signal-Independent Unitary Transforms

Transform Selection in Practice

Optimal Unitary Transform
m Stationary Gaussian sources: KLT
m General sources: Not straightforward to determine (typically KLT close to optimal)

=> Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection
m Determine transform in encoder, include transform specification in bitstream
=» Increased side information may lead to sub-optimal overall coding efficiency
=> Simple variant: Switched transforms (e.g., in H.266/VVC)

Signal-Independent Transforms
m Choose transform that provides good performance for variety of signals
=» Not optimal, but often close to optimal for typical signal
=» Most often used design in practice
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Walsh-Hadamard Transform

m For transform sizes N that are positive integer powers of 2

A, =

A, =

=> Very simple orthogonal transform (only additions, subtractions, and final scaling)
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Signal-Independent Unitary Transforms / Walsh-Hadamard Transform

Basis Functions of the WHT (Example for N = 8)

IR 0 O A b T T T

L L e
o 0 O e

o, [ 1 o [T RERS
] !

bs I I I _T_ b, I I I

Media coding: Walsh-Hadamard transform with strong quantization

=» Piece-wise constant basis vectors yield subjectively disturbing artifacts
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Signal-Independent Unitary Transforms / Fourier Transform

Discrete Version of the Fourier Transform

The Fourier Transform

®m Fundamental transform used in mathematics, physics, signal processing, communications,

B Integral transform representing signal as integral of frequency components
B Forward and inverse transform are given by

X(F) = F{x()} = /x(t)-e_zﬂift dt |

x(t) = FH{x(t)} :/X(f) -2t qf

=» Basis functions are complex exponentials b (t) = 2"t

Discrete Version of the Fourier Transform
m Fourier transform for finite discrete signals
m Could also be useful for coding of discrete signals
® Can be derived using sampling and windowing
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Important Properties of the Fourier Transform

® Linearity: .7:{3~h(t)—|—b-g(t) = a-H(f)+ b- G(f)
m Scaling: f{h(a~ t)y = ﬁ : H(Z)
m Translation: ]-'{h(t —to)p = e ikl H(f)

|
Il
>
—
|
-
~

Duality: f{H(t)

Il
I
—~
-
~
(%)
—
-
~

Convolution: }'{h(t) * g(t)} =F {/ g(r)h(t—7)dr

}
j
}
Modulation: f{ezmt'c" : h(t)} = H(f — )
)
)

m Multiplication: f{h(f) -g(t)

Il
I
—~
BN
~
*
[9)
—~~
BN
~
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The Dirac Delta Function

Dirac Delta Function
m Not a function in traditional sense =» Dirac delta distribution

® Can be thought of function with the following properties

_J 400 x=0 Vi .
(5(X)—{ 0 x40 and /6(x)dx—1
Important Properties
m Sifting: / h(t)3(t — to)dt = h(to)
= Convolution: h(t) * 6(t — to) = / h(r) 3t — to — 7) dr = h(t — to)

f: h(k . to)

k=—00

® Sampling: /_00 h(t) ( i ot — k-to)> dt

k=—o0
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Selected Fourier Transform Pairs

Dirac delta function 6(t=T) complex exponential |F{5(t — T)}|
t f
x(t)=6(t—T) X(f) = e 2™ = cos(2nfT) + isin(27fT)
Dirac comb wr(t) Dirac comb |7 (F)]
L
T o—e T

wr(t) = i 5(t — kT) W (f) = i 5(F — k/T)

k=—o00 k=—o00
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Selected Fourier Transform Pairs

rectangular window rectr(t) Sinc filter | F{rectr(f)}]
B T o—e < /\ -
2
1: ¢ <T)2 ‘ f
: < 1 . .
rectr(t) = { 0|t > T/2 F{rectr(f)} = ﬁsm(wa) = T sinc(fT)
Gaussian g(t) Gaussian |G(F)|
o—e
t ! f
2 1 2
g(ty=e ™" with o= o G(f)=e™F =g(f)
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

continuous signal s(t) Fourier transform |S(F)]
o—e
t f
X (multiplication) % (convolution)
Dirac comb wo(t) Dirac comb [LWo(£)]
l - | -
sampled signal s(t) wo(t) Fourier transform |S(F) Lo (f)]
| o N
I T T * L 3
t f
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Derivation of Discrete Fourier Transform: (2) Time Restriction

sampled signal s(t) wo(t) Fourier transform |S(F)*LLo(f)]
\
I T T * L I .
t f
X (multiplication) % (convolution)
rectangular window r(t) Sinc filter [R(F)]
o0—e
t f
finite sampled signal s(t) wo(t) r(t) Fourier transform |S(F)+Wo(f)=R(f)|
\
I T T * L 3
t f
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Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

finite sampled signal s(t) wo(t) r(t) Fourier transform |S(F)LLo(f)*R(f)|

\TTT?+AAA

t f
*  (convolution) X (multiplication)
Dirac comb wa(t) Dirac comb [ (F)]
periodic sampled signal d[s(t) wo(t) r(t)] * wa(t) Fourier transform [[S(F)*LLo(f)*R(F)] L1 (f)]
HT‘THHH?T TmHnT‘Tn
t f
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The Discrete Fourier Transform

periodic sampled signal 4 sper(t) Fourier transform | Sper(£)]

MTTHA“ T?HHHT

t f

=» N samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

m Forward and inverse transform are given by

27kn

] Nl _
ulk] = ﬁ;s[n]~e N

27kn

;N1 4
and s[n] = N ; ulk] - e w

=» Unitary transform that produces complex transform coefficients
=» Basis vectors are sampled complex exponentials
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Complex Basis Functions of the DFT (Example for N = 8)

bi[n] = L & = icos (ﬂn> +i- L sin (%n) = nn] +1i-ik[n]

o

n

r

r3 i3 r7
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Complex Basis Functions of the DFT (Example for N = 8)

bi[n] = A 1 cos 2ﬂ'kn +i ! sin 271’kn re[n] 4+ 1+ ik[n]
k =— = — | =r Mk
\f VN N VN N
DFT for Real Signals
o & B Symmetry of complex coefficients
ulk] = u*[N — k]
n il

® Vanishing imaginary parts

ke {0, 8} S{ulk} =0

=» N real samples are mapped to
N real coefficients

rzw ,'2

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Transform Coding in Practice 20 / 50

® Fast algorithm:
Fast Fourier transform (FFT)
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Disadvantage of DFT for Transform Coding

discrete signal Sper(t) transform coefficients 4 |Sper(f)]
[
= = “THA“ THHH?T
> t f
N samples N coefficients

=» Sampling of frequency spectrum causes implicit periodic signal extension

=» Often: Large differences between left and right signal boundary
=> Large difference reduces rate of convergence of Fourier series

=» Strong quantization yields significant high-frequency artefacts

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Transform Coding in Practice 21 / 50



Overcome DFT Disadvantage: Discrete Cosine Transform

'
DFT: ?
implicit signal replica I signal implicit signal replica
b 'Y}
7%
DCT: a—ne
< T' 'T >
implicit signal replica signal  mirrored signal implicit signal replica i

Idea of Discrete Cosine Transform (DCT)
® Introduce mirror symmetry (different possibilities)
m Apply DFT of approximately double size (or four times the size)
=» No discontinuities in periodic signal extension
=» Ensure symmetry around zero: Only cosine terms
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Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)
B Introduce mirror symmetry around zero and apply DFT of larger size
=» Imaginary sine terms get eliminated
=>» Only cosine terms remain
m 3 possibilities: DCT-1 to DCT-VIII
® 2 cases for left side:  Whole sample or half-sample symmetry
® 4 cases for right side:  Whole sample or half-sample symmetry or anti-symmetry

m Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)
® Introduce anti-symmetry around zero and apply DFT of larger size
=> Real cosine terms get eliminated
=>» Only imaginary sine terms remain
m Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)
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Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

The Discrete Cosine Transform (DCT) Family

DCT-I DFT of size 2N — 2 DCT-v DFT of size 2N — 1
lTT It lTT 11y

DCT-II DFT of size 2N DCT-VI DFT of size 2N — 1
LT hT? LTT 11

DCT-lI DFT of size 4N DCT-vII DFT of size 4N — 2

- il i

[

DCT-IvV DFT of size 4N DCT-viI DFT of size 4N + 2
\,
|

1] [11, -
[
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Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms
The Discrete Sine Transform (DST) Family

DST-I ‘ DFT of size 2N + 2 DST-v DFT of size 2N + 1

I . LTTI ) ol
| I

DST-II { DFT of size 2N DST-VI DFT of size 2N + 1
hd

il
L

DST-II ‘ DFT of size 4N DST-VII { DFT of size 4N + 2

DST-IV { DET of size 4N DST-VIiI ‘ DFT of size 4N — 2

e —
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Derivation of the Discrete Cosine Transform of Type Il (DCT-II)

° %0 °
DFT L] [ ]
. [ [ _
implicit signal replica signal  mirrored signal implicit signal replica

Signal for applying the DFT
m Given: Discrete signal s[n] of size N (i.e., 0 < n < N)
m Mirror signal with sample repetition at both sides (size 2N)
™ s[n] : 0<n<N
s"[n] =
sRN—-—n—-1] @ N<n<2N
® Ensure symmetry around zero by adding half-sample shift

fra_ m ) s[n—1/2] : 0<n<N
s["]_s[”_1/2]_{5[2/\/—n—3/2] . N<n<2N

=> Apply DFT of size 2N to new signal s*[n]
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Derivation of the Discrete Cosine Transform of Type Il (DCT-II)

sy = { cln—1/2 L 0<n<N
s2N—n—3/2] : N<n<2N
G k . . |
=> DFT of size 2N : u+[k] = Z st[n] - oI (5 Ony nown at half-sample )
(2N) n=0 positions — use m =n — 1/2
2N-1
1 [ 17 mefin
:725+ m+} e 17 (mt3)
2N =5
R s Ly 2N o
= AN (Z sin] - e (3) £ 3" v - m - 1] - e—l"N(m+z)>
2N \ & 2
ln:2N7m71
1 (N—l ( ) N-1 " )
= [ X sln] e () £ 3 ] e N )
V2N \ = 2
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type Il

Derivation of the Discrete Cosine Transform of Type Il (DCT-II)

m Continue derivation

N LR i (eed) N—1 st (oMon1)
utlk] = 2N<n§_;)s[n]-e N 2+Zs[n]-e N )

. e i .
2N n=0 n=0 1
1 s £ ) £(nt1)
= slinl - ef1 N ”+5 + eIWW n+2 )
w2t

=> DFT of extended signal

utlk] = \/> Z s[n] - cos ( (n + ;))
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type Il

Derivation of the Discrete Cosine Transform of Type Il (DCT-II)

m DFT of extended signal (2N real samples) has 2/ real transform coefficients
1
k=0,...,2N—1: ut [k \/ =
y ey [kK] = Zs[n] cos( <n+2)>

Signal s[n] is completely described by first N transform coefficients

k=0,...,N—1: u'[k]= [25[”] C°s< ("+;>)

Basis functions of derived transform are orthogonal to each other, but don't have the same norm
=> Introduce factors ay so that transform matrix becomes orthogonal

N TR SE OB AT (X8 )

n=0
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Discrete Cosine Transform of Type Il (DCT-II)

Specification of DCT-II
m Forward transform (DCT-II) and inverse transform (IDCT-II) are given by

o E ol o) | o [0 Eo s (3)

with scaling factors

[ VI/N : k=0
UTY V2N - k#0

® The orthogonal transform matrix A = {ax,} has the elements

— Ek +1
dkn = Qi - COS N n 5
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Signal-Independent Unitary Transforms / Discrete Cosine Transform o

Comparions of DFT and DCT-II Basis Functions (Example for N = 8)

DFT: by[n] =

3~

e — re[n] +1-ik[n] DCT-Il:  bi[n] = a - cos (Nk (n + 2))

. AN WL T
rlwh% sz?‘ll**TbaT.l*TT.
P’W%LF“TLT ”4711”11”5’1‘T1~Tx
%fkv%é% bﬁ*lT“Tl,bﬁrlTlf.
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Image & Video Coding: 2D Transforms

Separable Transforms
m Successive 1D transforms of rows and columns of image block

=» Separable forward and inverse transforms

u:A~s-BT‘ and ‘s:AT~u~B

with s — Nx M block of image samples
A — NxN transform matrix (typically DCT-II)
B — Mx M transform matrix (typically DCT-II)
u — NxM block of transform coefficients

Great practical importance:

® Two matrix multiplications of size N x N instead of
one multiplication of a vector of size 1x N? with a matrix of size N2 x N2

=» Complexity reduction from O(N*) to O(N3) [also fast algorithms for DCT-II]
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type Il

Example: Separable DCT-II for 8 x8 Image Block

Forward transform for 8 x 8 block of samples: u=A-s- AT

horizontal vertical
DCT DCT
——

original block after 2d DCT

Example calculation of 2d DCT-II:
Horizontal DCT of input block: u*=s-A"
Vertical DCT of intermediate result: u=A-u*=A-s-A"
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type Il

Practical Importance of DCT-II

Justification for usage of DCT-II
B Represents signal as weighted sum of frequency components
m Similar to KLT for highly correlated sources (o — 1)
m Independent of source characteristics

m Fast algorithms for computing forward and inverse transform

DCT-II of size 8x8 is used in
B Image coding standard: JPEG
m Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in
® Video coding standard H.264/AVC (4x4 and 8x8)
® Video coding standard H.265/HEVC (4x4, 8x8, 16x16, 32x32)
m New standardization project H.266/VVC (from 4 x4 to 64 x 64, including non-square blocks)
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Transform Coding in Practice / Typical Design

Transform Coding in Practice

Orthogonal Transform

m Typically: DCT-II or integer approximation thereof (separable transform for blocks)
m Potential extension in H.266/VVC:

® Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
® Non-separable transforms

Scalar Quantization
m Uniform reconstruction quantizers (or very similar designs)
® Bit allocation by using same quantization step size for all coefficients
m Usage of advanced quantization algorithms in encoder
® May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes
m Zig-zag scan (or similar scan) for 2D transforms
® Simple: Run-level coding, run-level-last coding, or similar approach
m Better coding efficiency: Adaptive arithmetic coding
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Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

® Remember: Optimal bit allocation: Pareto condition

ODk(R
aki/(%kk) = const
m Pareto condition for high rates
Dy =e? 07 272k = Dy (Rk) = const
m High rate distortion approximation for URQs
D —Az
T 12
=» Quantization step sizes for optimal bit allocation at high rates
1
D, = lek = const - Ay =const = A

=> In practice, (nearly) optimal bit allocation is typically achieved
by using the same quantization step size A for all transform coefficients
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Transform Coding in Practice / Color Transformation

Color Transform for Image & Video Coding

RGB

Color Transform for Compression
m Many versions (also depends on RGB color space)
= Example: RGB — YCbCr transform used in JPEG

Y 0.2990 0.5870 0.1140 R
Cb—128 —0.1687 —0.3313 0.5000 |- | G
Cr —128

0.5000 —0.4187 —0.0813 B
R
G
B

1 0 1.4020 Y
1 —0.3441 —0.7141 |- | Cb—128
Energy Compaction for Example Image

1 17720 O Cr —128

02 = 3862.28 o2 = 3099.67

02 = 4250.44 -» o2, = 83.94

03 =5869.39 02, = 70.10
Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Transform Coding in Practice

YCbCr

38 / 50



Transform Coding in Practice / Color Transformation

The YCbCr Chroma Sampling Format

m Human being are less sensitive to color differences (at same luminance)
=» In most applications: Color difference components are downsampled

RGB YCbCr 4:4:4 YCbCr 4:2:0

color transform downsampling
-

>

most common
format in
image coding
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Transform Coding in Practice / Image Compression Example: JPEG

The Image Compression Standard JPEG

m Partition color components (Y, Cb, Cr) into blocks of 8 x 8 samples

Y Cb Cr
B Transform coding of 8 x 8 blocks of samples
block of 2D _ scalar entropy
samples transform quantization coding
reconstructed | 2p jnverse decoder entropy
block transform mapping decoding

sequence
of bits
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Transform Coding in Practice / Image Compression Example: JPEG

JPEG: Transform of Sample Blocks

m Separable DCT-II of size 8 x8 (fast implementation possible)

horizontal vertical
DCT DCT
—_— —_—

® Forward transform (in encoder)

after 2d DCT

vertical
IDCT
B

reconstructed block rec. transform coeffs.

original block

m Inverse transform (in decoder)

horizontal
IDCT
-—

=> Effect of transform: Compaction of signal energy (for typical blocks)
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JPEG: Quantization

U_g u_3 us 27} Us
s's1 siai sl | sh | sh | s
| | K JRUNEEE
i i I i
I I I I I
—5A —4A —3A —2A -1A 0 1A 2A 3A LYAN 5A S

Uniform Reconstruction Quantizers
m Equally spaced reconstruction levels (indicated by step size A)

® Simple decoder mapping
t'=A-q

m Simplest (but not best) encoder:
q = round(t/A)

B Better encoders use Lagrangian optimization (minimization of D + AR)

=» Quantization step size A determines tradeoff between quality and bit rate
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JPEG: Entropy Coding

0.242/0.108 |0.053|0.009 *—

0.105/0.053|0.022|0.002

0.046|0.0170.006 | 0.001

0.009|0.002 |0.001|0.000 —P

probabilities P(gx # 0) zig-zag scan (JPEG)

Scanning of Quantization indexes
e Convert matrix of quantization indexes into sequence
® Traverse quantization indexes from low to high frequency positions
e JPEG: Zig-zag scan
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JPEG: Entropy Coding

Entropy Coding of Sequences of Quantization Indexes
® Often long sequences of zeros (in particular at end of sequence)

=» Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

m Map sequence a symbols (transform coefficients) into (run,level) pairs,
including a special end-of-block (eob) symbol

level: value of next non-zero symbol
run: number of zero symbols that precede next non-zero symbol
eob: all following symbols are equal to zero (end-of-block)

=> Assign codewords to (run,level) pairs (including eob symbol)

m Example: 64 symbols: 53000101001000000000 ...
(run,level) pairs:  (0,5) (0,3) (3,1) (1,1) (2,1) (eob)
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JPEG Compression Example

Original Image (960 x 720 image points, RGB: 2 MByte)

100 %
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JPEG Compression Example

Lossy Compressed: JPEG (Quality 94) 18.60 %

54:1

100 %
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JPEG Compression Example

Lossy Compressed: JPEG (Quality 66) 3.88 %

25.8:1

100 %
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JPEG Compression Example

Lossy Compressed: JPEG (Quality 27) 1.85%

54.0:1

100 %
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JPEG Compression Example

Lossy Compressed: JPEG (Quality 6) 0.49 %

204:1

100 %
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Transform Coding in Practice / Audio Compression Example: AAC

Audio Compression Example: MPEG-2 Advanced Audio Coding (AAC)

Main Component: Transform Coding of Sample Blocks
® Transform: Modified DCT for overlapping blocks
B Quantization: Scalar quantization with psycho-acoustic model
m Entropy Coding: Variant of Huffman coding

Linear Transform

m Audio signal is coded based on overlapping blocks of samples
® Transform: Modified discrete cosine transform (MDCT)

Quantization of Transform Coefficients
m Scalar quantization of transform coefficients (spectral coefficients)
m Utilization of psycho-acoustic models by noise shaping

Entropy Coding of Quantization Indexes
® Grouping and interleaving
® Huffman coding for tuples of n quantization indexes (n is variable)
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Transform Coding in Practice / Audio Compression Example: AAC

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

B The forward transform maps 2N samples to N transform coefficients
2N-1

ulk] = ﬁ > sl co (% (,,+ %) <k+ %»

Inverse Transform (IMDCT)
® The inverse transform maps N transform coefficients to 2N samples

0] = \}Ngum on (3 (04 251) (k4 2))

Perfect Reconstruction
m Neighboring blocks of samples s[n] overlap by 50% (at each side)
m Perfect reconstruction of s[n] is achieved by adding the inverse transformed blocks x[n]
=» Property of time-domain aliasing cancellation
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Summary of Lecture

Signal-Independent Transforms
®m Walsh-Hadamard Transform (WHT):  Perceptual disturbing artefacts
m Discrete Fourier Transform (DFT): Problem due to implicit periodic signal extension

® Discrete Trigonometric Transforms: Family of Sine and Cosine transforms

Discrete Cosine Transform of Type Il (DCT-II)
m DFT of mirrored signal with half-sample symmetry at both sides
®m Reduced blocking artifacts compared to DFT
B Good approximation of KLT for highly-correlated signals

Transform Coding in Practice
m Color transforms in image and video coding: RGB to YCbCr conversion
® JPEG image compression: 2D DCT-Il + URQ + Run-level coding
m AAC audio compression: MDCT for overlapped blocks + scalar quantization + Huffman coding
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Exercise 1: Correlation of Transform Coefficients

Given is a zero-mean AR(1) sources with a variance o2 and a correlation coefficient o = 0.9

Consider transform coding of blocks of 2 samples using the transform

Uk.0 _ i 11 . Sok
Ug 1 V2| -1 1 Sok+1 |
where k represents the index of the transform block

® Determine the following variances and covariances of the transform coefficients
(inside a block and between neighbouring blocks):

E{ Uf,o } =7 E{ Uk,0 Uks1,0 } =7
B{UZ: } =7 E{ Ug1 Ukp11} =72
E{ Uk,O Uk71 } =7 E{ Uk’o Uk+1,1 } =7

B s it worth to exploit the correlations between the transform coefficients of neighboring block
(e.g., for typical correlation factors of ¢ = 0.9)7
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B EEEEEEEE————————
Exercise 2: First Version of Lossy Image Codec (Implementation)

Implement a first lossy image codec for PPM images:
Use the source code of last weeks exercise as basis (see KVV)

Add some variant of entropy coding for the quantization indexes, for example:
® Simple Rice coding or Exp-Golomb coding (see lossless codec example in KVV)
® Adaptive binary arithmetic coding using a unary binarization (see lossless coding example in KVV)
e ..

Implement an encoder that converts a PPM image into a bitstream file
B Implement a corresponding decoder that converts a bitstream file into a PPM image
E Test your encoder with some example images and multiple quantization step sizes

@ (Optional) Try to improve your codec by using the YCbCr color format
® Implement an RBG-to-YCbCr transform before the actual encoding
® Implement the inverse YCbCr-to-RGB transform after the actual decoding

® Possible extension: Sub-sampling of chroma components
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