Transform Coding in Practice

Last Lectures: Basic Concept Transform Coding

- Transform reduces linear dependencies (correlation) between samples before scalar quantization
- For correlated sources: Scalar quantization in transform domain is more efficient

Encoder (block-wise)

- → Forward transform: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s}$
- → Scalar quantization: $q_k = \alpha_k(u_k)$
- → Entropy coding: $\boldsymbol{b} = \gamma(\{\boldsymbol{q}_k\})$

Decoder (block-wise)

- → Entropy decoding: $\{q_k\} = \gamma^{-1}(\boldsymbol{b})$
- → Inverse quantization: $u'_k = \beta_k(q_k)$
- → Inverse transform: $s' = A^{-1} \cdot u'$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

Last Lectures: Orthogonal Block Transforms

• Transform matrix has property: $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$ (special case of unitary matrix: $\mathbf{A}^{-1} = (\mathbf{A}^{*})^{\mathrm{T}}$)

$$\boldsymbol{A} = \begin{bmatrix} \begin{array}{c} & & \boldsymbol{b}_0 & & \\ & & \boldsymbol{b}_1 & & \\ & & \boldsymbol{b}_2 & & \\ & & \vdots & \\ & & & \boldsymbol{b}_{N-1} & & \\ \end{bmatrix} \qquad \qquad \boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}} = \begin{bmatrix} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

→ Basis vectors $\boldsymbol{b}_{\boldsymbol{k}}$ (rows of \boldsymbol{A} , columns of $\boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}}$) form an orthonormal basis

→ Geometric interpretation: Rotation (and potential reflection) in *N*-dimensional signal space

Last Lectures: Orthogonal Block Transforms

• Transform matrix has property: $\mathbf{A}^{-1} = \mathbf{A}^{T}$ (special case of unitary matrix: $\mathbf{A}^{-1} = (\mathbf{A}^{*})^{T}$)

$$\boldsymbol{A} = \begin{bmatrix} \begin{array}{ccc} & \boldsymbol{b}_0 & & \\ & \boldsymbol{b}_1 & & \\ & & \boldsymbol{b}_2 & & \\ & & \vdots & \\ & & & \boldsymbol{b}_{N-1} & & \\ \end{bmatrix} \qquad \qquad \boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}} = \begin{bmatrix} \begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & &$$

→ Basis vectors $\boldsymbol{b}_{\boldsymbol{k}}$ (rows of \boldsymbol{A} , columns of $\boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}}$) form an orthonormal basis

→ Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

Why Orthogonal Transforms ?

- Same MSE distortion in sample and transform space: $||u' u||_2^2 = ||s' s||_2^2$
- → Minimum MSE in signal space can be achieved by minimization of MSE for each individual transform coefficient

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

Optimal bit allocation: Pareto condition

$$rac{\partial}{\partial R_k} D_k(R_k) = -\lambda = ext{const} \qquad \Longrightarrow \qquad ext{high rates:} \quad D_k(R_k) = ext{const}$$

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

Optimal bit allocation: Pareto condition

$$rac{\partial}{\partial R_k} D_k(R_k) = -\lambda = ext{const} \qquad \Longrightarrow \qquad ext{high rates:} \quad D_k(R_k) = ext{const}$$

High-Rate Approximation

High-rate distortion rate function for transform coding with optimal bit allocation

$$D(R) = \tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R}$$
 with $\tilde{\varepsilon}^2 = \left(\prod_k \varepsilon_k^2\right)^{\frac{1}{N}}, \quad \tilde{\sigma}^2 = \left(\prod_k \sigma_k^2\right)^{\frac{1}{N}}$

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

Optimal bit allocation: Pareto condition

$$rac{\partial}{\partial R_k} D_k(R_k) = -\lambda = ext{const} \qquad \Longrightarrow \qquad ext{high rates:} \quad D_k(R_k) = ext{const}$$

High-Rate Approximation

High-rate distortion rate function for transform coding with optimal bit allocation

$$D(R) = \tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R}$$
 with $\tilde{\varepsilon}^2 = \left(\prod_k \varepsilon_k^2\right)^{\frac{1}{N}}, \quad \tilde{\sigma}^2 = \left(\prod_k \sigma_k^2\right)^{\frac{1}{N}}$

• High-rate transform coding gain G_T and energy compaction measure G_{EC}

$$G_{T} = \frac{D_{SQ}(R)}{D_{TC}(R)} = \frac{\varepsilon_{S}^{2} \cdot \sigma_{S}^{2}}{\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2}}, \qquad \qquad G_{EC} = \frac{\sigma_{S}^{2}}{\tilde{\sigma}^{2}} = \frac{\frac{1}{N} \sum_{k=0}^{N-1} \sigma_{k}^{2}}{\sqrt[N]{\prod_{k=0}^{k-1} \sigma_{k}^{2}}}$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

Last Lecture

Last Lectures: Karhunen Loève Transform (KLT)

Design criterion: Orthogonal transform **A** that yields uncorrelated transform coefficients

$$oldsymbol{\mathcal{C}}_{UU} = oldsymbol{\mathcal{A}} \cdot oldsymbol{\mathcal{C}}_{SS} \cdot oldsymbol{\mathcal{A}}^{\mathrm{T}} = \left[egin{array}{ccccc} \sigma_{0}^{2} & 0 & \cdots & 0 \ 0 & \sigma_{1}^{2} & \cdots & 0 \ dots & dots & \ddots & dots \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma_{N-1}^{2} \end{array}
ight]$$

$$\implies \quad \boldsymbol{C}_{SS} \cdot \boldsymbol{b}_k = \sigma_k^2 \cdot \boldsymbol{b}_k$$

Last Lecture

Last Lectures: Karhunen Loève Transform (KLT)

Design criterion: Orthogonal transform **A** that yields uncorrelated transform coefficients

$$\boldsymbol{C}_{UU} = \boldsymbol{A} \cdot \boldsymbol{C}_{SS} \cdot \boldsymbol{A}^{\mathrm{T}} = \begin{bmatrix} \sigma_{0}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{1}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{N-1}^{2} \end{bmatrix} \implies \boldsymbol{C}_{SS} \cdot \boldsymbol{b}_{k} = \sigma_{k}^{2} \cdot \boldsymbol{b}_{k}$$

 \rightarrow Eigenvector equation for all basis vectors \boldsymbol{b}_k (rows of transform matrix \boldsymbol{A})

Last Lecture

Last Lectures: Karhunen Loève Transform (KLT)

Design criterion: Orthogonal transform **A** that yields uncorrelated transform coefficients

$$\boldsymbol{C}_{UU} = \boldsymbol{A} \cdot \boldsymbol{C}_{SS} \cdot \boldsymbol{A}^{\mathrm{T}} = \begin{bmatrix} \sigma_{0}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{1}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{N-1}^{2} \end{bmatrix} \implies \boldsymbol{C}_{SS} \cdot \boldsymbol{b}_{k} = \sigma_{k}^{2} \cdot \boldsymbol{b}_{k}$$

- \rightarrow Eigenvector equation for all basis vectors \boldsymbol{b}_k (rows of transform matrix \boldsymbol{A})
- → Rows of KLT matrix **A** are the unit-norm eigenvectors of C_{SS}
- → Transform coefficient variances σ_k^2 are the eigenvalues of C_{SS}

$$\boldsymbol{A} = \begin{bmatrix} - & \boldsymbol{b}_0 & - \\ - & \boldsymbol{b}_1 & - \\ \vdots \\ - & \boldsymbol{b}_{N-1} & - \end{bmatrix} \qquad \boldsymbol{C}_{UU} = \begin{bmatrix} \sigma_0^2 & 0 & \cdots & 0 \\ 0 & \sigma_1^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{N-1}^2 \end{bmatrix}$$

Last Lectures: Maximum Energy Compaction and Optimality

High-Rate Approximation for KLT and Gauss-Markov

High-rate operational distortion-rate function

$$D_N(R) = \varepsilon^2 \cdot \sigma_S^2 \cdot (1 - \varrho^2)^{\frac{N-1}{N}} \cdot 2^{-2R}$$

 \rightarrow High-rate transform coding gain: Increases with transform size N

$$G_T^N = G_{EC}^N = (1 - \varrho^2)^{rac{1-N}{N}} \Longrightarrow G_T^\infty = rac{1}{1 - \varrho^2}$$

→ For $N \rightarrow \infty$, gap to fundamental lower bound reduces to space-filling gain (1.53 dB)

Last Lectures: Maximum Energy Compaction and Optimality

High-Rate Approximation for KLT and Gauss-Markov

High-rate operational distortion-rate function

$$D_N(R) = \varepsilon^2 \cdot \sigma_S^2 \cdot (1 - \varrho^2)^{\frac{N-1}{N}} \cdot 2^{-2R}$$

 \rightarrow High-rate transform coding gain: Increases with transform size N

$$G_T^N = G_{EC}^N = (1 - \varrho^2)^{rac{1-N}{N}} \Longrightarrow G_T^\infty = rac{1}{1 - \varrho^2}$$

→ For $N \rightarrow \infty$, gap to fundamental lower bound reduces to space-filling gain (1.53 dB)

On Optimality of KLT

- KLT yields uncorrelated transform coefficients and maximizes energy compaction G_{EC}
- \rightarrow KLT is the optimal transform for stationary Gaussian sources
- Other sources: Optimal transform is hard to find (iterative algorithm)

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
- → Signal dependent (may change due to signal instationarities)

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
- → Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

Determine transform in encoder, include transform specification in bitstream

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
- → Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
- → Increased side information may lead to sub-optimal overall coding efficiency

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
- → Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
- → Increased side information may lead to sub-optimal overall coding efficiency
- → Simple variant: Switched transforms (e.g., in H.266/VVC)

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
- → Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
- → Increased side information may lead to sub-optimal overall coding efficiency
- → Simple variant: Switched transforms (e.g., in H.266/VVC)

Signal-Independent Transforms

Choose transform that provides good performance for variety of signals

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
- → Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
- → Increased side information may lead to sub-optimal overall coding efficiency
- → Simple variant: Switched transforms (e.g., in H.266/VVC)

Signal-Independent Transforms

- Choose transform that provides good performance for variety of signals
- → Not optimal, but often close to optimal for typical signal
- → Most often used design in practice

• For transform sizes N that are positive integer powers of 2

$$oldsymbol{A}_N = rac{1}{\sqrt{2}} \left[egin{array}{cc} oldsymbol{A}_{N/2} & oldsymbol{A}_{N/2} \ oldsymbol{A}_{N/2} & -oldsymbol{A}_{N/2} \end{array}
ight] \qquad ext{with} \qquad oldsymbol{A}_1 = \Big[1 \Big].$$

• For transform sizes N that are positive integer powers of 2

$$oldsymbol{A}_{N} = rac{1}{\sqrt{2}} \left[egin{array}{cc} oldsymbol{A}_{N/2} & oldsymbol{A}_{N/2} \ oldsymbol{A}_{N/2} & -oldsymbol{A}_{N/2} \end{array}
ight] \qquad ext{with} \qquad oldsymbol{A}_{1} = \Big[1 \Big].$$

• Examples: Transform matrices for N = 2, N = 4, and N = 8

$$oldsymbol{A}_2 = rac{1}{\sqrt{2}} \left[egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight]$$

• For transform sizes N that are positive integer powers of 2

$$oldsymbol{A}_{N} = rac{1}{\sqrt{2}} \left[egin{array}{cc} oldsymbol{A}_{N/2} & oldsymbol{A}_{N/2} \ oldsymbol{A}_{N/2} & -oldsymbol{A}_{N/2} \end{array}
ight] \qquad ext{with} \qquad oldsymbol{A}_{1} = \Big[1 \Big].$$

• Examples: Transform matrices for N = 2, N = 4, and N = 8

• For transform sizes N that are positive integer powers of 2

$$oldsymbol{A}_N = rac{1}{\sqrt{2}} \left[egin{array}{cc} oldsymbol{A}_{N/2} & oldsymbol{A}_{N/2} \ oldsymbol{A}_{N/2} & -oldsymbol{A}_{N/2} \end{array}
ight] \qquad ext{with} \qquad oldsymbol{A}_1 = \left[1
ight].$$

• Examples: Transform matrices for N = 2, N = 4, and N = 8

• For transform sizes N that are positive integer powers of 2

$$oldsymbol{A}_N = rac{1}{\sqrt{2}} \left[egin{array}{cc} oldsymbol{A}_{N/2} & oldsymbol{A}_{N/2} \ oldsymbol{A}_{N/2} & -oldsymbol{A}_{N/2} \end{array}
ight] \qquad ext{with} \qquad oldsymbol{A}_1 = \left[1
ight].$$

• Examples: Transform matrices for N = 2, N = 4, and N = 8

→ Very simple orthogonal transform (only additions, subtractions, and final scaling)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

Basis Functions of the WHT (Example for N = 8)

Basis Functions of the WHT (Example for N = 8)

Media coding: Walsh-Hadamard transform with strong quantization

→ Piece-wise constant basis vectors yield subjectively disturbing artifacts

The Fourier Transform

Fundamental transform used in mathematics, physics, signal processing, communications, ...

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$X(f) = \mathcal{F}\left\{x(t)\right\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-2\pi i f t} dt \qquad \Longleftrightarrow \qquad x(t) = \mathcal{F}^{-1}\left\{x(t)\right\} = \int_{-\infty}^{\infty} X(f) \cdot e^{2\pi i f t} df$$

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-2\pi i f t} dt \qquad \Longleftrightarrow \qquad x(t) = \mathcal{F}^{-1}\{x(t)\} = \int_{-\infty}^{\infty} X(f) \cdot e^{2\pi i f t} df$$

→ Basis functions are complex exponentials $b_f(t) = e^{2\pi \mathrm{i} f t}$

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$X(f) = \mathcal{F}\left\{x(t)\right\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-2\pi i f t} dt \qquad \Longleftrightarrow \qquad x(t) = \mathcal{F}^{-1}\left\{x(t)\right\} = \int_{-\infty}^{\infty} X(f) \cdot e^{2\pi i f t} df$$

→ Basis functions are complex exponentials $b_f(t) = e^{2\pi \mathrm{i} f t}$

Discrete Version of the Fourier Transform

Fourier transform for finite discrete signals

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$X(f) = \mathcal{F}\left\{x(t)\right\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-2\pi i f t} dt \qquad \Longleftrightarrow \qquad x(t) = \mathcal{F}^{-1}\left\{x(t)\right\} = \int_{-\infty}^{\infty} X(f) \cdot e^{2\pi i f t} df$$

→ Basis functions are complex exponentials $b_f(t) = e^{2\pi \mathrm{i} f t}$

Discrete Version of the Fourier Transform

- Fourier transform for finite discrete signals
- Could also be useful for coding of discrete signals

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$X(f) = \mathcal{F}\left\{x(t)\right\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-2\pi i f t} dt \qquad \Longleftrightarrow \qquad x(t) = \mathcal{F}^{-1}\left\{x(t)\right\} = \int_{-\infty}^{\infty} X(f) \cdot e^{2\pi i f t} df$$

→ Basis functions are complex exponentials $b_f(t) = e^{2\pi \mathrm{i} f t}$

Discrete Version of the Fourier Transform

- Fourier transform for finite discrete signals
- Could also be useful for coding of discrete signals
- Can be derived using sampling and windowing

Linearity:

Important Properties of the Fourier Transform

$$\mathcal{F}\left\{a\cdot h(t)+b\cdot g(t)
ight\} = a\cdot H(f)+b\cdot G(f)$$

Important Properties of the Fourier Transform

Linearity: $\mathcal{F}\left\{a \cdot h(t) + b \cdot g(t)\right\} = a \cdot H(f) + b \cdot G(f)$ Scaling: $\mathcal{F}\left\{h(a \cdot t)\right\} = \frac{1}{|a|} \cdot H\left(\frac{f}{a}\right)$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

Important Properties of the Fourier Transform

Linearity:
$$\mathcal{F}\left\{a \cdot h(t) + b \cdot g(t)\right\} = a \cdot H(f) + b \cdot G(f)$$
Scaling:
$$\mathcal{F}\left\{h(a \cdot t)\right\} = \frac{1}{|a|} \cdot H\left(\frac{f}{a}\right)$$
Translation:
$$\mathcal{F}\left\{h(t-t_0)\right\} = e^{-2\pi i t_0 f} \cdot H(f)$$

.

Important Properties of the Fourier Transform

Linearity:
$$\mathcal{F}\left\{a \cdot h(t) + b \cdot g(t)\right\} = a \cdot H(f) + b \cdot G(f)$$
Scaling:
$$\mathcal{F}\left\{h(a \cdot t)\right\} = \frac{1}{|a|} \cdot H\left(\frac{f}{a}\right)$$
Translation:
$$\mathcal{F}\left\{h(t - t_0)\right\} = e^{-2\pi i t_0 f} \cdot H(f)$$
Modulation:
$$\mathcal{F}\left\{e^{2\pi i t f_0} \cdot h(t)\right\} = H(f - f_0)$$
Important Properties of the Fourier Transform

Linearity:
$$\mathcal{F}\left\{a \cdot h(t) + b \cdot g(t)\right\} = a \cdot H(f) + b \cdot G(f)$$
Scaling:
$$\mathcal{F}\left\{h(a \cdot t)\right\} = \frac{1}{|a|} \cdot H\left(\frac{f}{a}\right)$$
Translation:
$$\mathcal{F}\left\{h(t - t_0)\right\} = e^{-2\pi i t_0 f} \cdot H(f)$$
Modulation:
$$\mathcal{F}\left\{e^{2\pi i t f_0} \cdot h(t)\right\} = H(f - f_0)$$
Duality:
$$\mathcal{F}\left\{H(t)\right\} = h(-f)$$

.

Important Properties of the Fourier Transform

Linearity:
$$\mathcal{F}\left\{a \cdot h(t) + b \cdot g(t)\right\} = a \cdot H(f) + b \cdot G(f)$$
Scaling:
$$\mathcal{F}\left\{h(a \cdot t)\right\} = \frac{1}{|a|} \cdot H\left(\frac{f}{a}\right)$$
Translation:
$$\mathcal{F}\left\{h(t - t_0)\right\} = e^{-2\pi i t_0 f} \cdot H(f)$$
Modulation:
$$\mathcal{F}\left\{e^{2\pi i t f_0} \cdot h(t)\right\} = H(f - f_0)$$
Duality:
$$\mathcal{F}\left\{H(t)\right\} = h(-f)$$
Convolution:
$$\mathcal{F}\left\{h(t) * g(t)\right\} = \mathcal{F}\left\{\int_{-\infty}^{\infty} g(\tau) h(t - \tau) d\tau\right\} = H(f) \cdot G(f)$$

Important Properties of the Fourier Transform

Linearity:
$$\mathcal{F}\left\{a \cdot h(t) + b \cdot g(t)\right\} = a \cdot H(f) + b \cdot G(f)$$
Scaling:
$$\mathcal{F}\left\{h(a \cdot t)\right\} = \frac{1}{|a|} \cdot H\left(\frac{f}{a}\right)$$
Translation:
$$\mathcal{F}\left\{h(t - t_0)\right\} = e^{-2\pi i t_0 f} \cdot H(f)$$
Modulation:
$$\mathcal{F}\left\{e^{2\pi i t f_0} \cdot h(t)\right\} = H(f - f_0)$$
Duality:
$$\mathcal{F}\left\{H(t)\right\} = h(-f)$$
Convolution:
$$\mathcal{F}\left\{h(t) * g(t)\right\} = \mathcal{F}\left\{\int_{-\infty}^{\infty} g(\tau) h(t - \tau) d\tau\right\} = H(f) \cdot G(f)$$
Multiplication:
$$\mathcal{F}\left\{h(t) \cdot g(t)\right\} = H(f) * G(f)$$

٢

٦

Dirac Delta Function

- Not a function in traditional sense → Dirac delta distribution
- Can be thought of function with the following properties

$$\delta(x) = \left\{ egin{array}{ccc} +\infty & : & x=0 \ 0 & : & x
eq 0 \end{array}
ight.$$

and

$$\int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1$$

Dirac Delta Function

- Not a function in traditional sense → Dirac delta distribution
- Can be thought of function with the following properties

$$\delta(x) = \begin{cases} +\infty & : \ x = 0 \\ 0 & : \ x \neq 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1$$

0

Important Properties

Sifting:

$$\int_{-\infty}^{\infty} h(t) \,\delta(t-t_0) \,\mathrm{d}t = h(t_0)$$

Dirac Delta Function

- Not a function in traditional sense → Dirac delta distribution
- Can be thought of function with the following properties

$$\delta(x) = \begin{cases} +\infty & : x = 0 \\ 0 & : x \neq 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1$$

Important Properties

• Sifting:
$$\int_{-\infty}^{\infty} h(t) \,\delta(t-t_0) \,\mathrm{d}t = h(t_0)$$

Convolution:

$$h(t) * \delta(t-t_0) = \int_{-\infty}^{\infty} h(\tau) \,\delta(t-t_0-\tau) \,\mathrm{d}\tau = h(t-t_0)$$

0

Dirac Delta Function

- Not a function in traditional sense → Dirac delta distribution
- Can be thought of function with the following properties

$$\delta(x) = \begin{cases} +\infty & : x = 0 \\ 0 & : x \neq 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1$$

20

 $c\infty$

Important Properties

• Sifting:
$$\int_{-\infty}^{\infty} h(t) \,\delta(t-t_0) \,\mathrm{d}t = h(t_0)$$

• Convolution:
$$h(t) * \delta(t - t_0) = \int_{-\infty}^{\infty} h(\tau) \,\delta(t - t_0 - \tau) \,\mathrm{d}\tau = h(t - t_0)$$

• Sampling:
$$\int_{-\infty}^{\infty} h(t) \left(\sum_{k=-\infty}^{\infty} \delta(t-k \cdot t_0) \right) dt = \sum_{k=-\infty}^{\infty} h(k \cdot t_0)$$

Dirac delta function t $\delta(t - T)$ T t t $x(t) = \delta(t - T)$

Dirac delta function $\delta(t - T)$ T t $x(t) = \delta(t - T)$

Dirac delta function $\delta(t - T)$ T t $x(t) = \delta(t - T)$

Dirac delta function T $x(t) = \delta(t - T)$

The Discrete Fourier Transform

The Discrete Fourier Transform

 \rightarrow N samples are represented by N complex Fourier coefficients

 \rightarrow N samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

Forward and inverse transform are given by

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{2\pi kn}{N}} \quad \text{and} \quad s[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot e^{i\frac{2\pi kn}{N}}$$

 \rightarrow N samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

Forward and inverse transform are given by

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{2\pi kn}{N}} \quad \text{and} \quad s[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot e^{i\frac{2\pi kn}{N}}$$

→ Unitary transform that produces complex transform coefficients

 \rightarrow N samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

Forward and inverse transform are given by

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{2\pi kn}{N}} \quad \text{and} \quad s[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot e^{i\frac{2\pi kn}{N}}$$

- → Unitary transform that produces complex transform coefficients
- → Basis vectors are sampled complex exponentials

$$\boldsymbol{b_k}[n] = \frac{1}{\sqrt{N}} e^{\mathrm{i}\frac{2\pi k}{N}n}$$

$$\boldsymbol{b_k}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right)$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[\boldsymbol{n}] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}\boldsymbol{n}} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}\boldsymbol{n}\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}\boldsymbol{n}\right) = \boldsymbol{r}_{\boldsymbol{k}}[\boldsymbol{n}] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[\boldsymbol{n}]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

DFT for Real Signals

Symmetry of complex coefficients

 $u[k] = u^*[N-k]$

Vanishing imaginary parts
 $k \in \left\{0, \frac{N}{2}\right\}$: $\Im\left\{u[k]\right\} = 0$

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

DFT for Real Signals

Symmetry of complex coefficients

 $u[k] = u^*[N-k]$

- Vanishing imaginary parts
 $k \in \left\{0, \frac{N}{2}\right\}$: $\Im\left\{u[k]\right\} = 0$
- → N real samples are mapped to N real coefficients

$$\boldsymbol{b}_{\boldsymbol{k}}[n] = \frac{1}{\sqrt{N}} e^{i\frac{2\pi k}{N}n} = \frac{1}{\sqrt{N}} \cos\left(\frac{2\pi k}{N}n\right) + i \cdot \frac{1}{\sqrt{N}} \sin\left(\frac{2\pi k}{N}n\right) = \boldsymbol{r}_{\boldsymbol{k}}[n] + i \cdot \boldsymbol{i}_{\boldsymbol{k}}[n]$$

DFT for Real Signals

Symmetry of complex coefficients

 $u[k] = u^*[N-k]$

- Vanishing imaginary parts $k \in \left\{0, \frac{N}{2}\right\}: \quad \Im\left\{u[k]\right\} = 0$
- → N real samples are mapped to N real coefficients
- Fast algorithm:
 Fast Fourier transform (FFT)

→ Sampling of frequency spectrum causes implicit periodic signal extension

→ Sampling of frequency spectrum causes implicit periodic signal extension

→ Often: Large differences between left and right signal boundary

→ Sampling of frequency spectrum causes implicit periodic signal extension

- → Often: Large differences between left and right signal boundary
- → Large difference reduces rate of convergence of Fourier series

→ Sampling of frequency spectrum causes implicit periodic signal extension

- → Often: Large differences between left and right signal boundary
- → Large difference reduces rate of convergence of Fourier series
- → Strong quantization yields significant high-frequency artefacts

Idea of Discrete Cosine Transform (DCT)

Introduce mirror symmetry (different possibilities)

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)
- Apply DFT of approximately double size (or four times the size)

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)
- Apply DFT of approximately double size (or four times the size)
- ➔ No discontinuities in periodic signal extension

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)
- Apply DFT of approximately double size (or four times the size)
- ➔ No discontinuities in periodic signal extension
- → Ensure symmetry around zero: Only cosine terms

Discrete Cosine Transforms (DCTs)

■ Introduce mirror symmetry around zero and apply DFT of larger size

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
 - → Imaginary sine terms get eliminated
 - → Only cosine terms remain

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
 - → Imaginary sine terms get eliminated
 - → Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
 - 2 cases for left side: Whole sample or half-sample symmetry
 - 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
 - → Imaginary sine terms get eliminated
 - → Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
 - 2 cases for left side: Whole sample or half-sample symmetry
 - 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry
- Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
 - → Imaginary sine terms get eliminated
 - ➡ Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
 - 2 cases for left side: Whole sample or half-sample symmetry
 - 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry
- Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

Introduce anti-symmetry around zero and apply DFT of larger size

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
 - → Imaginary sine terms get eliminated
 - ➡ Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
 - 2 cases for left side: Whole sample or half-sample symmetry
 - 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry
- Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

- Introduce anti-symmetry around zero and apply DFT of larger size
 - ➡ Real cosine terms get eliminated
 - ➡ Only imaginary sine terms remain
- Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)
The Discrete Cosine Transform (DCT) Family

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

The Discrete Sine Transform (DST) Family

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

Signal for applying the DFT

Given: Discrete signal s[n] of size N (i.e., $0 \le n < N$)

Signal for applying the DFT

- Given: Discrete signal s[n] of size N (i.e., $0 \le n < N$)
- Mirror signal with sample repetition at both sides (size 2*N*)

$$s^{m}[n] = \begin{cases} s[n] & : \quad 0 \le n < N \\ s[2N - n - 1] & : \quad N \le n < 2N \end{cases}$$

Signal for applying the DFT

- Given: Discrete signal s[n] of size N (i.e., $0 \le n < N$)
- Mirror signal with sample repetition at both sides (size 2N)

$$s^{m}[n] = \begin{cases} s[n] & : \quad 0 \le n < N \\ s[2N - n - 1] & : \quad N \le n < 2N \end{cases}$$

Signal for applying the DFT

- Given: Discrete signal s[n] of size N (i.e., $0 \le n < N$)
- Mirror signal with sample repetition at both sides (size 2N)

$$s^{m}[n] = \begin{cases} s[n] & : \quad 0 \le n < N \\ s[2N - n - 1] & : \quad N \le n < 2N \end{cases}$$

Ensure symmetry around zero by adding half-sample shift

$$s^{+}[n] = s^{m}[n-1/2] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

Signal for applying the DFT

- Given: Discrete signal s[n] of size N (i.e., $0 \le n < N$)
- Mirror signal with sample repetition at both sides (size 2*N*)

$$s^{m}[n] = \begin{cases} s[n] & : \quad 0 \le n < N \\ s[2N - n - 1] & : \quad N \le n < 2N \end{cases}$$

Ensure symmetry around zero by adding half-sample shift

$$s^{+}[n] = s^{m}[n-1/2] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

 \rightarrow Apply DFT of size 2N to new signal $s^+[n]$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

→ DFT of size 2N:
$$u^+[k] = \frac{1}{\sqrt{(2N)}} \sum_{n=0}^{(2N)-1} s^+[n] \cdot e^{-i\frac{2\pi kn}{(2N)}}$$

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

→ DFT of size
$$2N$$
: $u^+[k] = \frac{1}{\sqrt{(2N)}} \sum_{n=0}^{(2N)-1} s^+[n] \cdot e^{-i\frac{2\pi kn}{(2N)}}$ $\begin{pmatrix} s^+ \text{ only known at half-sample} \\ \text{positions} \rightarrow \text{ use } m = n - 1/2 \end{pmatrix}$

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

(0.41) 4

$$\Rightarrow \text{ DFT of size } 2N: \quad u^{+}[k] = \frac{1}{\sqrt{(2N)}} \sum_{n=0}^{(2N)-1} s^{+}[n] \cdot e^{-i\frac{2\pi kn}{(2N)}} \qquad \begin{pmatrix} s^{+} \text{ only known at half-sample} \\ \text{positions} \to \text{ use } m = n - 1/2 \end{pmatrix}$$
$$= \frac{1}{\sqrt{2N}} \sum_{m=0}^{2N-1} s^{+} \left[m + \frac{1}{2} \right] \cdot e^{-i\frac{\pi k}{N} \left(m + \frac{1}{2} \right)}$$

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

$$\Rightarrow \text{ DFT of size } 2N: \quad u^{+}[k] = \frac{1}{\sqrt{(2N)}} \sum_{n=0}^{(2N)-1} s^{+}[n] \cdot e^{-i\frac{2\pi kn}{(2N)}} \qquad \begin{pmatrix} s^{+} \text{ only known at half-sample} \\ \text{positions} \to \text{ use } m = n - 1/2 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2N}} \sum_{m=0}^{2N-1} s^{+} \left[m + \frac{1}{2} \right] \cdot e^{-i\frac{\pi k}{N} \left(m + \frac{1}{2} \right)}$$

$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2} \right)} + \sum_{m=N}^{2N-1} s[2N - m - 1] \cdot e^{-i\frac{\pi k}{N} \left(m + \frac{1}{2} \right)} \right)$$

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

$$\Rightarrow \text{ DFT of size } 2N: \quad u^{+}[k] = \frac{1}{\sqrt{(2N)}} \sum_{n=0}^{(2N)-1} s^{+}[n] \cdot e^{-i\frac{2\pi kn}{(2N)}} \qquad \begin{pmatrix} s^{+} \text{ only known at half-sample} \\ \text{positions} \to \text{ use } m = n - 1/2 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2N}} \sum_{m=0}^{2N-1} s^{+} \left[m + \frac{1}{2} \right] \cdot e^{-i\frac{\pi k}{N}} (m + \frac{1}{2})$$

$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N}} (n + \frac{1}{2}) + \sum_{m=N}^{2N-1} s[2N - m - 1] \cdot e^{-i\frac{\pi k}{N}} (m + \frac{1}{2}) \right)$$

$$\downarrow n = 2N - m - 1$$

$$s^{+}[n] = \begin{cases} s[n-1/2] & : & 0 \le n < N \\ s[2N-n-3/2] & : & N \le n < 2N \end{cases}$$

→ DFT of size 2N:
$$u^{+}[k] = \frac{1}{\sqrt{(2N)}} \sum_{n=0}^{(2N)-1} s^{+}[n] \cdot e^{-i\frac{2\pi kn}{(2N)}}$$
 $\begin{pmatrix} s^{+} \text{ only known at half-sample} \\ \text{positions} \to \text{ use } m = n - 1/2 \end{pmatrix}$
 $= \frac{1}{\sqrt{2N}} \sum_{m=0}^{2N-1} s^{+} \left[m + \frac{1}{2} \right] \cdot e^{-i\frac{\pi k}{N}} (m + \frac{1}{2})$
 $= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N}} (n + \frac{1}{2}) + \sum_{m=N}^{2N-1} s[2N - m - 1] \cdot e^{-i\frac{\pi k}{N}} (m + \frac{1}{2}) \right)$
 $\downarrow n = 2N - m - 1$
 $= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N}} (n + \frac{1}{2}) + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N}} (2N - n - \frac{1}{2}) \right)$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

$$u^{+}[k] = \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(2N - n - \frac{1}{2}\right)} \right)$$

$$u^{+}[k] = \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2} \right)} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(2N - n - \frac{1}{2} \right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2} \right)} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i2\pi k} \cdot e^{i\frac{\pi k}{N} \left(n + \frac{1}{2} \right)} \right)$$

$$u^{+}[k] = \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(2N - n - \frac{1}{2}\right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-i2\pi k}}_{1} \cdot e^{i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} \right)$$

$$u^{+}[k] = \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(2N - n - \frac{1}{2}\right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-i2\pi k}}_{1} \cdot e^{i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \sum_{n=0}^{N-1} s[n] \cdot \left(e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + e^{i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} \right)$$

$$u^{+}[k] = \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(2N - n - \frac{1}{2}\right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-i2\pi k}}_{1} \cdot e^{i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \sum_{n=0}^{N-1} s[n] \cdot \underbrace{\left(e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + e^{i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)}\right)}_{2\cos\left(\frac{\pi k}{N} \left(n + \frac{1}{2}\right)\right)}$$

Continue derivation

$$u^{+}[k] = \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(2N - n - \frac{1}{2}\right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \left(\sum_{n=0}^{N-1} s[n] \cdot e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + \sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-i2\pi k}}_{1} \cdot e^{i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} \right)$$
$$= \frac{1}{\sqrt{2N}} \sum_{n=0}^{N-1} s[n] \cdot \underbrace{\left(e^{-i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)} + e^{i\frac{\pi k}{N} \left(n + \frac{1}{2}\right)}\right)}_{2\cos\left(\frac{\pi k}{N} \left(n + \frac{1}{2}\right)\right)}$$

➡ DFT of extended signal

$$u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

DFT of extended signal (2N real samples) has 2N real transform coefficients

$$k = 0, ..., 2N - 1:$$
 $u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k\left(n + \frac{1}{2}\right)\right)$

DFT of extended signal (2N real samples) has 2N real transform coefficients

$$k = 0, \ldots, 2N - 1: \qquad u^+[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

1 Signal s[n] is completely described by first N transform coefficients

$$k = 0, ..., N - 1:$$
 $u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k\left(n + \frac{1}{2}\right)\right)$

DFT of extended signal (2N real samples) has 2N real transform coefficients

$$k = 0, \ldots, 2N - 1: \qquad u^+[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

1 Signal *s*[*n*] is completely described by first *N* transform coefficients

$$k = 0, ..., N - 1:$$
 $u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k\left(n + \frac{1}{2}\right)\right)$

2 Basis functions of derived transform are orthogonal to each other, but don't have the same norm

DFT of extended signal (2N real samples) has 2N real transform coefficients

$$k = 0, \ldots, 2N - 1: \qquad u^+[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

1 Signal *s*[*n*] is completely described by first *N* transform coefficients

$$k = 0, ..., N - 1:$$
 $u^{+}[k] = \sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k\left(n + \frac{1}{2}\right)\right)$

2 Basis functions of derived transform are orthogonal to each other, but don't have the same norm
 → Introduce factors α_k so that transform matrix becomes orthogonal

$$k = 0, \ldots, N-1: \qquad u[k] = \alpha_k \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

Discrete Cosine Transform of Type II (DCT-II)

Specification of DCT-II

Forward transform (DCT-II) and inverse transform (IDCT-II) are given by

$$u[k] = \alpha_k \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right) \quad \text{and} \quad s[n] = \sum_{k=0}^{N-1} \alpha_k \cdot u[k] \cdot \cos\left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)$$

with scaling factors

$$\alpha_k = \begin{cases} \sqrt{1/N} & : \quad k = 0\\ \sqrt{2/N} & : \quad k \neq 0 \end{cases}$$

Discrete Cosine Transform of Type II (DCT-II)

Specification of DCT-II

Forward transform (DCT-II) and inverse transform (IDCT-II) are given by

$$u[k] = \alpha_k \sum_{n=0}^{N-1} s[n] \cdot \cos\left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right) \quad \text{and} \quad s[n] = \sum_{k=0}^{N-1} \alpha_k \cdot u[k] \cdot \cos\left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)$$

with scaling factors

$$\alpha_k = \begin{cases} \sqrt{1/N} & : \quad k = 0\\ \sqrt{2/N} & : \quad k \neq 0 \end{cases}$$

• The orthogonal transform matrix $\mathbf{A} = \{a_{kn}\}$ has the elements

$$a_{kn} = \alpha_k \cdot \cos\left(\frac{\pi}{N} k \left(n + \frac{1}{2}\right)\right)$$

Comparions of DFT and DCT-II Basis Functions (Example for N = 8)

Image & Video Coding: 2D Transforms

Separable Transforms

Successive 1D transforms of rows and columns of image block

Image & Video Coding: 2D Transforms

Separable Transforms

- Successive 1D transforms of rows and columns of image block
- → Separable forward and inverse transforms

$$oldsymbol{u} = oldsymbol{A} \cdot oldsymbol{s} \cdot oldsymbol{B}^{\mathrm{T}}$$
 and $oldsymbol{s} = oldsymbol{A}^{\mathrm{T}} \cdot oldsymbol{u} \cdot oldsymbol{B}$

with $s - N \times M$ block of image samples

- **A** $N \times N$ transform matrix (typically DCT-II)
- $B M \times M$ transform matrix (typically DCT-II)
- $\boldsymbol{u} \boldsymbol{N} \times \boldsymbol{M}$ block of transform coefficients

Image & Video Coding: 2D Transforms

Separable Transforms

- Successive 1D transforms of rows and columns of image block
- → Separable forward and inverse transforms

$$oldsymbol{u} = oldsymbol{A} \cdot oldsymbol{s} \cdot oldsymbol{B}^{\mathrm{T}}$$
 and $oldsymbol{s} = oldsymbol{A}^{\mathrm{T}} \cdot oldsymbol{u} \cdot oldsymbol{B}$

with $\boldsymbol{s} - N \times M$ block of image samples

- **A** $N \times N$ transform matrix (typically DCT-II)
- $B M \times M$ transform matrix (typically DCT-II)
- $\boldsymbol{u} \boldsymbol{N} \times \boldsymbol{M}$ block of transform coefficients

Great practical importance:

- Two matrix multiplications of size N×N instead of one multiplication of a vector of size 1×N² with a matrix of size N²×N²
- → Complexity reduction from $\mathcal{O}(N^4)$ to $\mathcal{O}(N^3)$ [also fast algorithms for DCT-II]

Example: Basis Images of Separable 8×8 DCT-II

Forward transform for 8×8 block of samples: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Forward transform for 8 \times 8 block of samples: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

original block

Forward transform for 8×8 block of samples: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

original block

Example calculation of 2d DCT-II:

Forward transform for 8 \times 8 block of samples: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

original block

Example calculation of 2d DCT-II:

Horizontal DCT of input block:

$$oldsymbol{u}^{*}=oldsymbol{s}\cdotoldsymbol{A}^{\mathrm{T}}$$

Forward transform for 8×8 block of samples: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example calculation of 2d DCT-II:

1 Horizontal DCT of input block: $\boldsymbol{u}^* = \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$
Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

original block

Example calculation of 2d DCT-II:

- **1** Horizontal DCT of input block: $\boldsymbol{u}^* = \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$
- **2** Vertical DCT of intermediate result: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{u}^* = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example calculation of 2d DCT-II:

- **1** Horizontal DCT of input block: $\boldsymbol{u}^* = \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$
- **2** Vertical DCT of intermediate result: $\boldsymbol{u} = \boldsymbol{A} \cdot \boldsymbol{u}^* = \boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

Justification for usage of DCT-II

Represents signal as weighted sum of frequency components

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources ($\rho \rightarrow 1$)

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources ($\varrho
 ightarrow 1$)
- Independent of source characteristics

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources (ho
 ightarrow 1)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources (arrho
 ightarrow 1)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size $8\!\times\!8$ is used in

Image coding standard: JPEG

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources (arrho
 ightarrow 1)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size $8\!\times\!8$ is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources (arrho
 ightarrow 1)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size $8\!\times\!8$ is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

■ Video coding standard H.264/AVC (4×4 and 8×8)

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources (arrho
 ightarrow 1)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size $8\!\times\!8$ is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

- Video coding standard H.264/AVC (4×4 and 8×8)
- Video coding standard H.265/HEVC (4×4, 8×8, 16×16, 32×32)

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources (arrho
 ightarrow 1)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size $8\!\times\!8$ is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

- Video coding standard H.264/AVC $(4 \times 4 \text{ and } 8 \times 8)$
- Video coding standard H.265/HEVC (4×4, 8×8, 16×16, 32×32)
- New standardization project H.266/VVC (from 4×4 to 64×64, including non-square blocks)

Orthogonal Transform

• Typically: DCT-II or integer approximation thereof (separable transform for blocks)

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

Uniform reconstruction quantizers (or very similar designs)

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

- Uniform reconstruction quantizers (or very similar designs)
- Bit allocation by using same quantization step size for all coefficients

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

- Uniform reconstruction quantizers (or very similar designs)
- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

- Uniform reconstruction quantizers (or very similar designs)
- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

- Uniform reconstruction quantizers (or very similar designs)
- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

Zig-zag scan (or similar scan) for 2D transforms

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

- Uniform reconstruction quantizers (or very similar designs)
- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

- Zig-zag scan (or similar scan) for 2D transforms
- Simple: Run-level coding, run-level-last coding, or similar approach

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
 - Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
 - Non-separable transforms

Scalar Quantization

- Uniform reconstruction quantizers (or very similar designs)
- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

- Zig-zag scan (or similar scan) for 2D transforms
- Simple: Run-level coding, run-level-last coding, or similar approach
- Better coding efficiency: Adaptive arithmetic coding

Remember: Optimal bit allocation: Pareto condition

$$\frac{\partial D_k(R_k)}{\partial R_k} = \text{const}$$

Remember: Optimal bit allocation: Pareto condition

$$\frac{\partial D_k(R_k)}{\partial R_k} = \text{const}$$

Pareto condition for high rates

$$D_k = \varepsilon_k^2 \cdot \sigma_k^2 \cdot 2^{-2R_k} \implies D_k(R_k) = ext{const}$$

Remember: Optimal bit allocation: Pareto condition

$$\frac{\partial D_k(R_k)}{\partial R_k} = \text{const}$$

Pareto condition for high rates

$$D_k = \varepsilon_k^2 \cdot \sigma_k^2 \cdot 2^{-2R_k} \implies D_k(R_k) = ext{const}$$

High rate distortion approximation for URQs

$$D_k = rac{1}{12}\Delta_k^2$$

Remember: Optimal bit allocation: Pareto condition

$$\frac{\partial D_k(R_k)}{\partial R_k} = \text{const}$$

Pareto condition for high rates

$$D_k = \varepsilon_k^2 \cdot \sigma_k^2 \cdot 2^{-2R_k} \implies D_k(R_k) = ext{const}$$

High rate distortion approximation for URQs

$$D_k = rac{1}{12}\Delta_k^2$$

Quantization step sizes for optimal bit allocation at high rates

$$D_k = \frac{1}{12}\Delta_k^2 = ext{const} \implies \Delta_k = ext{const} = \Delta_k$$

Remember: Optimal bit allocation: Pareto condition

$$\frac{\partial D_k(R_k)}{\partial R_k} = \text{const}$$

Pareto condition for high rates

$$D_k = \varepsilon_k^2 \cdot \sigma_k^2 \cdot 2^{-2R_k} \implies D_k(R_k) = ext{const}$$

High rate distortion approximation for URQs

$$D_k = rac{1}{12}\Delta_k^2$$

 \Rightarrow Quantization step sizes for optimal bit allocation at high rates

$$D_k = \frac{1}{12} \Delta_k^2 = \text{const} \implies \Delta_k = \text{const} = \Delta_k$$

In practice, (nearly) optimal bit allocation is typically achieved by using the same quantization step size △ for all transform coefficients

Color Transform for Image & Video Coding

RGB

Color Transform for Image & Video Coding

RGB

Color Transform for Compression

Many versions (also depends on RGB color space)

Color Transform for Image & Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)
- → Example: RGB → YCbCr transform used in JPEG

Y]		0.2990	0.5870	0.1140	[R]
Cb - 128	=	-0.1687	-0.3313	0.5000	G
Cr -128		0.5000	-0.4187	-0.0813	B.

$$\begin{bmatrix} \mathsf{R} \\ \mathsf{G} \\ \mathsf{B} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.4020 \\ 1 & -0.3441 & -0.7141 \\ 1 & 1.7720 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathsf{Y} \\ \mathsf{Cb} - 128 \\ \mathsf{Cr} - 128 \end{bmatrix}$$

Color Transform for Image & Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)
- → Example: RGB → YCbCr transform used in JPEG

$$\begin{bmatrix} Y \\ Cb - 128 \\ Cr & -128 \end{bmatrix} = \begin{bmatrix} 0.2990 & 0.5870 & 0.1140 \\ -0.1687 & -0.3313 & 0.5000 \\ 0.5000 & -0.4187 & -0.0813 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{R} \\ \mathsf{G} \\ \mathsf{B} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.4020 \\ 1 & -0.3441 & -0.7141 \\ 1 & 1.7720 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathsf{Y} \\ \mathsf{Cb} - 128 \\ \mathsf{Cr} & -128 \end{bmatrix}$$

YCbCr

Color Transform for Image & Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)
- → Example: RGB → YCbCr transform used in JPEG

[Y]		0.2990	0.5870	0.1140	R
Cb - 128	=	-0.1687	-0.3313	0.5000	G
Cr -128		0.5000	-0.4187	-0.0813	В

$$\begin{bmatrix} \mathsf{R} \\ \mathsf{G} \\ \mathsf{B} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.4020 \\ 1 & -0.3441 & -0.7141 \\ 1 & 1.7720 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathsf{Y} \\ \mathsf{Cb} - 128 \\ \mathsf{Cr} & -128 \end{bmatrix}$$

YCbCr

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

• Human being are less sensitive to color differences (at same luminance)

RGB YCbCr 4:4:4 color transform

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

- Human being are less sensitive to color differences (at same luminance)
- In most applications: Color difference components are downsampled \rightarrow

RGB color transform

- Human being are less sensitive to color differences (at same luminance)
- → In most applications: Color difference components are downsampled

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice

The Image Compression Standard JPEG

\blacksquare Partition color components (Y, Cb, Cr) into blocks of 8 \times 8 samples

The Image Compression Standard JPEG

\blacksquare Partition color components (Y, Cb, Cr) into blocks of 8 \times 8 samples

■ Transform coding of 8 × 8 blocks of samples

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice
■ Separable DCT-II of size 8×8 (fast implementation possible)

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

original block

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

Inverse transform (in decoder)

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

Inverse transform (in decoder)

rec. transform coeffs.

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

→ Effect of transform: Compaction of signal energy (for typical blocks)

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$t' = \Delta \cdot q$$

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$t' = \Delta \cdot q$$

Simplest (but not best) encoder:

$$q = \operatorname{round}(t/\Delta)$$

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$t' = \Delta \cdot q$$

Simplest (but not best) encoder:

$$q = \operatorname{round}(t/\Delta)$$

Better encoders use Lagrangian optimization (minimization of $D + \lambda R$)

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$t' = \Delta \cdot q$$

Simplest (but not best) encoder:

$$q = \operatorname{round}(t/\Delta)$$

- Better encoders use Lagrangian optimization (minimization of $D + \lambda R$)
- \Rightarrow Quantization step size \triangle determines tradeoff between quality and bit rate

1 Scanning of Quantization indexes

• Convert matrix of quantization indexes into sequence

0.242	0.108	0.053	0.009
0.105	0.053	0.022	0.002
0.046	0.017	0.006	0.001
0.009	0.002	0.001	0.000

probabilities $P(q_k \neq 0)$

1 Scanning of Quantization indexes

- Convert matrix of quantization indexes into sequence
- Traverse quantization indexes from low to high frequency positions

0.242	0.108	0.053	0.009
0.105	0.053	0.022	0.002
0.046	0.017	0.006	0.001
0.009	0.002	0.001	0.000

probabilities $P(q_k \neq 0)$

1 Scanning of Quantization indexes

- Convert matrix of quantization indexes into sequence
- Traverse quantization indexes from low to high frequency positions
- JPEG: Zig-zag scan

2 Entropy Coding of Sequences of Quantization Indexes

• Often long sequences of zeros (in particular at end of sequence)

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
- → Entropy coding should exploit this property

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
- ➡ Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

- Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol
 - level : value of next non-zero symbol
 - run : number of zero symbols that precede next non-zero symbol
 - **eob**: all following symbols are equal to zero (end-of-block)

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
- ➡ Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

- Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol
 - level : value of next non-zero symbol
 - run : number of zero symbols that precede next non-zero symbol
 - **eob**: all following symbols are equal to zero (end-of-block)
- → Assign codewords to (run,level) pairs (including eob symbol)

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
- ➡ Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

- Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol
 - level : value of next non-zero symbol
 - run : number of zero symbols that precede next non-zero symbol
 - eob: all following symbols are equal to zero (end-of-block)
- → Assign codewords to (run,level) pairs (including eob symbol)
- Example: 64 symbols: 5 3 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 ... (run,level) pairs: (0,5) (0,3) (3,1) (1,1) (2,1) (eob)

Original Image (960×720 image points, RGB: 2 MByte)

Lossy Compressed: JPEG (Quality 94)

Lossy Compressed: JPEG (Quality 66)

Lossy Compressed: JPEG (Quality 27)

Lossy Compressed: JPEG (Quality 6) 204:1

0.49%

 $100\,\%$

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks
- Quantization: Scalar quantization with psycho-acoustic model
- Entropy Coding: Variant of Huffman coding

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks
- Quantization: Scalar quantization with psycho-acoustic model
- Entropy Coding: Variant of Huffman coding

Linear Transform

- Audio signal is coded based on overlapping blocks of samples
- Transform: Modified discrete cosine transform (MDCT)

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks
- Quantization: Scalar quantization with psycho-acoustic model
- Entropy Coding: Variant of Huffman coding

Linear Transform

- Audio signal is coded based on overlapping blocks of samples
- Transform: Modified discrete cosine transform (MDCT)

Quantization of Transform Coefficients

- Scalar quantization of transform coefficients (spectral coefficients)
- Utilization of psycho-acoustic models by noise shaping

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks
- Quantization: Scalar quantization with psycho-acoustic model
- Entropy Coding: Variant of Huffman coding

Linear Transform

- Audio signal is coded based on overlapping blocks of samples
- Transform: Modified discrete cosine transform (MDCT)

Quantization of Transform Coefficients

- Scalar quantization of transform coefficients (spectral coefficients)
- Utilization of psycho-acoustic models by noise shaping

Entropy Coding of Quantization Indexes

- Grouping and interleaving
- Huffman coding for tuples of n quantization indexes (n is variable)

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

The forward transform maps 2N samples to N transform coefficients

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{2N-1} s[n] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{N+1}{2}\right) \left(k + \frac{1}{2}\right)\right)$$

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

• The forward transform maps 2N samples to N transform coefficients

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{2N-1} s[n] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{N+1}{2}\right) \left(k + \frac{1}{2}\right)\right)$$

Inverse Transform (IMDCT)

The inverse transform maps N transform coefficients to 2N samples

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{N+1}{2}\right) \left(k + \frac{1}{2}\right)\right)$$

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

• The forward transform maps 2N samples to N transform coefficients

$$u[k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{2N-1} s[n] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{N+1}{2}\right) \left(k + \frac{1}{2}\right)\right)$$

Inverse Transform (IMDCT)

• The inverse transform maps N transform coefficients to 2N samples

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{N+1}{2}\right) \left(k + \frac{1}{2}\right)\right)$$

Perfect Reconstruction

- Neighboring blocks of samples s[n] overlap by 50% (at each side)
- Perfect reconstruction of s[n] is achieved by adding the inverse transformed blocks x[n]
- ➡ Property of time-domain aliasing cancellation

Summary of Lecture

Signal-Independent Transforms

- Walsh-Hadamard Transform (WHT):
- Discrete Fourier Transform (DFT):
- Discrete Trigonometric Transforms:

Perceptual disturbing artefacts Problem due to implicit periodic signal extension Family of Sine and Cosine transforms

Summary of Lecture

Signal-Independent Transforms

- Walsh-Hadamard Transform (WHT):
- Discrete Fourier Transform (DFT):
- Discrete Trigonometric Transforms:

Perceptual disturbing artefacts Problem due to implicit periodic signal extension Family of Sine and Cosine transforms

Discrete Cosine Transform of Type II (DCT-II)

- DFT of mirrored signal with half-sample symmetry at both sides
- Reduced blocking artifacts compared to DFT
- Good approximation of KLT for highly-correlated signals
Summary of Lecture

Signal-Independent Transforms

- Walsh-Hadamard Transform (WHT):
- Discrete Fourier Transform (DFT):
- Discrete Trigonometric Transforms:

Perceptual disturbing artefacts

Problem due to implicit periodic signal extension

Family of Sine and Cosine transforms

Discrete Cosine Transform of Type II (DCT-II)

- DFT of mirrored signal with half-sample symmetry at both sides
- Reduced blocking artifacts compared to DFT
- Good approximation of KLT for highly-correlated signals

Transform Coding in Practice

- Color transforms in image and video coding: RGB to YCbCr conversion
- JPEG image compression: 2D DCT-II + URQ + Run-level coding
- AAC audio compression: MDCT for overlapped blocks + scalar quantization + Huffman coding

Exercise 1: Correlation of Transform Coefficients

Given is a zero-mean AR(1) sources with a variance σ^2 and a correlation coefficient $\varrho = 0.9$

Consider transform coding of blocks of 2 samples using the transform

$$\begin{bmatrix} u_{k,0} \\ u_{k,1} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_{2k} \\ s_{2k+1} \end{bmatrix},$$

where k represents the index of the transform block

Determine the following variances and covariances of the transform coefficients (inside a block and between neighbouring blocks):

${ m E} \{ \ U_{k,0}^2 \} = ?$	$E\{ U_{k,0} U_{k+1,0} \} = ?$
${ m E} \{ \ U_{k,1}^2 \} \ = ?$	$E\{ U_{k,1} U_{k+1,1} \} = ?$
$E\{ U_{k,0} U_{k,1} \} = ?$	$E\{ U_{k,0} U_{k+1,1} \} = ?$

Is it worth to exploit the correlations between the transform coefficients of neighboring block (e.g., for typical correlation factors of *ρ* ≈ 0.9)?

Exercise 2: First Version of Lossy Image Codec (Implementation)

Implement a first lossy image codec for PPM images:

- **1** Use the source code of last weeks exercise as basis (see KVV)
- 2 Add some variant of entropy coding for the quantization indexes, for example:
 - Simple Rice coding or Exp-Golomb coding (see lossless codec example in KVV)
 - Adaptive binary arithmetic coding using a unary binarization (see lossless coding example in KVV)
 - ...
- 3 Implement an encoder that converts a PPM image into a bitstream file
- 4 Implement a corresponding decoder that converts a bitstream file into a PPM image
- 5 Test your encoder with some example images and multiple quantization step sizes
- 6 (Optional) Try to improve your codec by using the YCbCr color format
 - Implement an RBG-to-YCbCr transform before the actual encoding
 - Implement the inverse YCbCr-to-RGB transform after the actual decoding
 - Possible extension: Sub-sampling of chroma components