
Transform Coding in Practice



Last Lecture

Last Lectures: Basic Concept Transform Coding

Transform reduces linear dependencies (correlation) between samples before scalar quantization
For correlated sources: Scalar quantization in transform domain is more efficient
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Encoder (block-wise)
Forward transform: u = A · s
Scalar quantization: qk = αk(uk)

Entropy coding: b = γ( {qk} )

Decoder (block-wise)
Entropy decoding: {qk} = γ−1(b)

Inverse quantization: u′k = βk(qk)

Inverse transform: s′ = A−1 · u′
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Last Lecture

Last Lectures: Orthogonal Block Transforms

Transform matrix has property: A−1 = AT (special case of unitary matrix: A−1 = (A∗)T)

A =


b0

b1

b2
...

bN−1

 A−1 = AT =

 b0 b1 b2 · · · bN−1


Basis vectors bk (rows of A, columns of A−1 = AT) form an orthonormal basis
Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

Why Orthogonal Transforms ?
Same MSE distortion in sample and transform space: ||u′ − u||22 = ||s′ − s||22
Minimum MSE in signal space can be achieved by
minimization of MSE for each individual transform coefficient
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Last Lecture

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients
Optimal bit allocation: Pareto condition

∂

∂Rk
Dk(Rk) = −λ = const =⇒ high rates: Dk(Rk) = const

High-Rate Approximation
High-rate distortion rate function for transform coding with optimal bit allocation

D(R) = ε̃2 · σ̃2 · 2−2R with ε̃2 =
(∏

k
ε2k

)1
N

, σ̃2 =
(∏

k
σ2
k

)1
N

High-rate transform coding gain GT and energy compaction measure GEC

GT =
DSQ(R)

DTC (R)
=
ε2S · σ2

S

ε̃2 · σ̃2 , GEC =
σ2
S

σ̃2 =
1
N

∑N−1
k=0 σ

2
k

N

√∏N−1
k=0 σ

2
k
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Last Lecture

Last Lectures: Karhunen Loève Transform (KLT)

Design criterion: Orthogonal transform A that yields uncorrelated transform coefficients

CUU = A · CSS · AT =


σ2

0 0 · · · 0
0 σ2

1 · · · 0
...

...
. . .

...
0 0 · · · σ2

N−1

 =⇒ CSS · bk = σ2
k · bk

Eigenvector equation for all basis vectors bk (rows of transform matrix A)

Rows of KLT matrix A are the unit-norm eigenvectors of CSS

Transform coefficient variances σ2
k are the eigenvalues of CSS

A =


b0

b1

...
bN−1

 CUU =


σ2

0 0 · · · 0
0 σ2

1 · · · 0
...

...
. . .

...
0 0 · · · σ2

N−1
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Last Lecture

Last Lectures: Maximum Energy Compaction and Optimality

High-Rate Approximation for KLT and Gauss-Markov
High-rate operational distortion-rate function

DN(R) = ε2 · σ2
S · (1− %2)

N−1
N · 2−2R

High-rate transform coding gain: Increases with transform size N

GN
T = GN

EC = (1− %2)
1−N
N =⇒ G∞T =

1
1− %2

For N →∞, gap to fundamental lower bound reduces to space-filling gain (1.53 dB)

On Optimality of KLT
KLT yields uncorrelated transform coefficients and maximizes energy compaction GEC

KLT is the optimal transform for stationary Gaussian sources
Other sources: Optimal transform is hard to find (iterative algorithm)
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Signal-Independent Unitary Transforms

Transform Selection in Practice

Optimal Unitary Transform
Stationary Gaussian sources: KLT
General sources: Not straightforward to determine (typically KLT close to optimal)
Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection
Determine transform in encoder, include transform specification in bitstream

Increased side information may lead to sub-optimal overall coding efficiency
Simple variant: Switched transforms (e.g., in H.266/VVC)

Signal-Independent Transforms
Choose transform that provides good performance for variety of signals

Not optimal, but often close to optimal for typical signal
Most often used design in practice
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Signal-Independent Unitary Transforms / Walsh-Hadamard Transform

Walsh-Hadamard Transform

For transform sizes N that are positive integer powers of 2

AN =
1√
2

[
AN/2 AN/2
AN/2 −AN/2

]
with A1 =

[
1
]
.

Examples: Transform matrices for N = 2, N = 4, and N = 8

A2 =
1√
2

[
1 1
1 −1

]

A4 =
1√
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


A8 =

1√
8



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1



Very simple orthogonal transform (only additions, subtractions, and final scaling)
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Signal-Independent Unitary Transforms / Walsh-Hadamard Transform

Basis Functions of the WHT (Example for N = 8)

b0

b1

b2

b3

b4

b5

b6

b7

Media coding: Walsh-Hadamard transform with strong quantization
Piece-wise constant basis vectors yield subjectively disturbing artifacts
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Signal-Independent Unitary Transforms / Fourier Transform

Discrete Version of the Fourier Transform

The Fourier Transform
Fundamental transform used in mathematics, physics, signal processing, communications, ...

Integral transform representing signal as integral of frequency components
Forward and inverse transform are given by

X (f ) = F
{
x(t)

}
=

∞∫
−∞

x(t) · e−2πift dt ⇐⇒ x(t) = F−1{x(t)
}

=

∞∫
−∞

X (f ) · e2πift df

Basis functions are complex exponentials bf (t) = e2πift

Discrete Version of the Fourier Transform
Fourier transform for finite discrete signals

Could also be useful for coding of discrete signals
Can be derived using sampling and windowing
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Signal-Independent Unitary Transforms / Fourier Transform

Important Properties of the Fourier Transform

Linearity: F
{
a · h(t) + b · g(t)

}
= a · H(f ) + b · G (f )

Scaling: F
{
h(a · t)

}
=

1
|a|
· H
(
f

a

)
Translation: F

{
h(t − t0)

}
= e−2πit0f · H(f )

Modulation: F
{
e2πitf0 · h(t)

}
= H(f − f0)

Duality: F
{
H(t)

}
= h(−f )

Convolution: F
{
h(t) ∗ g(t)

}
= F

{∫ ∞
−∞

g(τ) h(t − τ) dτ
}

= H(f ) · G (f )

Multiplication: F
{
h(t) · g(t)

}
= H(f ) ∗ G (f )
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Signal-Independent Unitary Transforms / Fourier Transform

The Dirac Delta Function

Dirac Delta Function
Not a function in traditional sense Dirac delta distribution
Can be thought of function with the following properties

δ(x) =

{
+∞ : x = 0
0 : x 6= 0 and

∞∫
−∞

δ(x) dx = 1

Important Properties

Sifting:
∫ ∞
−∞

h(t) δ(t − t0) dt = h(t0)

Convolution: h(t) ∗ δ(t − t0) =

∫ ∞
−∞

h(τ) δ(t − t0 − τ) dτ = h(t − t0)

Sampling:
∫ ∞
−∞

h(t)

( ∞∑
k=−∞

δ(t − k · t0)

)
dt =

∞∑
k=−∞

h(k · t0)
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Signal-Independent Unitary Transforms / Fourier Transform

Selected Fourier Transform Pairs

x(t) = δ(t − T ) X (f ) = e−2πifT = cos(2πfT ) + i sin(2πfT )

Dirac delta function

T

t

δ(t − T ) complex exponential

f

∣∣F{δ(t − T )
}∣∣

шT (t) =
∞∑

k=−∞

δ(t − kT ) ШT (f ) =
∞∑

k=−∞

δ(f − k/T )

Dirac comb

T

t

шT (t) Dirac comb
1
T

f

∣∣ШT (f )
∣∣
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Signal-Independent Unitary Transforms / Fourier Transform

Selected Fourier Transform Pairs

rectT (t) =

{
1 : |t| ≤ T/2
0 : |t| > T/2

F
{
rectT (f )

}
=

1
πf

sin(πfT ) = T sinc(fT )

rectangular window

T

t

rectT (t) Sinc filter

2
T

f

∣∣F{rectT (f )}∣∣

g(t) = e−π·t
2

with σ2
t =

1
2π

G (f ) = e−π·f
2

= g(f )

Gaussian

t

g(t) Gaussian

f

∣∣G(f )
∣∣
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

continuous signal

t

s(t) Fourier transform

f

∣∣S(f )∣∣

Dirac comb

t

ш0(t) Dirac comb

f

∣∣Ш0(f )
∣∣

sampled signal

t

s(t) ш0(t) Fourier transform

f

∣∣S(f )∗Ш0(f )
∣∣

× (multiplication) ∗ (convolution)

= =
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Derivation of Discrete Fourier Transform: (2) Time Restriction
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rectangular window
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r(t) Sinc filter
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

finite sampled signal

t

s(t)ш0(t) r(t) Fourier transform
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Dirac comb

t

ш1(t) Dirac comb
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periodic sampled signal

t
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s(t)ш0(t) r(t)

]
∗ш1(t) Fourier transform

f

∣∣[S(f )∗Ш0(f )∗R(f )]Ш1(f )
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

The Discrete Fourier Transform

periodic sampled signal

t

sper(t) Fourier transform

f

∣∣Sper(f )
∣∣

N samples are represented by N complex Fourier coefficients

Discrete Fourier Transform
Forward and inverse transform are given by

u[k] =
1√
N

N−1∑
n=0

s[n] · e−i 2πkn
N and s[n] =

1√
N

N−1∑
k=0

u[k] · ei 2πkn
N

Unitary transform that produces complex transform coefficients
Basis vectors are sampled complex exponentials
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Complex Basis Functions of the DFT (Example for N = 8)

bk [n] =
1√
N

ei 2πk
N

n

=
1√
N

cos

(
2πk
N

n

)
+ i · 1√

N
sin

(
2πk
N

n

)
= rk [n] + i · ik [n]

r0 i0

=(b0) = 0

r1 i1

r2 i2

r3 i3

r4 i4

=(b4) = 0

r5 i5
b5 = b3

∗

r6 i6
b6 = b2

∗

r7 i7
b7 = b1

∗
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Complex Basis Functions of the DFT (Example for N = 8)

bk [n] =
1√
N

ei 2πk
N
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N

cos

(
2πk
N

n

)
+ i · 1√

N
sin

(
2πk
N

n

)
= rk [n] + i · ik [n]

r0 r4

r1 i1

r2 i2

r3 i3

DFT for Real Signals
Symmetry of complex coefficients

u[k] = u∗[N − k]

Vanishing imaginary parts

k ∈
{
0, N2

}
: =

{
u[k]

}
= 0

N real samples are mapped to
N real coefficients

Fast algorithm:
Fast Fourier transform (FFT)
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Signal-Independent Unitary Transforms / Discrete Fourier Transform

Disadvantage of DFT for Transform Coding

discrete signal

t

sper(t)

N samples

transform coefficients

f

∣∣Sper(f )
∣∣

N coefficients

Sampling of frequency spectrum causes implicit periodic signal extension

Often: Large differences between left and right signal boundary

Large difference reduces rate of convergence of Fourier series

Strong quantization yields significant high-frequency artefacts
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Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

Overcome DFT Disadvantage: Discrete Cosine Transform

signal

DFT:

implicit signal replicaimplicit signal replica

signal

DCT:

mirrored signal

DFT

implicit signal replicaimplicit signal replica

Idea of Discrete Cosine Transform (DCT)
Introduce mirror symmetry (different possibilities)

Apply DFT of approximately double size (or four times the size)
No discontinuities in periodic signal extension
Ensure symmetry around zero: Only cosine terms
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Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)
Introduce mirror symmetry around zero and apply DFT of larger size

Imaginary sine terms get eliminated
Only cosine terms remain

8 possibilities: DCT-I to DCT-VIII
2 cases for left side: Whole sample or half-sample symmetry
4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

Introduce anti-symmetry around zero and apply DFT of larger size

Real cosine terms get eliminated
Only imaginary sine terms remain

Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice 23 / 50



Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)
Introduce mirror symmetry around zero and apply DFT of larger size

Imaginary sine terms get eliminated
Only cosine terms remain

8 possibilities: DCT-I to DCT-VIII
2 cases for left side: Whole sample or half-sample symmetry
4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

Introduce anti-symmetry around zero and apply DFT of larger size

Real cosine terms get eliminated
Only imaginary sine terms remain

Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice 23 / 50



Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)
Introduce mirror symmetry around zero and apply DFT of larger size

Imaginary sine terms get eliminated
Only cosine terms remain

8 possibilities: DCT-I to DCT-VIII
2 cases for left side: Whole sample or half-sample symmetry
4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

Introduce anti-symmetry around zero and apply DFT of larger size

Real cosine terms get eliminated
Only imaginary sine terms remain

Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice 23 / 50



Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)
Introduce mirror symmetry around zero and apply DFT of larger size

Imaginary sine terms get eliminated
Only cosine terms remain

8 possibilities: DCT-I to DCT-VIII
2 cases for left side: Whole sample or half-sample symmetry
4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

Introduce anti-symmetry around zero and apply DFT of larger size

Real cosine terms get eliminated
Only imaginary sine terms remain

Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice 23 / 50



Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)
Introduce mirror symmetry around zero and apply DFT of larger size

Imaginary sine terms get eliminated
Only cosine terms remain

8 possibilities: DCT-I to DCT-VIII
2 cases for left side: Whole sample or half-sample symmetry
4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)
Introduce anti-symmetry around zero and apply DFT of larger size

Real cosine terms get eliminated
Only imaginary sine terms remain

Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice 23 / 50



Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)
Introduce mirror symmetry around zero and apply DFT of larger size

Imaginary sine terms get eliminated
Only cosine terms remain

8 possibilities: DCT-I to DCT-VIII
2 cases for left side: Whole sample or half-sample symmetry
4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)
Introduce anti-symmetry around zero and apply DFT of larger size

Real cosine terms get eliminated
Only imaginary sine terms remain

Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding in Practice 23 / 50



Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

The Discrete Cosine Transform (DCT) Family

DCT-I DFT of size 2N − 2

DCT-II DFT of size 2N

DCT-III DFT of size 4N

DCT-IV DFT of size 4N

DCT-V DFT of size 2N − 1

DCT-VI DFT of size 2N − 1

DCT-VII DFT of size 4N − 2

DCT-VIII DFT of size 4N + 2
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Signal-Independent Unitary Transforms / Discrete Trigonometric Transforms

The Discrete Sine Transform (DST) Family
DST-I DFT of size 2N + 2

DST-II DFT of size 2N

DST-III DFT of size 4N

DST-IV DFT of size 4N

DST-V DFT of size 2N + 1

DST-VI DFT of size 2N + 1

DST-VII DFT of size 4N + 2

DST-VIII DFT of size 4N − 2
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

signal mirrored signal implicit signal replicaimplicit signal replica

DFT

Signal for applying the DFT
Given: Discrete signal s[n] of size N (i.e., 0 ≤ n < N)

Mirror signal with sample repetition at both sides (size 2N)

sm[n] =

{
s[n] : 0 ≤ n < N

s[2N − n − 1] : N ≤ n < 2N

Ensure symmetry around zero by adding half-sample shift

s+[n] = sm[n − 1/2] =

{
s[n − 1/2] : 0 ≤ n < N

s[2N − n − 3/2] : N ≤ n < 2N

Apply DFT of size 2N to new signal s+[n]
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

s+[n] =

{
s[n − 1/2] : 0 ≤ n < N

s[2N − n − 3/2] : N ≤ n < 2N

DFT of size 2N : u+[k] =
1√

(2N)

(2N)−1∑
n=0

s+[n] · e−i 2πkn
(2N)

(
s+ only known at half-sample
positions → use m = n − 1/2

)

=
1√
2N

2N−1∑
m=0

s+
[
m +

1
2

]
· e−iπk

N (m+ 1
2 )

=
1√
2N

(
N−1∑
n=0

s[n] · e−iπk
N (n+ 1

2 ) +
2N−1∑
m=N

s[2N −m − 1] · e−iπk
N (m+ 1

2 )

)
yn=2N−m−1

=
1√
2N

(
N−1∑
n=0

s[n] · e−iπk
N (n+ 1

2 ) +
N−1∑
n=0

s[n] · e−iπk
N (2N−n− 1

2 )

)
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

Continue derivation

u+[k] =
1√
2N

(
N−1∑
n=0

s[n] · e−iπk
N (n+ 1

2 ) +
N−1∑
n=0

s[n] · e−iπk
N (2N−n− 1

2 )

)

=
1√
2N

(
N−1∑
n=0

s[n] · e−iπk
N (n+ 1

2 ) +
N−1∑
n=0

s[n] ·

e−i2πk︸ ︷︷ ︸
1

· eiπk
N (n+ 1

2 )

)

=
1√
2N

N−1∑
n=0

s[n] ·
(
e−iπk

N (n+ 1
2 ) + eiπk

N (n+ 1
2 )
)

︸ ︷︷ ︸
2 cos(πk

N (n+ 1
2 ))

DFT of extended signal

u+[k] =

√
2
N
·
N−1∑
n=0

s[n] · cos

(
π

N
k

(
n +

1
2

))
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

DFT of extended signal (2N real samples) has 2N real transform coefficients

k = 0, . . . , 2N − 1 : u+[k] =

√
2
N
·
N−1∑
n=0

s[n] · cos

(
π

N
k

(
n +

1
2

))

1 Signal s[n] is completely described by first N transform coefficients

k = 0, . . . , N − 1 : u+[k] =

√
2
N
·
N−1∑
n=0

s[n] · cos

(
π

N
k

(
n +

1
2

))
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Discrete Cosine Transform of Type II (DCT-II)

Specification of DCT-II
Forward transform (DCT-II) and inverse transform (IDCT-II) are given by

u[k] = αk

N−1∑
n=0

s[n] · cos

(
π

N
k

(
n +

1
2

))
and s[n] =

N−1∑
k=0

αk · u[k] · cos

(
π

N
k

(
n +

1
2

))

with scaling factors

αk =

{ √
1/N : k = 0√
2/N : k 6= 0

The orthogonal transform matrix A = {akn} has the elements

akn = αk · cos

(
π

N
k

(
n +

1
2

))
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Comparions of DFT and DCT-II Basis Functions (Example for N = 8)

DFT: bk [n] =
1√
N

ei 2πk
N

n = rk [n] + i · ik [n] DCT-II: bk [n] = αk · cos

(
π

N
k

(
n +

1
2

))

r0 r4

r1 i1

r2 i2

r3 i3

b0 b1

b2 b3

b4 b5

b6 b7
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Image & Video Coding: 2D Transforms

Separable Transforms
Successive 1D transforms of rows and columns of image block

Separable forward and inverse transforms

u = A · s · BT and s = AT · u · B

with s — N×M block of image samples
A — N×N transform matrix (typically DCT-II)
B — M×M transform matrix (typically DCT-II)
u — N×M block of transform coefficients

Great practical importance:
Two matrix multiplications of size N×N instead of
one multiplication of a vector of size 1×N2 with a matrix of size N2×N2

Complexity reduction from O(N4) to O(N3) [ also fast algorithms for DCT-II ]
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Example: Basis Images of Separable 8×8 DCT-II
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8× 8 block of samples: u = A · s · AT

original block

horizontal
DCT

vertical
DCT

after 2d DCT

Example calculation of 2d DCT-II:

1 Horizontal DCT of input block: u∗ = s · AT

2 Vertical DCT of intermediate result: u = A · u∗ = A · s · AT
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Signal-Independent Unitary Transforms / Discrete Cosine Transform of Type II

Practical Importance of DCT-II

Justification for usage of DCT-II
Represents signal as weighted sum of frequency components

Similar to KLT for highly correlated sources (%→ 1)
Independent of source characteristics
Fast algorithms for computing forward and inverse transform

DCT-II of size 8×8 is used in

Image coding standard: JPEG
Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

Video coding standard H.264/AVC (4×4 and 8×8)
Video coding standard H.265/HEVC (4×4, 8×8, 16×16, 32×32)
New standardization project H.266/VVC (from 4×4 to 64×64, including non-square blocks)
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Transform Coding in Practice / Typical Design

Transform Coding in Practice

Orthogonal Transform
Typically: DCT-II or integer approximation thereof (separable transform for blocks)

Potential extension in H.266/VVC:
Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
Non-separable transforms

Scalar Quantization

Uniform reconstruction quantizers (or very similar designs)
Bit allocation by using same quantization step size for all coefficients
Usage of advanced quantization algorithms in encoder
May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

Zig-zag scan (or similar scan) for 2D transforms
Simple: Run-level coding, run-level-last coding, or similar approach
Better coding efficiency: Adaptive arithmetic coding
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Transform Coding in Practice / Typical Design

Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

Remember: Optimal bit allocation: Pareto condition

∂Dk(Rk)

∂Rk
= const

Pareto condition for high rates

Dk = ε2k · σ2
k · 2−2Rk =⇒ Dk(Rk) = const

High rate distortion approximation for URQs

Dk =
1
12

∆2
k

Quantization step sizes for optimal bit allocation at high rates

Dk =
1
12

∆2
k = const =⇒ ∆k = const = ∆

In practice, (nearly) optimal bit allocation is typically achieved
by using the same quantization step size ∆ for all transform coefficients
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Transform Coding in Practice / Color Transformation

Color Transform for Image & Video Coding

RGB

Color Transform for Compression
Many versions (also depends on RGB color space)

Example: RGB → YCbCr transform used in JPEGY
Cb−128
Cr −128

 =

 0.2990 0.5870 0.1140
−0.1687 −0.3313 0.5000

0.5000 −0.4187 −0.0813

·
R

G
B


R

G
B

 =

 1 0 1.4020
1 −0.3441 −0.7141
1 1.7720 0

·
Y

Cb−128
Cr −128



Energy Compaction for Example Image

σ2
R = 3862.28

σ2
G = 4250.44

σ2
B = 5869.39

σ2
Y = 3099.67

σ2
Cb = 83.94

σ2
Cr = 70.10

YCbCr
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Transform Coding in Practice / Color Transformation

The YCbCr Chroma Sampling Format

Human being are less sensitive to color differences (at same luminance)
In most applications: Color difference components are downsampled

RGB

color transform

YCbCr 4:4:4

downsampling

YCbCr 4:2:0

most common
format in

image coding
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Transform Coding in Practice / Image Compression Example: JPEG

The Image Compression Standard JPEG

Partition color components (Y, Cb, Cr) into blocks of 8× 8 samples

Y Cb Cr

Transform coding of 8× 8 blocks of samples

2D  

transform 

scalar 

quantization 

entropy 

coding 

block of 

samples 

sequence 

of bits 

2D inverse  

transform 

decoder 

mapping 

entropy 

decoding 

reconstructed 

block 
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Transform Coding in Practice / Image Compression Example: JPEG

JPEG: Transform of Sample Blocks

Separable DCT-II of size 8×8 (fast implementation possible)

Forward transform (in encoder)

original block

horizontal
DCT

vertical
DCT

after 2d DCT

Inverse transform (in decoder)

reconstructed block

horizontal
IDCT

vertical
IDCT

rec. transform coeffs.

Effect of transform: Compaction of signal energy (for typical blocks)
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Transform Coding in Practice / Image Compression Example: JPEG

JPEG: Quantization

s

u−4 u−3 u−2 u−1 u0 u1 u2 u3 u4 u5

∆ ∆

s ′−5 s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4 s ′5

−5∆ −4∆ −3∆ −2∆ −1∆ 0 1∆ 2∆ 3∆ 4∆ 5∆

Uniform Reconstruction Quantizers
Equally spaced reconstruction levels (indicated by step size ∆)
Simple decoder mapping

t ′ = ∆ · q

Simplest (but not best) encoder:
q = round(t/∆)

Better encoders use Lagrangian optimization (minimization of D + λR)

Quantization step size ∆ determines tradeoff between quality and bit rate
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Transform Coding in Practice / Image Compression Example: JPEG

JPEG: Entropy Coding

0.242 0.108 0.053 0.009 

0.105 0.053 0.022 0.002 

0.046 0.017 0.006 0.001 

0.009 0.002 0.001 0.000 

probabilities P(qk 6= 0) zig-zag scan (JPEG)

1 Scanning of Quantization indexes
Convert matrix of quantization indexes into sequence

Traverse quantization indexes from low to high frequency positions
JPEG: Zig-zag scan
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Transform Coding in Practice / Image Compression Example: JPEG

JPEG: Entropy Coding

2 Entropy Coding of Sequences of Quantization Indexes
Often long sequences of zeros (in particular at end of sequence)

Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)
Map sequence a symbols (transform coefficients) into (run,level) pairs,
including a special end-of-block (eob) symbol

level : value of next non-zero symbol
run : number of zero symbols that precede next non-zero symbol
eob : all following symbols are equal to zero (end-of-block)

Assign codewords to (run,level) pairs (including eob symbol)

Example: 64 symbols: 5 3 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 ...
(run,level) pairs: (0,5) (0,3) (3,1) (1,1) (2,1) (eob)
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Transform Coding in Practice / Image Compression Example: JPEG

JPEG Compression Example

100%

Original Image (960×720 image points, RGB: 2 MByte)Lossy Compressed: JPEG (Quality 94) 18.60%

5.4 : 1

Lossy Compressed: JPEG (Quality 66) 3.88%

25.8 : 1

Lossy Compressed: JPEG (Quality 27) 1.85%

54.0 : 1

Lossy Compressed: JPEG (Quality 6) 0.49%

204 : 1
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Audio Compression Example: MPEG-2 Advanced Audio Coding (AAC)

Main Component: Transform Coding of Sample Blocks
Transform: Modified DCT for overlapping blocks
Quantization: Scalar quantization with psycho-acoustic model
Entropy Coding: Variant of Huffman coding

Linear Transform
Audio signal is coded based on overlapping blocks of samples
Transform: Modified discrete cosine transform (MDCT)

Quantization of Transform Coefficients
Scalar quantization of transform coefficients (spectral coefficients)
Utilization of psycho-acoustic models by noise shaping

Entropy Coding of Quantization Indexes
Grouping and interleaving
Huffman coding for tuples of n quantization indexes (n is variable)
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Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)
The forward transform maps 2N samples to N transform coefficients

u[k] =
1√
N

2N−1∑
n=0

s[n] · cos

(
π

N

(
n +

N + 1
2

)(
k +

1
2

))

Inverse Transform (IMDCT)
The inverse transform maps N transform coefficients to 2N samples

x [n] =
1√
N

N−1∑
k=0

u[k] · cos

(
π

N

(
n +

N + 1
2

)(
k +

1
2

))

Perfect Reconstruction
Neighboring blocks of samples s[n] overlap by 50% (at each side)
Perfect reconstruction of s[n] is achieved by adding the inverse transformed blocks x [n]

Property of time-domain aliasing cancellation
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Summary

Summary of Lecture

Signal-Independent Transforms
Walsh-Hadamard Transform (WHT): Perceptual disturbing artefacts
Discrete Fourier Transform (DFT): Problem due to implicit periodic signal extension
Discrete Trigonometric Transforms: Family of Sine and Cosine transforms

Discrete Cosine Transform of Type II (DCT-II)
DFT of mirrored signal with half-sample symmetry at both sides
Reduced blocking artifacts compared to DFT
Good approximation of KLT for highly-correlated signals

Transform Coding in Practice
Color transforms in image and video coding: RGB to YCbCr conversion
JPEG image compression: 2D DCT-II + URQ + Run-level coding
AAC audio compression: MDCT for overlapped blocks + scalar quantization + Huffman coding
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Exercises

Exercise 1: Correlation of Transform Coefficients

Given is a zero-mean AR(1) sources with a variance σ2 and a correlation coefficient % = 0.9

Consider transform coding of blocks of 2 samples using the transform[
uk,0
uk,1

]
=

1√
2

[
1 1
−1 1

]
·
[

s2k
s2k+1

]
,

where k represents the index of the transform block

Determine the following variances and covariances of the transform coefficients
(inside a block and between neighbouring blocks):

E
{
U2
k,0
}

= ? E{Uk,0 Uk+1,0 } = ?

E
{
U2
k,1
}

= ? E{Uk,1 Uk+1,1 } = ?

E{Uk,0 Uk,1 } = ? E{Uk,0 Uk+1,1 } = ?

Is it worth to exploit the correlations between the transform coefficients of neighboring block
(e.g., for typical correlation factors of % ≈ 0.9) ?
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Exercises

Exercise 2: First Version of Lossy Image Codec (Implementation)

Implement a first lossy image codec for PPM images:

1 Use the source code of last weeks exercise as basis (see KVV)

2 Add some variant of entropy coding for the quantization indexes, for example:
Simple Rice coding or Exp-Golomb coding (see lossless codec example in KVV)

Adaptive binary arithmetic coding using a unary binarization (see lossless coding example in KVV)

...

3 Implement an encoder that converts a PPM image into a bitstream file

4 Implement a corresponding decoder that converts a bitstream file into a PPM image

5 Test your encoder with some example images and multiple quantization step sizes

6 (Optional) Try to improve your codec by using the YCbCr color format
Implement an RBG-to-YCbCr transform before the actual encoding

Implement the inverse YCbCr-to-RGB transform after the actual decoding

Possible extension: Sub-sampling of chroma components
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