Transform Coding in Practice

Last Lectures: Basic Concept Transform Coding

- Transform reduces linear dependencies (correlation) between samples before scalar quantization
- For correlated sources: Scalar quantization in transform domain is more efficient

Encoder (block-wise)

\Rightarrow Forward transform: u=A \boldsymbol{s}
\Rightarrow Scalar quantization: $q_{k}=\alpha_{k}\left(u_{k}\right)$
\Rightarrow Entropy coding:
$\boldsymbol{b}=\gamma\left(\left\{q_{k}\right\}\right)$

Decoder (block-wise)
\Rightarrow Entropy decoding: $\quad\left\{q_{k}\right\}=\gamma^{-1}(\boldsymbol{b})$
\Rightarrow Inverse quantization: $u_{k}^{\prime}=\beta_{k}\left(q_{k}\right)$
\Rightarrow Inverse transform: $\boldsymbol{s}^{\prime}=\boldsymbol{A}^{-1} \cdot \boldsymbol{u}^{\prime}$

Last Lectures: Orthogonal Block Transforms

- Transform matrix has property: $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}$ (special case of unitary matrix: $\boldsymbol{A}^{-1}=\left(\boldsymbol{A}^{*}\right)^{\mathrm{T}}$)

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\text { - } & \boldsymbol{b}_{0}- & b_{1}- \\
- & \boldsymbol{b}_{2}- \\
\vdots \\
- & \boldsymbol{b}_{N-1} & -
\end{array}\right] \quad \boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}=\left[\begin{array}{cccc}
|| | & \mid \\
\boldsymbol{b}_{0} \boldsymbol{b}_{1} \boldsymbol{b}_{2} & \cdots & \boldsymbol{b}_{N-1} \\
|| | & \mid
\end{array}\right]
$$

\Rightarrow Basis vectors \boldsymbol{b}_{k} (rows of \boldsymbol{A}, columns of $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}$) form an orthonormal basis
\rightarrow Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

Last Lectures: Orthogonal Block Transforms

- Transform matrix has property: $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}$ (special case of unitary matrix: $\boldsymbol{A}^{-1}=\left(\boldsymbol{A}^{*}\right)^{\mathrm{T}}$)

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\text { - } & \boldsymbol{b}_{0}- & b_{1}- \\
- & \boldsymbol{b}_{2}- \\
\vdots \\
- & \boldsymbol{b}_{N-1} & -
\end{array}\right] \quad \boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}=\left[\begin{array}{cccc}
|| | & \mid \\
\boldsymbol{b}_{0} \boldsymbol{b}_{1} \boldsymbol{b}_{2} & \cdots & \boldsymbol{b}_{N-1} \\
|| | & \mid
\end{array}\right]
$$

\Rightarrow Basis vectors $\boldsymbol{b}_{\boldsymbol{k}}$ (rows of \boldsymbol{A}, columns of $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}$) form an orthonormal basis
\rightarrow Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

Why Orthogonal Transforms?

- Same MSE distortion in sample and transform space: $\left\|\boldsymbol{u}^{\prime}-\boldsymbol{u}\right\|_{2}^{2}=\left\|\boldsymbol{s}^{\prime}-\boldsymbol{s}\right\|_{2}^{2}$
\Rightarrow Minimum MSE in signal space can be achieved by minimization of MSE for each individual transform coefficient

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

- Optimal bit allocation: Pareto condition

$$
\frac{\partial}{\partial R_{k}} D_{k}\left(R_{k}\right)=-\lambda=\text { const } \quad \Longrightarrow \quad \text { high rates: } \quad D_{k}\left(R_{k}\right)=\text { const }
$$

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

- Optimal bit allocation: Pareto condition

$$
\frac{\partial}{\partial R_{k}} D_{k}\left(R_{k}\right)=-\lambda=\text { const } \quad \Longrightarrow \quad \text { high rates: } \quad D_{k}\left(R_{k}\right)=\text { const }
$$

High-Rate Approximation

- High-rate distortion rate function for transform coding with optimal bit allocation

$$
D(R)=\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2} \cdot 2^{-2 R} \quad \text { with } \quad \tilde{\varepsilon}^{2}=\left(\prod_{k} \varepsilon_{k}^{2}\right)^{\frac{1}{N}}, \quad \tilde{\sigma}^{2}=\left(\prod_{k} \sigma_{k}^{2}\right)^{\frac{1}{N}}
$$

Last Lectures: Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients

- Optimal bit allocation: Pareto condition

$$
\frac{\partial}{\partial R_{k}} D_{k}\left(R_{k}\right)=-\lambda=\text { const } \quad \Longrightarrow \quad \text { high rates: } \quad D_{k}\left(R_{k}\right)=\text { const }
$$

High-Rate Approximation

- High-rate distortion rate function for transform coding with optimal bit allocation

$$
D(R)=\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2} \cdot 2^{-2 R} \quad \text { with } \quad \tilde{\varepsilon}^{2}=\left(\prod_{k} \varepsilon_{k}^{2}\right)^{\frac{1}{N}}, \quad \tilde{\sigma}^{2}=\left(\prod_{k} \sigma_{k}^{2}\right)^{\frac{1}{N}}
$$

- High-rate transform coding gain G_{T} and energy compaction measure $G_{E C}$

$$
G_{T}=\frac{D_{S Q}(R)}{D_{T C}(R)}=\frac{\varepsilon_{S}^{2} \cdot \sigma_{S}^{2}}{\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2}}, \quad \quad G_{E C}=\frac{\sigma_{S}^{2}}{\tilde{\sigma}^{2}}=\frac{\frac{1}{N} \sum_{k=0}^{N-1} \sigma_{k}^{2}}{\sqrt[N]{\prod_{k=0}^{N-1} \sigma_{k}^{2}}}
$$

Last Lectures: Karhunen Loève Transform (KLT)

- Design criterion: Orthogonal transform \boldsymbol{A} that yields uncorrelated transform coefficients

$$
\boldsymbol{C}_{U U}=\boldsymbol{A} \cdot \boldsymbol{C}_{S S} \cdot \boldsymbol{A}^{\mathrm{T}}=\left[\begin{array}{cccc}
\sigma_{0}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{1}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{N-1}^{2}
\end{array}\right] \quad \Longrightarrow \quad \boldsymbol{C}_{S S} \cdot \boldsymbol{b}_{k}=\sigma_{k}^{2} \cdot \boldsymbol{b}_{k}
$$

Last Lectures: Karhunen Loève Transform (KLT)

- Design criterion: Orthogonal transform \boldsymbol{A} that yields uncorrelated transform coefficients

$$
\boldsymbol{C}_{U U}=\boldsymbol{A} \cdot \boldsymbol{C}_{S S} \cdot \boldsymbol{A}^{\mathrm{T}}=\left[\begin{array}{cccc}
\sigma_{0}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{1}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{N-1}^{2}
\end{array}\right] \quad \Longrightarrow \quad \boldsymbol{C}_{S S} \cdot \boldsymbol{b}_{k}=\sigma_{k}^{2} \cdot \boldsymbol{b}_{k}
$$

\Rightarrow Eigenvector equation for all basis vectors \boldsymbol{b}_{k} (rows of transform matrix \boldsymbol{A})

Last Lectures: Karhunen Loève Transform (KLT)

- Design criterion: Orthogonal transform \boldsymbol{A} that yields uncorrelated transform coefficients

$$
\boldsymbol{C}_{U U}=\boldsymbol{A} \cdot \boldsymbol{C}_{S S} \cdot \boldsymbol{A}^{\mathrm{T}}=\left[\begin{array}{cccc}
\sigma_{0}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{1}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{N-1}^{2}
\end{array}\right] \quad \Longrightarrow \quad \boldsymbol{C}_{S S} \cdot \boldsymbol{b}_{k}=\sigma_{k}^{2} \cdot \boldsymbol{b}_{k}
$$

\Rightarrow Eigenvector equation for all basis vectors \boldsymbol{b}_{k} (rows of transform matrix \boldsymbol{A})
\Rightarrow Rows of KLT matrix \boldsymbol{A} are the unit-norm eigenvectors of $\boldsymbol{C}_{S S}$
\Rightarrow Transform coefficient variances σ_{k}^{2} are the eigenvalues of $\boldsymbol{C}_{S S}$

$$
\boldsymbol{A}=\left[\begin{array}{c}
-\boldsymbol{b}_{0}- \\
- \\
\boldsymbol{b}_{1}- \\
\vdots \\
-\boldsymbol{b}_{N-1}-
\end{array}\right] \quad \boldsymbol{C}_{U U}=\left[\begin{array}{cccc}
\sigma_{0}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{1}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{N-1}^{2}
\end{array}\right]
$$

Last Lectures: Maximum Energy Compaction and Optimality

High-Rate Approximation for KLT and Gauss-Markov

- High-rate operational distortion-rate function

$$
D_{N}(R)=\varepsilon^{2} \cdot \sigma_{S}^{2} \cdot\left(1-\varrho^{2}\right)^{\frac{N-1}{N}} \cdot 2^{-2 R}
$$

\Rightarrow High-rate transform coding gain: Increases with transform size N

$$
G_{T}^{N}=G_{E C}^{N}=\left(1-\varrho^{2}\right)^{\frac{1-N}{N}} \quad \Longrightarrow \quad G_{T}^{\infty}=\frac{1}{1-\varrho^{2}}
$$

\rightarrow For $N \rightarrow \infty$, gap to fundamental lower bound reduces to space-filling gain (1.53 dB)

Last Lectures: Maximum Energy Compaction and Optimality

High-Rate Approximation for KLT and Gauss-Markov

- High-rate operational distortion-rate function

$$
D_{N}(R)=\varepsilon^{2} \cdot \sigma_{S}^{2} \cdot\left(1-\varrho^{2}\right)^{\frac{N-1}{N}} \cdot 2^{-2 R}
$$

\Rightarrow High-rate transform coding gain: Increases with transform size N

$$
G_{T}^{N}=G_{E C}^{N}=\left(1-\varrho^{2}\right)^{\frac{1-N}{N}} \quad \Longrightarrow \quad G_{T}^{\infty}=\frac{1}{1-\varrho^{2}}
$$

\rightarrow For $N \rightarrow \infty$, gap to fundamental lower bound reduces to space-filling gain (1.53 dB)

On Optimality of KLT

- KLT yields uncorrelated transform coefficients and maximizes energy compaction $G_{E C}$
\rightarrow KLT is the optimal transform for stationary Gaussian sources
■ Other sources: Optimal transform is hard to find (iterative algorithm)

Transform Selection in Practice

Optimal Unitary Transform

■ Stationary Gaussian sources: KLT
■ General sources: Not straightforward to determine (typically KLT close to optimal)
\rightarrow Signal dependent (may change due to signal instationarities)

Transform Selection in Practice

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
\rightarrow Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream

Transform Selection in Practice

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
\rightarrow Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
\rightarrow Increased side information may lead to sub-optimal overall coding efficiency

Transform Selection in Practice

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
\rightarrow Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
\rightarrow Increased side information may lead to sub-optimal overall coding efficiency
\Rightarrow Simple variant: Switched transforms (e.g., in H.266/VVC)

Transform Selection in Practice

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
\rightarrow Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
\rightarrow Increased side information may lead to sub-optimal overall coding efficiency
\Rightarrow Simple variant: Switched transforms (e.g., in H.266/VVC)

Signal-Independent Transforms

- Choose transform that provides good performance for variety of signals

Transform Selection in Practice

Optimal Unitary Transform

- Stationary Gaussian sources: KLT
- General sources: Not straightforward to determine (typically KLT close to optimal)
\rightarrow Signal dependent (may change due to signal instationarities)

Adaptive Transform Selection

- Determine transform in encoder, include transform specification in bitstream
\rightarrow Increased side information may lead to sub-optimal overall coding efficiency
\Rightarrow Simple variant: Switched transforms (e.g., in H.266/VVC)

Signal-Independent Transforms

■ Choose transform that provides good performance for variety of signals
\rightarrow Not optimal, but often close to optimal for typical signal
\rightarrow Most often used design in practice

Walsh-Hadamard Transform

- For transform sizes N that are positive integer powers of 2

$$
\boldsymbol{A}_{N}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
\boldsymbol{A}_{N / 2} & \boldsymbol{A}_{N / 2} \\
\boldsymbol{A}_{N / 2} & -\boldsymbol{A}_{N / 2}
\end{array}\right] \quad \text { with } \quad \boldsymbol{A}_{1}=[1] .
$$

Walsh-Hadamard Transform

- For transform sizes N that are positive integer powers of 2

$$
\boldsymbol{A}_{N}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
\boldsymbol{A}_{N / 2} & \boldsymbol{A}_{N / 2} \\
\boldsymbol{A}_{N / 2} & -\boldsymbol{A}_{N / 2}
\end{array}\right] \quad \text { with } \quad \boldsymbol{A}_{1}=[1] .
$$

- Examples: Transform matrices for $N=2, N=4$, and $N=8$

$$
\boldsymbol{A}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Walsh-Hadamard Transform

- For transform sizes N that are positive integer powers of 2

$$
\boldsymbol{A}_{N}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
\boldsymbol{A}_{N / 2} & \boldsymbol{A}_{N / 2} \\
\boldsymbol{A}_{N / 2} & -\boldsymbol{A}_{N / 2}
\end{array}\right] \quad \text { with } \quad \boldsymbol{A}_{1}=[1] .
$$

- Examples: Transform matrices for $N=2, N=4$, and $N=8$

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \\
& \boldsymbol{A}_{4}=\frac{1}{\sqrt{4}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Walsh-Hadamard Transform

- For transform sizes N that are positive integer powers of 2

$$
\boldsymbol{A}_{N}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
\boldsymbol{A}_{N / 2} & \boldsymbol{A}_{N / 2} \\
\boldsymbol{A}_{N / 2} & -\boldsymbol{A}_{N / 2}
\end{array}\right] \quad \text { with } \quad \boldsymbol{A}_{1}=[1] .
$$

- Examples: Transform matrices for $N=2, N=4$, and $N=8$

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \\
& \boldsymbol{A}_{4}=\frac{1}{\sqrt{4}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \quad \boldsymbol{A}_{8}=\frac{1}{\sqrt{8}}\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

Walsh-Hadamard Transform

- For transform sizes N that are positive integer powers of 2

$$
\boldsymbol{A}_{N}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
\boldsymbol{A}_{N / 2} & \boldsymbol{A}_{N / 2} \\
\boldsymbol{A}_{N / 2} & -\boldsymbol{A}_{N / 2}
\end{array}\right] \quad \text { with } \quad \boldsymbol{A}_{1}=[1] .
$$

- Examples: Transform matrices for $N=2, N=4$, and $N=8$

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \\
& \boldsymbol{A}_{4}=\frac{1}{\sqrt{4}}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \quad \boldsymbol{A}_{8}=\frac{1}{\sqrt{8}}\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

\Rightarrow Very simple orthogonal transform (only additions, subtractions, and final scaling)

Basis Functions of the WHT (Example for $N=8$)

Basis Functions of the WHT (Example for $N=8$)

Media coding: Walsh-Hadamard transform with strong quantization
\Rightarrow Piece-wise constant basis vectors yield subjectively disturbing artifacts

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components

Discrete Version of the Fourier Transform

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$
X(f)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) \cdot e^{-2 \pi \mathrm{i} f t} \mathrm{~d} t \quad x(t)=\mathcal{F}^{-1}\{x(t)\}=\int_{-\infty}^{\infty} x(f) \cdot e^{2 \pi \mathrm{i} f t} \mathrm{~d} f
$$

Discrete Version of the Fourier Transform

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$
X(f)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) \cdot e^{-2 \pi \mathrm{i} f t} \mathrm{~d} t \quad x(t)=\mathcal{F}^{-1}\{x(t)\}=\int_{-\infty}^{\infty} X(f) \cdot e^{2 \pi \mathrm{i} f t} \mathrm{~d} f
$$

\Rightarrow Basis functions are complex exponentials $b_{f}(t)=e^{2 \pi \mathrm{i} f t}$

Discrete Version of the Fourier Transform

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$
X(f)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) \cdot e^{-2 \pi \mathrm{i} f t} \mathrm{~d} t \quad x(t)=\mathcal{F}^{-1}\{x(t)\}=\int_{-\infty}^{\infty} x(f) \cdot e^{2 \pi \mathrm{i} f t} \mathrm{~d} f
$$

\Rightarrow Basis functions are complex exponentials $b_{f}(t)=e^{2 \pi \mathrm{i} f t}$

Discrete Version of the Fourier Transform

- Fourier transform for finite discrete signals

Discrete Version of the Fourier Transform

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$
X(f)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) \cdot e^{-2 \pi \mathrm{i} f t} \mathrm{~d} t \quad \Longleftrightarrow \quad x(t)=\mathcal{F}^{-1}\{x(t)\}=\int_{-\infty}^{\infty} x(f) \cdot e^{2 \pi \mathrm{i} f t} \mathrm{~d} f
$$

\Rightarrow Basis functions are complex exponentials $b_{f}(t)=e^{2 \pi \mathrm{i} f t}$

Discrete Version of the Fourier Transform

- Fourier transform for finite discrete signals
- Could also be useful for coding of discrete signals

Discrete Version of the Fourier Transform

The Fourier Transform

- Fundamental transform used in mathematics, physics, signal processing, communications, ...
- Integral transform representing signal as integral of frequency components
- Forward and inverse transform are given by

$$
X(f)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) \cdot e^{-2 \pi \mathrm{i} f t} \mathrm{~d} t \quad \Longleftrightarrow \quad x(t)=\mathcal{F}^{-1}\{x(t)\}=\int_{-\infty}^{\infty} x(f) \cdot e^{2 \pi \mathrm{i} f t} \mathrm{~d} f
$$

\Rightarrow Basis functions are complex exponentials $b_{f}(t)=e^{2 \pi \mathrm{i} f t}$

Discrete Version of the Fourier Transform

- Fourier transform for finite discrete signals
- Could also be useful for coding of discrete signals
- Can be derived using sampling and windowing

Important Properties of the Fourier Transform

- Linearity:

$$
\mathcal{F}\{a \cdot h(t)+b \cdot g(t)\}=a \cdot H(f)+b \cdot G(f)
$$

Important Properties of the Fourier Transform

- Linearity:

$$
\begin{aligned}
\mathcal{F}\{a \cdot h(t)+b \cdot g(t)\} & =a \cdot H(f)+b \cdot G(f) \\
\mathcal{F}\{h(a \cdot t)\} & =\frac{1}{|a|} \cdot H\left(\frac{f}{a}\right)
\end{aligned}
$$

Important Properties of the Fourier Transform

- Linearity:

$$
\begin{aligned}
\mathcal{F}\{a \cdot h(t)+b \cdot g(t)\} & =a \cdot H(f)+b \cdot G(f) \\
\mathcal{F}\{h(a \cdot t)\} & =\frac{1}{|a|} \cdot H\left(\frac{f}{a}\right) \\
\mathcal{F}\left\{h\left(t-t_{0}\right)\right\} & =e^{-2 \pi i t_{0} f} \cdot H(f)
\end{aligned}
$$

Important Properties of the Fourier Transform

- Linearity:

$$
\begin{aligned}
\mathcal{F}\{a \cdot h(t)+b \cdot g(t)\} & =a \cdot H(f)+b \cdot G(f) \\
\mathcal{F}\{h(a \cdot t)\} & =\frac{1}{|a|} \cdot H\left(\frac{f}{a}\right) \\
\mathcal{F}\left\{h\left(t-t_{0}\right)\right\} & =e^{-2 \pi \mathrm{i} t_{0} f} \cdot H(f) \\
\mathcal{F}\left\{e^{2 \pi \mathrm{i} t f_{0}} \cdot h(t)\right\} & =H\left(f-f_{0}\right)
\end{aligned}
$$

Important Properties of the Fourier Transform

- Linearity:

$$
\begin{aligned}
\mathcal{F}\{a \cdot h(t)+b \cdot g(t)\} & =a \cdot H(f)+b \cdot G(f) \\
\mathcal{F}\{h(a \cdot t)\} & =\frac{1}{|a|} \cdot H\left(\frac{f}{a}\right) \\
\mathcal{F}\left\{h\left(t-t_{0}\right)\right\} & =e^{-2 \pi \mathrm{i} t_{0} f} \cdot H(f) \\
\mathcal{F}\left\{e^{2 \pi \mathrm{it} t_{0}} \cdot h(t)\right\} & =H\left(f-f_{0}\right)
\end{aligned}
$$

- Scaling:
- Translation:
- Duality:

$$
\mathcal{F}\{H(t)\}=h(-f)
$$

Important Properties of the Fourier Transform

- Linearity:

$$
\begin{aligned}
\mathcal{F}\{a \cdot h(t)+b \cdot g(t)\} & =a \cdot H(f)+b \cdot G(f) \\
\mathcal{F}\{h(a \cdot t)\} & =\frac{1}{|a|} \cdot H\left(\frac{f}{a}\right) \\
\mathcal{F}\left\{h\left(t-t_{0}\right)\right\} & =e^{-2 \pi i t_{0} f} \cdot H(f) \\
\mathcal{F}\left\{e^{2 \pi \mathrm{i} f_{0}} \cdot h(t)\right\} & =H\left(f-f_{0}\right) \\
\mathcal{F}\{H(t)\} & =h(-f)
\end{aligned}
$$

- Duality:
- Convolution: $\quad \mathcal{F}\{h(t) * g(t)\}=\mathcal{F}\left\{\int_{-\infty}^{\infty} g(\tau) h(t-\tau) \mathrm{d} \tau\right\}=H(f) \cdot G(f)$
- Linearity:

$$
\begin{aligned}
\mathcal{F}\{a \cdot h(t)+b \cdot g(t)\} & =a \cdot H(f)+b \cdot G(f) \\
\mathcal{F}\{h(a \cdot t)\} & =\frac{1}{|a|} \cdot H\left(\frac{f}{a}\right) \\
\mathcal{F}\left\{h\left(t-t_{0}\right)\right\} & =e^{-2 \pi \mathrm{i} t_{0} f} \cdot H(f) \\
\mathcal{F}\left\{e^{2 \pi \mathrm{it} f_{0}} \cdot h(t)\right\} & =H\left(f-f_{0}\right)
\end{aligned}
$$

- Duality:

$$
\mathcal{F}\{H(t)\}=h(-f)
$$

- Convolution: $\quad \mathcal{F}\{h(t) * g(t)\}=\mathcal{F}\left\{\int_{-\infty}^{\infty} g(\tau) h(t-\tau) \mathrm{d} \tau\right\}=H(f) \cdot G(f)$
- Multiplication:

$$
\mathcal{F}\{h(t) \cdot g(t)\}=H(f) * G(f)
$$

The Dirac Delta Function

Dirac Delta Function

- Not a function in traditional sense $\boldsymbol{\rightarrow}$ Dirac delta distribution
- Can be thought of function with the following properties

$$
\delta(x)=\left\{\begin{array}{lll}
+\infty & : & x=0 \\
0 & : & x \neq 0
\end{array} \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1\right.
$$

The Dirac Delta Function

Dirac Delta Function

- Not a function in traditional sense \rightarrow Dirac delta distribution
- Can be thought of function with the following properties

$$
\delta(x)=\left\{\begin{array}{lll}
+\infty & : & x=0 \\
0 & : & x \neq 0
\end{array} \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1\right.
$$

Important Properties

- Sifting:

$$
\int_{-\infty}^{\infty} h(t) \delta\left(t-t_{0}\right) \mathrm{d} t=h\left(t_{0}\right)
$$

The Dirac Delta Function

Dirac Delta Function

- Not a function in traditional sense $\boldsymbol{\rightarrow}$ Dirac delta distribution
- Can be thought of function with the following properties

$$
\delta(x)=\left\{\begin{array}{lll}
+\infty & : & x=0 \\
0 & : & x \neq 0
\end{array} \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1\right.
$$

Important Properties

- Sifting:

$$
\int_{-\infty}^{\infty} h(t) \delta\left(t-t_{0}\right) \mathrm{d} t=h\left(t_{0}\right)
$$

- Convolution:

$$
h(t) * \delta\left(t-t_{0}\right)=\int_{-\infty}^{\infty} h(\tau) \delta\left(t-t_{0}-\tau\right) \mathrm{d} \tau=h\left(t-t_{0}\right)
$$

The Dirac Delta Function

Dirac Delta Function

- Not a function in traditional sense \rightarrow Dirac delta distribution
- Can be thought of function with the following properties

$$
\delta(x)=\left\{\begin{array}{lll}
+\infty & : & x=0 \\
0 & : & x \neq 0
\end{array} \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1\right.
$$

Important Properties

- Sifting:

$$
\int_{-\infty}^{\infty} h(t) \delta\left(t-t_{0}\right) \mathrm{d} t=h\left(t_{0}\right)
$$

- Convolution:

$$
h(t) * \delta\left(t-t_{0}\right)=\int_{-\infty}^{\infty} h(\tau) \delta\left(t-t_{0}-\tau\right) \mathrm{d} \tau=h\left(t-t_{0}\right)
$$

- Sampling: $\quad \int_{-\infty}^{\infty} h(t)\left(\sum_{k=-\infty}^{\infty} \delta\left(t-k \cdot t_{0}\right)\right) \mathrm{d} t=\sum_{k=-\infty}^{\infty} h\left(k \cdot t_{0}\right)$

Selected Fourier Transform Pairs

$$
x(t)=\delta(t-T)
$$

Selected Fourier Transform Pairs

$$
x(t)=\delta(t-T)
$$

$$
X(f)=e^{-2 \pi \mathrm{i} f T}=\cos (2 \pi f T)+\mathrm{i} \sin (2 \pi f T)
$$

Selected Fourier Transform Pairs

$$
x(t)=\delta(t-T)
$$

Dirac comb

$$
\omega_{T}(t)=\sum_{k=-\infty}^{\infty} \delta(t-k T)
$$

$$
X(f)=e^{-2 \pi \mathrm{i} f T}=\cos (2 \pi f T)+\mathrm{i} \sin (2 \pi f T)
$$

Selected Fourier Transform Pairs

$$
x(t)=\delta(t-T)
$$

$$
X(f)=e^{-2 \pi \mathrm{i} f T}=\cos (2 \pi f T)+\mathrm{i} \sin (2 \pi f T)
$$

$$
Ш_{T}(f)=\sum_{k=-\infty}^{\infty} \delta(f-k / T)
$$

Selected Fourier Transform Pairs

Selected Fourier Transform Pairs

Selected Fourier Transform Pairs

$$
\operatorname{rect}_{T}(t)= \begin{cases}1: & |t| \leq T / 2 \\ 0 & :|t|>T / 2\end{cases}
$$

$$
\mathcal{F}\left\{\operatorname{rect}_{T}(f)\right\}=\frac{1}{\pi f} \sin (\pi f T)=T \operatorname{sinc}(f T)
$$

$$
g(t)=e^{-\pi \cdot t^{2}} \quad \text { with } \quad \sigma_{t}^{2}=\frac{1}{2 \pi}
$$

Selected Fourier Transform Pairs

$$
\operatorname{rect}_{T}(t)= \begin{cases}1 & :|t| \leq T / 2 \\ 0 & :|t|>T / 2\end{cases}
$$

$$
\mathcal{F}\left\{\operatorname{rect}_{T}(f)\right\}=\frac{1}{\pi f} \sin (\pi f T)=T \operatorname{sinc}(f T)
$$

$$
g(t)=e^{-\pi \cdot t^{2}} \quad \text { with } \quad \sigma_{t}^{2}=\frac{1}{2 \pi}
$$

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (1) Sampling of Signal

Derivation of Discrete Fourier Transform: (2) Time Restriction

Derivation of Discrete Fourier Transform: (2) Time Restriction

Derivation of Discrete Fourier Transform: (2) Time Restriction

Derivation of Discrete Fourier Transform: (2) Time Restriction

Derivation of Discrete Fourier Transform: (2) Time Restriction

Derivation of Discrete Fourier Transform: (2) Time Restriction

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

Derivation of Discrete Fourier Transform: (3) Sampling of Spectrum

The Discrete Fourier Transform

The Discrete Fourier Transform

The Discrete Fourier Transform

$\rightarrow N$ samples are represented by N complex Fourier coefficients

The Discrete Fourier Transform

$\rightarrow N$ samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

- Forward and inverse transform are given by

$$
u[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{2 \pi k n}{N}} \quad \text { and } \quad s[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot e^{\mathrm{i} \frac{2 \pi k n}{N}}
$$

The Discrete Fourier Transform

$\rightarrow N$ samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

- Forward and inverse transform are given by

$$
u[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{2 \pi k n}{N}} \quad \text { and } \quad s[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot e^{\mathrm{i} \frac{2 \pi k n}{N}}
$$

\rightarrow Unitary transform that produces complex transform coefficients

The Discrete Fourier Transform

$\rightarrow N$ samples are represented by N complex Fourier coefficients

Discrete Fourier Transform

- Forward and inverse transform are given by

$$
u[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{2 \pi k n}{N}} \quad \text { and } \quad s[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot e^{\frac{\mathrm{i} \frac{2 \pi k n}{N}}{} . \quad \text {. } \quad \text {. } \quad \text {. }}
$$

\rightarrow Unitary transform that produces complex transform coefficients
\rightarrow Basis vectors are sampled complex exponentials

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathbf{i} \frac{2 \pi k n}{N}}
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} \mathrm{e}^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k n}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k n}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k n}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k n}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} \mathrm{e}^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} \mathrm{e}^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k n}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} \mathrm{e}^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

DFT for Real Signals

- Symmetry of complex coefficients

$$
u[k]=u^{*}[N-k]
$$

- Vanishing imaginary parts

$$
k \in\left\{0, \frac{N}{2}\right\}: \quad \Im\{u[k]\}=0
$$

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} \mathrm{e}^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

DFT for Real Signals

- Symmetry of complex coefficients

$$
u[k]=u^{*}[N-k]
$$

- Vanishing imaginary parts

$$
k \in\left\{0, \frac{N}{2}\right\}: \quad \Im\{u[k]\}=0
$$

$\Rightarrow N$ real samples are mapped to N real coefficients

Complex Basis Functions of the DFT (Example for $N=8$)

$$
\boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} \mathrm{e}^{\mathrm{i} \frac{2 \pi k}{N} n}=\frac{1}{\sqrt{N}} \cos \left(\frac{2 \pi k}{N} n\right)+\mathrm{i} \cdot \frac{1}{\sqrt{N}} \sin \left(\frac{2 \pi k}{N} n\right)=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

DFT for Real Signals

- Symmetry of complex coefficients

$$
u[k]=u^{*}[N-k]
$$

- Vanishing imaginary parts

$$
k \in\left\{0, \frac{N}{2}\right\}: \quad \Im\{u[k]\}=0
$$

$\rightarrow N$ real samples are mapped to N real coefficients

- Fast algorithm:

Fast Fourier transform (FFT)

Disadvantage of DFT for Transform Coding

\Rightarrow Sampling of frequency spectrum causes implicit periodic signal extension

Disadvantage of DFT for Transform Coding

\Rightarrow Sampling of frequency spectrum causes implicit periodic signal extension
\Rightarrow Often: Large differences between left and right signal boundary

Disadvantage of DFT for Transform Coding

\Rightarrow Sampling of frequency spectrum causes implicit periodic signal extension
\Rightarrow Often: Large differences between left and right signal boundary
\Rightarrow Large difference reduces rate of convergence of Fourier series

Disadvantage of DFT for Transform Coding

\Rightarrow Sampling of frequency spectrum causes implicit periodic signal extension
\Rightarrow Often: Large differences between left and right signal boundary
\Rightarrow Large difference reduces rate of convergence of Fourier series
\rightarrow Strong quantization yields significant high-frequency artefacts

Overcome DFT Disadvantage: Discrete Cosine Transform

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)

Overcome DFT Disadvantage: Discrete Cosine Transform

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)
- Apply DFT of approximately double size (or four times the size)

Overcome DFT Disadvantage: Discrete Cosine Transform

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)
- Apply DFT of approximately double size (or four times the size)
\rightarrow No discontinuities in periodic signal extension

Overcome DFT Disadvantage: Discrete Cosine Transform

Idea of Discrete Cosine Transform (DCT)

- Introduce mirror symmetry (different possibilities)
- Apply DFT of approximately double size (or four times the size)
\Rightarrow No discontinuities in periodic signal extension
\Rightarrow Ensure symmetry around zero: Only cosine terms

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
\rightarrow Imaginary sine terms get eliminated
\Rightarrow Only cosine terms remain

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
\rightarrow Imaginary sine terms get eliminated
\rightarrow Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
- 2 cases for left side: Whole sample or half-sample symmetry
- 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
\rightarrow Imaginary sine terms get eliminated
\rightarrow Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
- 2 cases for left side: Whole sample or half-sample symmetry
- 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry
- Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
\rightarrow Imaginary sine terms get eliminated
\rightarrow Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
- 2 cases for left side: Whole sample or half-sample symmetry
- 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry

■ Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

- Introduce anti-symmetry around zero and apply DFT of larger size

Discrete Trigonometric Transforms (DTTs)

Discrete Cosine Transforms (DCTs)

- Introduce mirror symmetry around zero and apply DFT of larger size
\rightarrow Imaginary sine terms get eliminated
\rightarrow Only cosine terms remain
- 8 possibilities: DCT-I to DCT-VIII
- 2 cases for left side: Whole sample or half-sample symmetry
- 4 cases for right side: Whole sample or half-sample symmetry or anti-symmetry
- Most relevant case: DCT-II (half-sample symmetry at both sides)

Discrete Sine Transforms (DSTs)

- Introduce anti-symmetry around zero and apply DFT of larger size
\rightarrow Real cosine terms get eliminated
\Rightarrow Only imaginary sine terms remain
- Similarly as for DCT: 8 possibilities (DST-I to DST-VIII)

The Discrete Cosine Transform (DCT) Family

The Discrete Sine Transform (DST) Family

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

Signal for applying the DFT

- Given: Discrete signal $s[n]$ of size N (i.e., $0 \leq n<N$)

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

Signal for applying the DFT

- Given: Discrete signal $s[n]$ of size N (i.e., $0 \leq n<N$)
- Mirror signal with sample repetition at both sides (size $2 N$)

$$
s^{m}[n]=\left\{\begin{array}{lll}
s[n] & : & 0 \leq n<N \\
s[2 N-n-1] & : & N \leq n<2 N
\end{array}\right.
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

Signal for applying the DFT

- Given: Discrete signal $s[n]$ of size N (i.e., $0 \leq n<N$)
- Mirror signal with sample repetition at both sides (size $2 N$)

$$
s^{m}[n]=\left\{\begin{array}{lll}
s[n] & : & 0 \leq n<N \\
s[2 N-n-1] & : & N \leq n<2 N
\end{array}\right.
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

Signal for applying the DFT

- Given: Discrete signal $s[n]$ of size N (i.e., $0 \leq n<N$)
- Mirror signal with sample repetition at both sides (size $2 N$)

$$
s^{m}[n]=\left\{\begin{array}{lll}
s[n] & : \quad 0 \leq n<N \\
s[2 N-n-1] & : & N \leq n<2 N
\end{array}\right.
$$

- Ensure symmetry around zero by adding half-sample shift

$$
s^{+}[n]=s^{m}[n-1 / 2]= \begin{cases}s[n-1 / 2] & : 0 \leq n<N \\ s[2 N-n-3 / 2] & : \quad N \leq n<2 N\end{cases}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

Signal for applying the DFT

- Given: Discrete signal $s[n]$ of size N (i.e., $0 \leq n<N$)
- Mirror signal with sample repetition at both sides (size $2 N$)

$$
s^{m}[n]=\left\{\begin{array}{lll}
s[n] & : & 0 \leq n<N \\
s[2 N-n-1] & : & N \leq n<2 N
\end{array}\right.
$$

- Ensure symmetry around zero by adding half-sample shift

$$
s^{+}[n]=s^{m}[n-1 / 2]= \begin{cases}s[n-1 / 2] & : 0 \leq n<N \\ s[2 N-n-3 / 2] & : \quad N \leq n<2 N\end{cases}
$$

\rightarrow Apply DFT of size $2 N$ to new signal $s^{+}[n]$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

$$
s^{+}[n]= \begin{cases}s[n-1 / 2] & : 0 \leq n<N \\ s[2 N-n-3 / 2] & : \quad N \leq n<2 N\end{cases}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

\rightarrow DFT of size $2 N: \quad u^{+}[k]=\frac{1}{\sqrt{(2 N)}} \sum_{n=0}^{(2 N)-1} s^{+}[n] \cdot e^{-\frac{2 \pi}{(2 N k)}}$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

$$
s^{+}[n]=\left\{\begin{array}{lll}
s[n-1 / 2] & : & 0 \leq n<N \\
s[2 N-n-3 / 2] & : & N \leq n<2 N
\end{array}\right.
$$

\rightarrow DFT of size $2 N: \quad u^{+}[k]=\frac{1}{\sqrt{(2 N)}} \sum_{n=0}^{(2 N)-1} s^{+}[n] \cdot e^{-\mathrm{i}\left(\frac{2 \pi t n}{2(2)}\right.} \quad\binom{s^{+}$only known at half-sample }{positions \rightarrow use $m=n-1 / 2}$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

\Rightarrow DFT of size $2 N: \quad u^{+}[k]=\frac{1}{\sqrt{(2 N)}} \sum_{n=0}^{(2 N)-1} s^{+}[n] \cdot e^{-\mathrm{i} \left\lvert\, \frac{2 \hbar n}{2 n N}\right.} \quad\binom{s^{+}$only known at half-sample }{positions \rightarrow use $m=n-1 / 2}$

$$
=\frac{1}{\sqrt{2 N}} \sum_{m=0}^{2 N-1} s^{+}\left[m+\frac{1}{2}\right] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(m+\frac{1}{2}\right)}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

\rightarrow DFT of size $2 N: \quad u^{+}[k]=\frac{1}{\sqrt{(2 N)}} \sum_{n=0}^{(2 N)-1} s^{+}[n] \cdot e^{-\mathrm{i}\left[\frac{2 \pi k n}{2(2)}\right.} \quad\binom{s^{+}$only known at half-sample }{positions \rightarrow use $m=n-1 / 2}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 N}} \sum_{m=0}^{2 N-1} s^{+}\left[m+\frac{1}{2}\right] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(m+\frac{1}{2}\right)} \\
& =\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{m=N}^{2 N-1} s[2 N-m-1] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(m+\frac{1}{2}\right)}\right)
\end{aligned}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

\Rightarrow DFT of size $2 N: \quad u^{+}[k]=\frac{1}{\sqrt{(2 N)}} \sum_{n=0}^{(2 N)-1} s^{+}[n] \cdot e^{-\mathrm{i} \frac{2 \pi k n}{(2 N)}} \quad\binom{s^{+}$only known at half-sample }{positions \rightarrow use $m=n-1 / 2}$

$$
\begin{gathered}
=\frac{1}{\sqrt{2 N}} \sum_{m=0}^{2 N-1} s^{+}\left[m+\frac{1}{2}\right] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(m+\frac{1}{2}\right)} \\
=\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{m=N}^{2 N-1} s[2 N-m-1] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(m+\frac{1}{2}\right)}\right) \\
\quad \downarrow_{n=2 N-m-1}
\end{gathered}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

\rightarrow DFT of size $2 N: \quad u^{+}[k]=\frac{1}{\sqrt{(2 N)}} \sum_{n=0}^{(2 N)-1} s^{+}[n] \cdot e^{-\mathrm{i}\left(\frac{2 \pi t k_{0}}{2 N T}\right.} \quad\binom{s^{+}$only known at half-sample }{positions \rightarrow use $m=n-1 / 2}$

$$
=\frac{1}{\sqrt{2 N}} \sum_{m=0}^{2 N-1} s^{+}\left[m+\frac{1}{2}\right] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(m+\frac{1}{2}\right)}
$$

$$
=\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{m=N}^{2 N-1} s[2 N-m-1] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(m+\frac{1}{2}\right)}\right)
$$

$$
\downarrow n=2 N-m-1
$$

$$
=\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(2 N-n-\frac{1}{2}\right)}\right)
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- Continue derivation

$$
u^{+}[k]=\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(2 N-n-\frac{1}{2}\right)}\right)
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- Continue derivation

$$
\begin{aligned}
u^{+}[k] & =\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(2 N-n-\frac{1}{2}\right)}\right) \\
& =\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} 2 \pi k} \cdot e^{\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}\right)
\end{aligned}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- Continue derivation

$$
\begin{aligned}
u^{+}[k] & =\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(2 N-n-\frac{1}{2}\right)}\right) \\
& =\frac{1}{\sqrt{2 N}}(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-\mathrm{i} 2 \pi k}}_{1} \cdot e^{\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)})
\end{aligned}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- Continue derivation

$$
\begin{aligned}
u^{+}[k] & =\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(2 N-n-\frac{1}{2}\right)}\right) \\
& =\frac{1}{\sqrt{2 N}}(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-\mathrm{i} 2 \pi k}}_{1} \cdot e^{\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}) \\
& =\frac{1}{\sqrt{2 N}} \sum_{n=0}^{N-1} s[n] \cdot\left(e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+e^{\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}\right)
\end{aligned}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- Continue derivation

$$
\begin{aligned}
u^{+}[k] & =\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(2 N-n-\frac{1}{2}\right)}\right) \\
& =\frac{1}{\sqrt{2 N}}(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-\mathrm{i} 2 \pi k}}_{1} \cdot e^{\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}) \\
& =\frac{1}{\sqrt{2 N}} \sum_{n=0}^{N-1} s[n] \cdot \underbrace{\left(e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+e^{\left.\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)\right)}\right.}_{2 \cos \left(\frac{\pi k}{N}\left(n+\frac{1}{2}\right)\right)}
\end{aligned}
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- Continue derivation

$$
\begin{aligned}
u^{+}[k] & =\frac{1}{\sqrt{2 N}}\left(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(2 N-n-\frac{1}{2}\right)}\right) \\
& =\frac{1}{\sqrt{2 N}}(\sum_{n=0}^{N-1} s[n] \cdot e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+\sum_{n=0}^{N-1} s[n] \cdot \underbrace{e^{-\mathrm{i} 2 \pi k}}_{1} \cdot e^{\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}) \\
& =\frac{1}{\sqrt{2 N}} \sum_{n=0}^{N-1} s[n] \cdot \underbrace{\left(e^{-\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)}+e^{\left.\mathrm{i} \frac{\pi k}{N}\left(n+\frac{1}{2}\right)\right)}\right.}_{2 \cos \left(\frac{\pi k}{N}\left(n+\frac{1}{2}\right)\right)}
\end{aligned}
$$

\rightarrow DFT of extended signal

$$
u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- DFT of extended signal (2 N real samples) has 2 N real transform coefficients

$$
k=0, \ldots, 2 N-1: \quad u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- DFT of extended signal (2 N real samples) has 2 N real transform coefficients

$$
k=0, \ldots, 2 N-1: \quad u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

1 Signal $s[n]$ is completely described by first N transform coefficients

$$
k=0, \ldots, N-1: \quad u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- DFT of extended signal (2 N real samples) has $2 N$ real transform coefficients

$$
k=0, \ldots, 2 N-1: \quad u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

1 Signal $s[n]$ is completely described by first N transform coefficients

$$
k=0, \ldots, N-1: \quad u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

2 Basis functions of derived transform are orthogonal to each other, but don't have the same norm

Derivation of the Discrete Cosine Transform of Type II (DCT-II)

- DFT of extended signal ($2 N$ real samples) has $2 N$ real transform coefficients

$$
k=0, \ldots, 2 N-1: \quad u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

1 Signal $s[n]$ is completely described by first N transform coefficients

$$
k=0, \ldots, N-1: \quad u^{+}[k]=\sqrt{\frac{2}{N}} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

2 Basis functions of derived transform are orthogonal to each other, but don't have the same norm
\Rightarrow Introduce factors α_{k} so that transform matrix becomes orthogonal

$$
k=0, \ldots, N-1: \quad u[k]=\alpha_{k} \cdot \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

Discrete Cosine Transform of Type II (DCT-II)

Specification of DCT-II

- Forward transform (DCT-II) and inverse transform (IDCT-II) are given by

$$
u[k]=\alpha_{k} \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right) \quad \text { and } \quad s[n]=\sum_{k=0}^{N-1} \alpha_{k} \cdot u[k] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

with scaling factors

$$
\alpha_{k}= \begin{cases}\sqrt{1 / N}: & k=0 \\ \sqrt{2 / N} & :\end{cases}
$$

Discrete Cosine Transform of Type II (DCT-II)

Specification of DCT-II

- Forward transform (DCT-II) and inverse transform (IDCT-II) are given by

$$
u[k]=\alpha_{k} \sum_{n=0}^{N-1} s[n] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right) \quad \text { and } \quad s[n]=\sum_{k=0}^{N-1} \alpha_{k} \cdot u[k] \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

with scaling factors

$$
\alpha_{k}= \begin{cases}\sqrt{1 / N}: & k=0 \\ \sqrt{2 / N}: & k \neq 0\end{cases}
$$

- The orthogonal transform matrix $\boldsymbol{A}=\left\{a_{k n}\right\}$ has the elements

$$
a_{k n}=\alpha_{k} \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)
$$

Comparions of DFT and DCT-II Basis Functions (Example for $N=8$)

$$
\text { DFT: } \quad \boldsymbol{b}_{k}[n]=\frac{1}{\sqrt{N}} e^{\mathrm{i} \frac{2 \pi k}{N} n}=\boldsymbol{r}_{k}[n]+\mathrm{i} \cdot \boldsymbol{i}_{k}[n]
$$

DCT-II: $\quad \boldsymbol{b}_{k}[n]=\alpha_{k} \cdot \cos \left(\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right)$

Image \& Video Coding: 2D Transforms

Separable Transforms

- Successive 1D transforms of rows and columns of image block

Image \& Video Coding: 2D Transforms

Separable Transforms

- Successive 1D transforms of rows and columns of image block
\Rightarrow Separable forward and inverse transforms

$$
\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{B}^{\mathrm{T}} \quad \text { and } \quad \boldsymbol{s}=\boldsymbol{A}^{\mathrm{T}} \cdot \boldsymbol{u} \cdot \boldsymbol{B}
$$

with $s-N \times M$ block of image samples
A $-N \times N$ transform matrix (typically DCT-II)
B - $M \times M$ transform matrix (typically DCT-II)
u - $N \times M$ block of transform coefficients

Image \& Video Coding: 2D Transforms

Separable Transforms

- Successive 1D transforms of rows and columns of image block
\Rightarrow Separable forward and inverse transforms

$$
\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{B}^{\mathrm{T}} \quad \text { and } \quad \boldsymbol{s}=\boldsymbol{A}^{\mathrm{T}} \cdot \boldsymbol{u} \cdot \boldsymbol{B}
$$

with $s-N \times M$ block of image samples
A $-N \times N$ transform matrix (typically DCT-II)
B - $M \times M$ transform matrix (typically DCT-II)
u - $N \times M$ block of transform coefficients

Great practical importance:

- Two matrix multiplications of size $N \times N$ instead of one multiplication of a vector of size $1 \times N^{2}$ with a matrix of size $N^{2} \times N^{2}$
\Rightarrow Complexity reduction from $\mathcal{O}\left(N^{4}\right)$ to $\mathcal{O}\left(N^{3}\right)$ [also fast algorithms for DCT-II]

Example: Basis Images of Separable 8×8 DCT-II

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

original block

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

original block

Example calculation of 2d DCT-II:

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

original block

Example calculation of 2d DCT-II:
1 Horizontal DCT of input block: $\quad \boldsymbol{u}^{*}=\boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example calculation of 2d DCT-II:

1 Horizontal DCT of input block: $\quad \boldsymbol{u}^{*}=\boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example calculation of 2d DCT-II:
1 Horizontal DCT of input block: $\boldsymbol{u}^{*}=\boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$
2 Vertical DCT of intermediate result: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{u}^{*}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example: Separable DCT-II for 8×8 Image Block

Forward transform for 8×8 block of samples: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Example calculation of 2d DCT-II:
1 Horizontal DCT of input block: $\boldsymbol{u}^{*}=\boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$
2 Vertical DCT of intermediate result: $\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{u}^{*}=\boldsymbol{A} \cdot \boldsymbol{s} \cdot \boldsymbol{A}^{\mathrm{T}}$

Practical Importance of DCT-II

Justification for usage of DCT-II
■ Represents signal as weighted sum of frequency components

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources $(\varrho \rightarrow 1)$

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources ($\varrho \rightarrow 1$)
- Independent of source characteristics

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources $(\varrho \rightarrow 1)$
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources $(\varrho \rightarrow 1)$
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size 8×8 is used in

- Image coding standard: JPEG

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources $(\varrho \rightarrow 1)$
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size 8×8 is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources $(\varrho \rightarrow 1)$
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size 8×8 is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

- Video coding standard H. $264 /$ AVC $\quad(4 \times 4$ and $8 \times 8)$

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources ($\varrho \rightarrow 1$)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size 8×8 is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

- Video coding standard H.264/AVC $(4 \times 4$ and $8 \times 8)$

■ Video coding standard H. 265 /HEVC $(4 \times 4,8 \times 8,16 \times 16,32 \times 32)$

Practical Importance of DCT-II

Justification for usage of DCT-II

- Represents signal as weighted sum of frequency components
- Similar to KLT for highly correlated sources ($\varrho \rightarrow 1$)
- Independent of source characteristics
- Fast algorithms for computing forward and inverse transform

DCT-II of size 8×8 is used in

- Image coding standard: JPEG
- Video coding standards: H.261, H.262/MPEG-2, H.263, MPEG-4 Visual

Integer approximation of DCT-II is used in

- Video coding standard H.264/AVC (4×4 and 8×8)

■ Video coding standard H. 265 /HEVC $(4 \times 4,8 \times 8,16 \times 16,32 \times 32)$
■ New standardization project H.266/VVC (from 4×4 to 64×64, including non-square blocks)

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Scalar Quantization

■ Uniform reconstruction quantizers (or very similar designs)

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Scalar Quantization

■ Uniform reconstruction quantizers (or very similar designs)

- Bit allocation by using same quantization step size for all coefficients

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Scalar Quantization

■ Uniform reconstruction quantizers (or very similar designs)

- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Scalar Quantization

■ Uniform reconstruction quantizers (or very similar designs)

- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Scalar Quantization

■ Uniform reconstruction quantizers (or very similar designs)

- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

- Zig-zag scan (or similar scan) for 2D transforms

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Scalar Quantization

■ Uniform reconstruction quantizers (or very similar designs)

- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

- Zig-zag scan (or similar scan) for 2D transforms
- Simple: Run-level coding, run-level-last coding, or similar approach

Transform Coding in Practice

Orthogonal Transform

- Typically: DCT-II or integer approximation thereof (separable transform for blocks)
- Potential extension in H.266/VVC:
- Switched transform of DCT/DST families (DCT-II, DST-VII, ...)
- Non-separable transforms

Scalar Quantization

■ Uniform reconstruction quantizers (or very similar designs)

- Bit allocation by using same quantization step size for all coefficients
- Usage of advanced quantization algorithms in encoder
- May use quantization weighting matrices for perceptual optimization

Entropy Coding of Quantization Indexes

- Zig-zag scan (or similar scan) for 2D transforms
- Simple: Run-level coding, run-level-last coding, or similar approach
- Better coding efficiency: Adaptive arithmetic coding

Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

- Remember: Optimal bit allocation: Pareto condition

$$
\frac{\partial D_{k}\left(R_{k}\right)}{\partial R_{k}}=\mathrm{const}
$$

Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

- Remember: Optimal bit allocation: Pareto condition

$$
\frac{\partial D_{k}\left(R_{k}\right)}{\partial R_{k}}=\text { const }
$$

- Pareto condition for high rates

$$
D_{k}=\varepsilon_{k}^{2} \cdot \sigma_{k}^{2} \cdot 2^{-2 R_{k}} \quad \Longrightarrow \quad D_{k}\left(R_{k}\right)=\text { const }
$$

Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

- Remember: Optimal bit allocation: Pareto condition

$$
\frac{\partial D_{k}\left(R_{k}\right)}{\partial R_{k}}=\text { const }
$$

- Pareto condition for high rates

$$
D_{k}=\varepsilon_{k}^{2} \cdot \sigma_{k}^{2} \cdot 2^{-2 R_{k}} \quad \Longrightarrow \quad D_{k}\left(R_{k}\right)=\text { const }
$$

- High rate distortion approximation for URQs

$$
D_{k}=\frac{1}{12} \Delta_{k}^{2}
$$

Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

- Remember: Optimal bit allocation: Pareto condition

$$
\frac{\partial D_{k}\left(R_{k}\right)}{\partial R_{k}}=\text { const }
$$

- Pareto condition for high rates

$$
D_{k}=\varepsilon_{k}^{2} \cdot \sigma_{k}^{2} \cdot 2^{-2 R_{k}} \quad \Longrightarrow \quad D_{k}\left(R_{k}\right)=\text { const }
$$

- High rate distortion approximation for URQs

$$
D_{k}=\frac{1}{12} \Delta_{k}^{2}
$$

\rightarrow Quantization step sizes for optimal bit allocation at high rates

$$
D_{k}=\frac{1}{12} \Delta_{k}^{2}=\text { const } \quad \Longrightarrow \quad \Delta_{k}=\text { const }=\Delta
$$

Bit Allocation in Practice (for Uniform Reconstruction Quantizers)

- Remember: Optimal bit allocation: Pareto condition

$$
\frac{\partial D_{k}\left(R_{k}\right)}{\partial R_{k}}=\text { const }
$$

- Pareto condition for high rates

$$
D_{k}=\varepsilon_{k}^{2} \cdot \sigma_{k}^{2} \cdot 2^{-2 R_{k}} \quad \Longrightarrow \quad D_{k}\left(R_{k}\right)=\text { const }
$$

- High rate distortion approximation for URQs

$$
D_{k}=\frac{1}{12} \Delta_{k}^{2}
$$

\rightarrow Quantization step sizes for optimal bit allocation at high rates

$$
D_{k}=\frac{1}{12} \Delta_{k}^{2}=\text { const } \quad \Longrightarrow \quad \Delta_{k}=\text { const }=\Delta
$$

\Rightarrow In practice, (nearly) optimal bit allocation is typically achieved by using the same quantization step size Δ for all transform coefficients

Color Transform for Image \& Video Coding

RGB

Color Transform for Image \& Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)

Color Transform for Image \& Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)
\rightarrow Example: $\mathrm{RGB} \rightarrow \mathrm{YCbCr}$ transform used in JPEG

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{Cb}-128 \\
\mathrm{Cr}-128
\end{array}\right] } & =\left[\begin{array}{rrr}
0.2990 & 0.5870 & 0.1140 \\
-0.1687 & -0.3313 & 0.5000 \\
0.5000 & -0.4187 & -0.0813
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right] \\
{\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 0 & 1.4020 \\
1 & -0.3441 & -0.7141 \\
1 & 1.7720 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{Cb}-128 \\
\mathrm{Cr}-128
\end{array}\right]
\end{aligned}
$$

Color Transform for Image \& Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)
\rightarrow Example: $\mathrm{RGB} \rightarrow \mathrm{YCbCr}$ transform used in JPEG

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{Cb}-128 \\
\mathrm{Cr}-128
\end{array}\right] } & =\left[\begin{array}{rrr}
0.2990 & 0.5870 & 0.1140 \\
-0.1687 & -0.3313 & 0.5000 \\
0.5000 & -0.4187 & -0.0813
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right] \\
{\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 0 & 1.4020 \\
1 & -0.3441 & -0.7141 \\
1 & 1.7720 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{Cb}-128 \\
\mathrm{Cr}-128
\end{array}\right]
\end{aligned}
$$

Color Transform for Image \& Video Coding

RGB

Color Transform for Compression

- Many versions (also depends on RGB color space)
\rightarrow Example: RGB \rightarrow YCbCr transform used in JPEG

$$
\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{Cb}-128 \\
\mathrm{Cr}-128
\end{array}\right]=\left[\begin{array}{rrr}
0.2990 & 0.5870 & 0.1140 \\
-0.1687 & -0.3313 & 0.5000 \\
0.5000 & -0.4187 & -0.0813
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\mathrm{R} \\
\mathrm{G} \\
\mathrm{~B}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1.4020 \\
1 & -0.3441 & -0.7141 \\
1 & 1.7720 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{Cb}-128 \\
\mathrm{Cr}-128
\end{array}\right]
$$

Energy Compaction for Example Image

$$
\begin{aligned}
\sigma_{\mathrm{R}}^{2} & =3862.28 \\
\sigma_{\mathrm{G}}^{2} & =4250.44 \\
\sigma_{\mathrm{B}}^{2} & =5869.39
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
\sigma_{\mathrm{Y}}^{2} & =3099.67 \\
\sigma_{\mathrm{Cb}}^{2} & =83.94 \\
\sigma_{\mathrm{Cr}}^{2} & =70.10
\end{aligned}
$$

The YCbCr Chroma Sampling Format

The YCbCr Chroma Sampling Format

- Human being are less sensitive to color differences (at same luminance)

The YCbCr Chroma Sampling Format

- Human being are less sensitive to color differences (at same luminance)
\rightarrow In most applications: Color difference components are downsampled

The YCbCr Chroma Sampling Format

- Human being are less sensitive to color differences (at same luminance)
\rightarrow In most applications: Color difference components are downsampled

RGB

YCbCr 4:4:4

YCbCr 4:2:0

most common format in
image coding

The Image Compression Standard JPEG

- Partition color components ($\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$) into blocks of 8×8 samples

Cb

Cr

The Image Compression Standard JPEG

- Partition color components ($\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$) into blocks of 8×8 samples

Cb

- Transform coding of 8×8 blocks of samples

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

original block

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

original block

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Inverse transform (in decoder)

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Inverse transform (in decoder)

rec. transform coeffs.

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

original block

after 2d DCT
- Inverse transform (in decoder)

rec. transform coeffs.

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

original block

after 2d DCT
- Inverse transform (in decoder)

rec. transform coeffs.

JPEG: Transform of Sample Blocks

- Separable DCT-II of size 8×8 (fast implementation possible)
- Forward transform (in encoder)

- Inverse transform (in decoder)

reconstructed block

rec. transform coeffs.
\Rightarrow Effect of transform: Compaction of signal energy (for typical blocks)

JPEG: Quantization

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$
t^{\prime}=\Delta \cdot q
$$

JPEG: Quantization

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$
t^{\prime}=\Delta \cdot q
$$

- Simplest (but not best) encoder:

$$
q=\operatorname{round}(t / \Delta)
$$

JPEG: Quantization

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$
t^{\prime}=\Delta \cdot q
$$

- Simplest (but not best) encoder:

$$
q=\operatorname{round}(t / \Delta)
$$

- Better encoders use Lagrangian optimization (minimization of $D+\lambda R$)

JPEG: Quantization

Uniform Reconstruction Quantizers

- Equally spaced reconstruction levels (indicated by step size Δ)
- Simple decoder mapping

$$
t^{\prime}=\Delta \cdot q
$$

- Simplest (but not best) encoder:

$$
q=\operatorname{round}(t / \Delta)
$$

- Better encoders use Lagrangian optimization (minimization of $D+\lambda R$)
\Rightarrow Quantization step size Δ determines tradeoff between quality and bit rate

JPEG: Entropy Coding

1 Scanning of Quantization indexes

- Convert matrix of quantization indexes into sequence

JPEG: Entropy Coding

0.242	0.108	0.053	0.009
0.105	0.053	0.022	0.002
0.046	0.017	0.006	0.001
0.009	0.002	0.001	0.000

probabilities $P\left(q_{k} \neq 0\right)$

1 Scanning of Quantization indexes

- Convert matrix of quantization indexes into sequence
- Traverse quantization indexes from low to high frequency positions

JPEG: Entropy Coding

0.242	0.108	0.053	0.009
0.105	0.053	0.022	0.002
0.046	0.017	0.006	0.001
0.009	0.002	0.001	0.000

probabilities $P\left(q_{k} \neq 0\right)$

zig-zag scan (JPEG)

1 Scanning of Quantization indexes

- Convert matrix of quantization indexes into sequence
- Traverse quantization indexes from low to high frequency positions
- JPEG: Zig-zag scan

JPEG: Entropy Coding

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)

JPEG: Entropy Coding

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
\rightarrow Entropy coding should exploit this property

JPEG: Entropy Coding

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
\Rightarrow Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

- Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol
level: value of next non-zero symbol
run: number of zero symbols that precede next non-zero symbol
eob: all following symbols are equal to zero (end-of-block)

JPEG: Entropy Coding

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
\Rightarrow Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

- Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol
level: value of next non-zero symbol
run: number of zero symbols that precede next non-zero symbol
eob: all following symbols are equal to zero (end-of-block)
\rightarrow Assign codewords to (run,level) pairs (including eob symbol)

JPEG: Entropy Coding

2 Entropy Coding of Sequences of Quantization Indexes

- Often long sequences of zeros (in particular at end of sequence)
\Rightarrow Entropy coding should exploit this property

JPEG: Run-Level Coding (V2V code)

- Map sequence a symbols (transform coefficients) into (run,level) pairs, including a special end-of-block (eob) symbol
level: value of next non-zero symbol
run: number of zero symbols that precede next non-zero symbol
eob: all following symbols are equal to zero (end-of-block)
\rightarrow Assign codewords to (run,level) pairs (including eob symbol)
- Example: $\quad 64$ symbols: 53000101001000000000 ... (run,level) pairs: $\quad(0,5)(0,3)(3,1)(1,1)(2,1)(e o b)$

JPEG Compression Example

Original Image (960×720 image points, RGB: 2 MByte)

100 \%

JPEG Compression Example

Lossy Compressed: JPEG (Quality 94)

18.60 \%

JPEG Compression Example

Lossy Compressed: JPEG (Quality 66)

3.88 \%

JPEG Compression Example

Lossy Compressed: JPEG (Quality 27)

1.85 \%

JPEG Compression Example

Lossy Compressed: JPEG (Quality 6)

0.49 \%

Audio Compression Example: MPEG-2 Advanced Audio Coding (AAC)

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks

■ Quantization: Scalar quantization with psycho-acoustic model

- Entropy Coding: Variant of Huffman coding

Audio Compression Example: MPEG-2 Advanced Audio Coding (AAC)

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks
- Quantization: Scalar quantization with psycho-acoustic model
- Entropy Coding: Variant of Huffman coding

Linear Transform

- Audio signal is coded based on overlapping blocks of samples
- Transform: Modified discrete cosine transform (MDCT)

Audio Compression Example: MPEG-2 Advanced Audio Coding (AAC)

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks
- Quantization: Scalar quantization with psycho-acoustic model
- Entropy Coding: Variant of Huffman coding

Linear Transform

- Audio signal is coded based on overlapping blocks of samples
- Transform: Modified discrete cosine transform (MDCT)

Quantization of Transform Coefficients

- Scalar quantization of transform coefficients (spectral coefficients)
- Utilization of psycho-acoustic models by noise shaping

Audio Compression Example: MPEG-2 Advanced Audio Coding (AAC)

Main Component: Transform Coding of Sample Blocks

- Transform: Modified DCT for overlapping blocks
- Quantization: Scalar quantization with psycho-acoustic model
- Entropy Coding: Variant of Huffman coding

Linear Transform

- Audio signal is coded based on overlapping blocks of samples
- Transform: Modified discrete cosine transform (MDCT)

Quantization of Transform Coefficients

- Scalar quantization of transform coefficients (spectral coefficients)
- Utilization of psycho-acoustic models by noise shaping

Entropy Coding of Quantization Indexes

- Grouping and interleaving
- Huffman coding for tuples of n quantization indexes (n is variable)

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

- The forward transform maps $2 N$ samples to N transform coefficients

$$
u[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{2 N-1} s[n] \cdot \cos \left(\frac{\pi}{N}\left(n+\frac{N+1}{2}\right)\left(k+\frac{1}{2}\right)\right)
$$

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

- The forward transform maps $2 N$ samples to N transform coefficients

$$
u[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{2 N-1} s[n] \cdot \cos \left(\frac{\pi}{N}\left(n+\frac{N+1}{2}\right)\left(k+\frac{1}{2}\right)\right)
$$

Inverse Transform (IMDCT)

- The inverse transform maps N transform coefficients to $2 N$ samples

$$
x[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot \cos \left(\frac{\pi}{N}\left(n+\frac{N+1}{2}\right)\left(k+\frac{1}{2}\right)\right)
$$

Modified Discrete Cosine Transform (MDCT)

Forward Transform (MDCT)

- The forward transform maps $2 N$ samples to N transform coefficients

$$
u[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{2 N-1} s[n] \cdot \cos \left(\frac{\pi}{N}\left(n+\frac{N+1}{2}\right)\left(k+\frac{1}{2}\right)\right)
$$

Inverse Transform (IMDCT)

- The inverse transform maps N transform coefficients to $2 N$ samples

$$
x[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} u[k] \cdot \cos \left(\frac{\pi}{N}\left(n+\frac{N+1}{2}\right)\left(k+\frac{1}{2}\right)\right)
$$

Perfect Reconstruction

- Neighboring blocks of samples $s[n]$ overlap by 50% (at each side)
- Perfect reconstruction of $s[n]$ is achieved by adding the inverse transformed blocks $x[n]$
\Rightarrow Property of time-domain aliasing cancellation

Summary of Lecture

Signal-Independent Transforms

- Walsh-Hadamard Transform (WHT): Perceptual disturbing artefacts
- Discrete Fourier Transform (DFT): Problem due to implicit periodic signal extension
- Discrete Trigonometric Transforms: Family of Sine and Cosine transforms

Summary of Lecture

Signal-Independent Transforms

- Walsh-Hadamard Transform (WHT): Perceptual disturbing artefacts
- Discrete Fourier Transform (DFT): Problem due to implicit periodic signal extension
- Discrete Trigonometric Transforms: Family of Sine and Cosine transforms

Discrete Cosine Transform of Type II (DCT-II)

■ DFT of mirrored signal with half-sample symmetry at both sides

- Reduced blocking artifacts compared to DFT
- Good approximation of KLT for highly-correlated signals

Summary of Lecture

Signal-Independent Transforms

- Walsh-Hadamard Transform (WHT): Perceptual disturbing artefacts

■ Discrete Fourier Transform (DFT): Problem due to implicit periodic signal extension

- Discrete Trigonometric Transforms: Family of Sine and Cosine transforms

Discrete Cosine Transform of Type II (DCT-II)

- DFT of mirrored signal with half-sample symmetry at both sides
- Reduced blocking artifacts compared to DFT

■ Good approximation of KLT for highly-correlated signals

Transform Coding in Practice

- Color transforms in image and video coding: RGB to YCbCr conversion
- JPEG image compression: 2D DCT-II + URQ + Run-level coding
- AAC audio compression: MDCT for overlapped blocks + scalar quantization + Huffman coding

Exercise 1: Correlation of Transform Coefficients

Given is a zero-mean $\operatorname{AR}(1)$ sources with a variance σ^{2} and a correlation coefficient $\varrho=0.9$
Consider transform coding of blocks of 2 samples using the transform

$$
\left[\begin{array}{l}
u_{k, 0} \\
u_{k, 1}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
s_{2 k} \\
s_{2 k+1}
\end{array}\right]
$$

where k represents the index of the transform block

- Determine the following variances and covariances of the transform coefficients (inside a block and between neighbouring blocks):

$$
\begin{aligned}
\mathrm{E}\left\{U_{k, 0}^{2}\right\} & =? \\
\mathrm{E}\left\{U_{k, 1}^{2}\right\} & =? \\
\mathrm{E}\left\{U_{k, 0} U_{k, 1}\right\} & =?
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left\{U_{k, 0} U_{k+1,0}\right\}=? \\
& \mathrm{E}\left\{U_{k, 1} U_{k+1,1}\right\}=? \\
& \mathrm{E}\left\{U_{k, 0} U_{k+1,1}\right\}=?
\end{aligned}
$$

- Is it worth to exploit the correlations between the transform coefficients of neighboring block (e.g., for typical correlation factors of $\varrho \approx 0.9$) ?

Exercise 2: First Version of Lossy Image Codec (Implementation)

Implement a first lossy image codec for PPM images:

1 Use the source code of last weeks exercise as basis (see KVV)
2 Add some variant of entropy coding for the quantization indexes, for example:

- Simple Rice coding or Exp-Golomb coding (see lossless codec example in KVV)
- Adaptive binary arithmetic coding using a unary binarization (see lossless coding example in KVV)
- ...

3 Implement an encoder that converts a PPM image into a bitstream file
4 Implement a corresponding decoder that converts a bitstream file into a PPM image
5 Test your encoder with some example images and multiple quantization step sizes
6 (Optional) Try to improve your codec by using the YCbCr color format

- Implement an RBG-to-YCbCr transform before the actual encoding
- Implement the inverse YCbCr-to-RGB transform after the actual decoding
- Possible extension: Sub-sampling of chroma components

