Predictive Quantization

Last Lectures: Transform Coding with Orthogonal Block Transform

Orthogonal Block Transforms

- Inverse matrix is equal to transposed matrix: $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$
- Geometric Interpretation: Rotation (and possible reflection) in N-d signal space
- → Can be interpreted as lattice vector quantizer with orthogonal lattice
- Preservation of MSE distortion: Independent quantization of individual transform coefficients

Last Lectures: High-Rate Approximations

High-Rate Approximation of Operational Distortion-Rate Function

- Optimal bit allocation at high rates: $D_k(R_k) = \text{const}$ (for URQs: $\Delta_k = \text{const}$)
- → High-rate distortion-rate function for transform coding (with optimal bit allocation)

$$\mathcal{D}_{\mathcal{TC}}(R) = ilde{arepsilon}^2 \cdot ilde{\sigma}^2 \cdot 2^{-2R} \qquad ext{ with } \qquad ilde{arepsilon}^2 = \left(\prod_k arepsilon_k^2\right)^{ar{ar{n}}}, \quad ilde{\sigma}^2 = \left(\prod_k \sigma_k^2\right)^{ar{ar{n}}}$$

1

Goal of Transform Selection

■ Minimize distortion $D_{TC}(R)$ for given rate $R \rightarrow Maximize$ transform coding gain G_T

$$G_{T} = \frac{D_{SQ}(R)}{D_{TC}(R)} = \frac{\varepsilon_{S}^{2} \cdot \sigma_{S}^{2}}{\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2}}$$

Typically, ignore impact of pdf shapes \rightarrow Maximize energy compaction G_{EC} of transform

$$G_{EC} = \frac{\sigma_5^2}{\tilde{\sigma}^2} = \frac{\frac{1}{N} \sum_{k=0}^{N-1} \sigma_k^2}{\sqrt[N]{\prod_{k=0}^{N-1} \sigma_k^2}}$$

1

Last Lectures: Transform Selection

Karhunen Loève Transform (KLT)

- **B** Basis vectors (rows of A) are unit-norm eigenvectors of the N-th order auto-covariance matrix C_N
- \rightarrow KLT yields uncorrelated transform coefficients (C_{UU} becomes a diagonal matrix)
- → KLT achieves maximum possible energy compaction

$$G_{EC}^{(\mathsf{KLT})} = \left| \frac{1}{\sigma_S^2} \, \boldsymbol{C}_{N} \right|^{-\frac{1}{N}} \qquad (\text{ note: determinant } |\cdot| = \text{ product of eigenvalues}$$

Discrete Cosine Transform of Type II (DCT-II)

- Represents discrete Fourier transform of mirrored signal (with half-sample symmetry of both sides)
- Signal independent: Basis vectors (rows of A) are sampled cosines of different frequencies
- KLT approaches DCT-II for highly correlated sources ($\varrho \rightarrow 1$)
- For typical stationary signals: Only small loss in coding efficiency relative to KLT
- → Most widely used transform in image and video coding (fast implementations possible)

Last Lectures: Coding Efficiency of Transform Coding

High-Rate Approximation for KLT and Gauss-Markov

■ High-rate operational distortion-rate function and transform coding gain (for transform size *N*)

$$\mathcal{D}_{\mathcal{N}}(\mathcal{R}) = \varepsilon^2 \cdot \sigma_S^2 \cdot (1 - \varrho^2)^{\frac{N-1}{N}} \cdot 2^{-2\mathcal{R}}$$
 and $\mathcal{G}_{\mathcal{T}}^{\mathcal{N}} = \mathcal{G}_{\mathcal{EC}}^{\mathcal{N}} = (1 - \varrho^2)^{\frac{1-N}{N}}$

 \rightarrow Transform gain increases with transform size N, but approaches a limit

Comparison to Rate-Distortion Bound

- Example: Gauss-Markov, KLT, and optimal scalar quantizers (ECSQ)
- → Distortion increase relative to Shannon lower bound

$$\frac{D_N^{(\mathsf{KLT})}(R)}{D_{\mathsf{SLB}}(R)} = \frac{\frac{\pi e}{6} \cdot \sigma_{\mathsf{S}}^2 \cdot (1-\varrho^2)^{\frac{N-1}{N}} \cdot 2^{-2R}}{\sigma_{\mathsf{S}}^2 \cdot (1-\varrho^2) \cdot 2^{-2R}} = \frac{\pi e}{6} \cdot \left(\frac{1}{1-\varrho^2}\right)^{\frac{1}{N}}$$

→ Large transform sizes ($N \rightarrow \infty$): Performance gap reduces to space-filling gain (1.53 dB)

• Other sources: Transform coding cannot utilize all dependencies (non-linear dependencies)

Review: Lossless Coding using Prediction

Predictive Lossless Coding

Predict current sample s_n using a function of preceding samples (referred to as observation set b_n)

$$\hat{s}_n = f(s_{n-1}, s_{n-2}, \cdots) = f(\boldsymbol{b}_n)$$

Entropy coding of prediction error samples

$$u_n = s_n - \hat{s}_n$$

Decoder reconstructs the original samples according to

$$s_n = \hat{s}_n + u_n$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Predictive Quantization

examples of observation sets

1D signals:

2D signals:

Review: Linear and Affine Prediction

Linear Predictor

• Current sample is predicted using weighted sum over observation set $\boldsymbol{b}_n = \{b_1, \cdots, b_n\}$

$$\hat{s}_n = \sum_{k=1}^N a_k \cdot b_k = \boldsymbol{a}^{\mathrm{T}} \cdot \boldsymbol{b}_n$$
 with $\boldsymbol{a} = (a_1, \cdots, a_N)^{\mathrm{T}}$

→ **Prediction error variance** σ_U^2 is given by

$$\sigma_U^2(\boldsymbol{a}) = \sigma_S^2 - 2\boldsymbol{a}^{\mathrm{T}}\boldsymbol{c} + \boldsymbol{a}^{\mathrm{T}}\boldsymbol{C}_B\boldsymbol{a}$$
 with

$$\begin{aligned} \boldsymbol{\mathcal{C}}_{B} &= \mathrm{E}\Big\{\left(\boldsymbol{B}_{n} - \mathrm{E}\{\boldsymbol{B}_{n}\}\right)\left(\boldsymbol{B}_{n} - \mathrm{E}\{\boldsymbol{B}_{n}\}\right)^{\mathrm{T}}\Big\}\\ \boldsymbol{\mathcal{c}} &= \mathrm{E}\Big\{\left(\boldsymbol{S}_{n} - \mathrm{E}\{\boldsymbol{S}_{n}\}\right)\left(\boldsymbol{B}_{n} - \mathrm{E}\{\boldsymbol{B}_{n}\}\right)\Big\}\end{aligned}$$

➡ Prediction error variance is minimized by solution of the Yule-Walker equations

 $C_B \cdot a_{opt} = c$ (linear equation system)

→ Prediction error variance for optimal linear prediction

$$\sigma_U^2 = \sigma_S^2 - \boldsymbol{a}_{opt}^{\mathrm{T}} \boldsymbol{c} = \sigma_S^2 - \boldsymbol{c}^{\mathrm{T}} \boldsymbol{C}_B^{-1} \boldsymbol{c}$$

Review: Linear and Affine Prediction

Affine Predictor

Linear predictor with additional constant offset

$$\hat{s}_n = a_0 + \sum_{k=1}^N a_k \cdot b_k = a_0 + \boldsymbol{a}^{\mathrm{T}} \cdot \boldsymbol{b}_n$$

- → Prediction error variance σ_U^2 is not impacted by constant offset a_0
- → Mean of prediction error μ_U can be forced to zero by choosing

$$a_0 = \mu_S \left(1 - \sum_{k=1}^N a_k \right)$$

→ Affine prediction reduces mean squared prediction error (compared to linear prediction)

$$\varepsilon_U^2 = \mathrm{E}\left\{\left(S_n - \hat{S}_n\right)^2\right\} = \sigma_U^2 + \mu_U^2$$

Lossy Coding with Prediction: (1) Prediction of Quantization Indexes

Encoder

Scalar quantization

 $q_n = \alpha(s_n)$

Prediction of quantization indexes

$$\hat{q}_n = f_{\mathsf{pred}}(q_{n-1}, q_{n-2}, \cdots)$$

Determining prediction residual

 $u_n = q_n - \hat{q}_n$

• Entropy coding of prediction residual

Decoder

- Entropy decoding of prediction residual
- Prediction of quantization indexes
 - $\hat{q}_n = f_{\mathsf{pred}}(q_{n-1}, q_{n-2}, \cdots)$
- Reconstruct quantization indexes

 $q_n = u_n + \hat{q}_n$

Dequantization (typically: scaling) $s'_n = \beta(q_n)$

Lossy Coding with Prediction: (1) Prediction of Quantization Indexes

Prediction after Quantization

- Sources with memory: Quantization indexes have statistical dependencies
- → Prediction can improve lossless coding of quantization indexes
 - More accurate: With prediction, entropy coding can be simplified
 - Require: Predicted value \hat{q}_n must be integer (since u_n must be integer)

Extension: Prediction after Transform and Quantization

- Prediction of some transform coefficients (e.g., DC coefficient)
- Examples: JPEG, MPEG-2 Video, H.263, MPEG-4 Visual

Lossy Coding with Prediction: (2) Quantization of Prediction Error

Prediction Before Quantization

- Idea: Reduce statistical dependencies before quantization (similar to transform coding)
- Have to use same prediction signal \hat{s}_n at encoder and decoder (otherwise: error accumulation)
- → Prediction value \hat{s}_n has to be derived based on reconstructed samples

$$\hat{s}_n = f_{\mathsf{pred}}(s'_{n-1}, s'_{n-2}, \cdots)$$

- ➡ Encoder includes decoder (except for entropy decoding)
- Concept also referred to as differential pulse code modulation (DPCM)

Lossy Coding with Prediction: (2) Quantization of Prediction Error

DPCM Encoder

- Prediction: $\hat{s}_n = f_{\text{pred}}(s'_{n-1}, s'_{n-2}, \cdots)$
- Quantization: $q_n = \alpha(s_n \hat{s}_n)$
- Reconstruction: $s'_n = \hat{s}_n + \beta(q_n)$
- Entropy coding of quantization indexes q_n

DPCM Decoder

- Entropy decoding of quantization indexes q_n
- Prediction: $\hat{s}_n = f_{\text{pred}}(s'_{n-1}, s'_{n-2}, \cdots)$

• Reconstruction:
$$s'_n = \hat{s}_n + \beta(q_n)$$

DPCM Encoder and Decoder

- Redrawing yields typical DPCM structure
- Note: Encoder contains decoder except entropy decoding

Design of Optimal Predictor and Quantizer

Interdependencies between Predictor and Quantizer

- Optimal quantizer depends on statistical properties of prediction error signal
- Optimal predictor depends on statistical properties of quantization error

Joint Design of Predictor and Quantizer

- Choose sufficiently large training set and Lagrange multiplier
- Start: Design predictor for original training data
- Iteratively refine quantizer and predictor
 - → Design quantizer for predictor error signal (using current predictor)
 - → Run DPCM encoding with current predictor and quantizer
 - → Update predictor using obtained reconstructed signal

Simplified Design

- Design predictor for original signal (i.e., neglect quantization in predictor design)
- Typically: Works reasonably well

Example: DPCM for Gauss-Markov

Gauss-Markov Model

Zero-mean AR(1): Ignore mean, since it can be removed as a first step

 $S_n = \varrho \cdot S_{n-1} + Z_n$ (dependencies are specified by correlation coefficient ϱ)

Innovation process Z_n is zero-mean Gaussian iid

DPCM Coding of Gauss-Markov Source

• Consider optimal linear predictor for original source (i.e., one-tap filter $a = \varrho$)

 $\hat{s}_n = \varrho \cdot s'_{n-1} = \varrho \cdot (s_{n-1} - x_{n-1})$ with quantization error $x_n = u_n - u'_n = s_n - s'_n$

→ Resulting prediction error

$$u_n = s_n - \hat{s}_n$$

= $s_n - \varrho \cdot s_{n-1} + \varrho \cdot x_{n-1}$

DPCM for Gauss-Markov: Prediction Error Variance

 \rightarrow Variance of prediction error $u_n = s_n - \rho \cdot s_{n-1} + \rho \cdot x_{n-1}$ with $x_n = s_n - s'_n$ $\sigma_{II}^2 = E\{ U_n^2 \}$ $= E\{ (S_n - \rho S_{n-1} + \rho X_{n-1})^2 \}$ $= E\{S_{n}^{2}\} + \rho^{2} \cdot E\{S_{n-1}^{2}\} - 2\rho \cdot E\{S_{n}S_{n-1}\} + \rho^{2} \cdot E\{X_{n-1}^{2}\}$ $+2\rho \cdot E\{S_{n}X_{n-1}\} - 2\rho^{2} \cdot E\{S_{n-1}X_{n-1}\}$ $= \sigma_{\rm c}^2 + \rho^2 \sigma_{\rm c}^2 - 2\rho^2 \sigma_{\rm c}^2 + \rho^2 D \qquad (\text{note: distortion } D = \mathrm{E}\{(S_n - S'_n)^2\})$ $+2\rho E\{(\rho S_{n-1}+Z_n)E_{n-1}\}-2\rho^2 E\{S_{n-1}E_{n-1}\}\}$ $= \sigma_{c}^{2} (1 - \rho^{2}) + \rho^{2} D + 2\rho^{2} E\{S_{p-1}E_{p-1}\} - 2\rho^{2} E\{S_{p-1}E_{p-1}\} + 2\rho E\{Z_{p}E_{p-1}\}$ $= \sigma_c^2 (1 - \rho^2) + \rho^2 D + 2\rho E \{ Z_n E_{n-1} \}$ $= \sigma_c^2 (1 - \rho^2) + \rho^2 D$

DPCM for Gauss-Markov: Prediction Error Variance

Prediction Error Variance for Predictor $\hat{s}_n = \varrho \cdot s'_n$

→ Prediction error variance σ_U^2 depends on distortion D

$$\sigma_U^2 = \sigma_S^2 \left(1 - \varrho^2\right) + \varrho^2 D$$

 \rightarrow Distortion D is caused by scalar quantization of prediction error u_n

$$D(R) = \sigma_U^2 \cdot g(R)$$

where g(R) is the distortion-rate function for a unit-variance Gaussian

→ Rate-dependent prediction error variance

$$\sigma_U^2 = \sigma_S^2 (1 - \varrho^2) + \varrho^2 \cdot \sigma_U^2 \cdot g(R)$$

$$\Rightarrow \quad \sigma_U^2 = \sigma_S^2 \cdot \frac{1 - \varrho^2}{1 - \varrho^2 \cdot g(R)}$$

DPCM for Gauss-Markov: Distortion-Rate Function

Distortion-Rate Function

Approximation of operational distortion-rate function

$$D(R) = \sigma_U^2 \cdot g(R) = \sigma_5^2 \cdot \frac{1 - \varrho^2}{1 - \varrho^2 \cdot g(R)} \cdot g(R)$$

High-Rate Approximation

• High rates R: $g(R) = \varepsilon^2 \cdot 2^{-2R}$ and $g(R) \ll 1$

→ Operational distortion-rate function at high rates

$$D(R) = \varepsilon^2 \cdot \sigma_S^2 \cdot (1 - \varrho^2) \cdot 2^{-2R}$$

- ightarrow Same formula as for transform coding with large KLT $(N
 ightarrow \infty)$
- → Gap to rate-distortion bound represents space-filling gain of vector quantization

DPCM for Gauss-Markov: Experimental Results for $\rho = 0.9$

→ Prediction error variance σ_U^2 depends on bit rate

DPCM for Gauss-Markov: Experimental Results for $\rho = 0.9$

→ High rates: Shape and memory gain are achievable
 → Low rates: Worse than transform coding

Heiko Schwarz (Freie Universität Berlin) - Data Compression: Predictive Quantization

Adaptive DPCM

Audio signals, images, videos

- Instationary signals
- Single predictor not suitable for entire signal
- Adapt predictor (incl. observation set) during encoding/decoding

Backward adaptation

- Simultaneously estimate predictor at encoder and decoder side
- Estimation has to be based on reconstructed samples
- No additional rate, but accuracy, complexity, error resilience issues

Forward adaptation

- Analyze signal at encoder side
- Send predictor as part of the bitstream (requires additional bit rate)
- Simple method: Switched predictors

Backward-Adaptive DPCM

Forward-Adaptive DPCM

Lossy Source Coding: DPCM or Transform Coding?

Differential Pulse Coding Modulation (DPCM)

- Worse coding efficiency than transform coding at low rates (interesting opertation points)
- Audio, images, video: Perceptual artifacts when using rather strong quantization

Transform Coding

- Better coding efficiency than DPCM at low rates (interesting operation points)
- Better subjective quality than DPCM: Can better control perceived quality (frequency spectrum)
- Cannot utilize statistical dependencies between blocks (only inside blocks)

Combination of Transform Coding and Prediction

- Improve coding efficiency of transform coding by prediction between transform blocks
- Two concepts: 1 Prediction after quantization: Only for certain transform coefficients
 2 Prediction before transform: DPCM with transform coding as quantizer

Image Coding Example: JPEG

Block-based Transform Coding

1 Transform: Separable DCT-II for 8×8 blocks of samples

2 Quantization: Uniform reconstruction quantizer

3 Entropy Coding: DC Prediction and Run-Level Coding with Huffman tables

a Prediction of quantization index for DC coefficient (mean of block): $\Delta q_{(0,0)}^n = q_{(0,0)}^n - q_{(0,0)}^{n-1}$

b Huffman table for prediction error $\Delta q_{(0,0)}^n$ for DC coefficient

c Run-level coding of remaining quantization indexes (without prediction)

Modern Image Coding: Forward-Adaptive DPCM Structure

Block-Based Intra-Picture Prediction

Block-Based Prediction and Transform Coding

- Predict signal of current block using reconstructed neighboring blocks
- Transform coding of prediction error signal

Intra-Picture Prediction

- Using surrounding reconstructed samples for predicting signal of current block
- Multiple modes with directional prediction

Examples

- H.264 | AVC: 9 prediction modes
- H.265 | HEVC: 35 prediction modes

intra prediction modes in H.264 | AVC

Successive Pictures in Video Sequences

Important: Utilize large amount of dependencies between video picture
 → Basic Idea: Predict current picture from already coded previous picture

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Predictive Quantization

Simple Variant: Frame Difference Coding

current original picture s_n

prediction error un (FD)

- Partition current picture s_n into rectangular blocks
- Block-wise coding of current picture s_n
 - **1** Get prediction error: $u_n[x, y] = s_n[x, y] s'_{n-1}[x, y]$
 - **2** Transform coding: $u_n[x, y] \mapsto u'_n[x, y]$
 - **3** Transmit in bitstream: Quantization indexes $\{q_k\}$
 - **4** Reconstruction: $s'_n[x, y] = s'_{n-1}[x, y] + u'_n[x, y]$

→ Problem: Ineffective for moving regions

Image and Video Coding / Video Coding

Improvement: Motion-Compensated Prediction

rec. previous picture s'_{n-1}

current original picture s_n

prediction error u_n (MCP)

- Partition current picture s_n into rectangular blocks
- Estimate motion vectors (m_x, m_y) of blocks in current picture relative to previous picture s'_{n-1}
- Block-wise coding of current picture *s_n*
 - **1** Get prediction error: $u_n[x, y] = s_n[x, y] s'_{n-1}[x + m_x, y + m_y]$
 - **2** Transform coding: $u_n[x, y] \mapsto u'_n[x, y]$
 - **3** Transmit in bitstream: Motion vector (m_x, m_y) and quantization indexes $\{q_k\}$

4 Reconstruction: $s'_n[x, y] = s'_{n-1}[x + m_x, y + m_y] + u'_n[x, y]$

Hybrid Video Coding: Encoder

current input picture s_n

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Predictive Quantization

Hybrid Video Coding: Decoder

decoding of *n*-th picture

Efficiency of Hybrid Video Coding

Summary of Lecture

Prediction after Quantization

- Prediction of quantization indexes can improve lossless coding
- Combination with transform coding: Only useful for certain transform coefficients

Prediction before Quantization: Differential Pulse Code Modulation (DPCM)

- Reduce variance (or statistical dependencies) before quantization
- Have to use reconstructed samples for prediction in order to avoid error acculumation
- Quantization impacts quality of prediction (worse at low bit rates)
- Combination with transform coding: Prediction of complete blocks of samples

Image and Video Coding

- Combination of block-based prediction and transform coding
- Prediction of blocks of samples: Intra-picture prediction or motion-compensated prediction
- Transform coding of prediction error blocks

Exercise 1: Compare Your Lossy Codec to JPEG

Evaluate the Coding Efficiency of JPEG

- Choose a PPM image from our data base
- Encoding: Convert image to JPEG using different quality parameters (e.g., using ImageMagick)
- Decoding: Convert the JPEG file back to PPM format (e.g., using ImageMagick)
- Measure the RGB-PSNR between original and reconstructed image (tool available in KVV)
- Measure the bit rate (in bits per sample) based on size of the JPEG file

Evaluate the Coding Efficiency of your Codec

- Encode and decode the PPM image (same as for JPEG) with varying quantization step sizes
- Measure the bit rate of the compressed file and the RGB-PSNR of the reconstructed image

Compare Coding Efficiency of your Codec with that of JPEG

- Plot the RGB-PSNR over the bit rate for both your codec and JPEG (for multiple operation points)
- Compare your codec and JPEG by plotting the PSNR-rate curves into one diagram

Exercise 2: Lossy Image Compression Challenge

Improve your codec for lossy coding of PPM images

- Use any implementation of last weeks exercise as basis (see KVV)
- Try different simple techniques discussed in lectures and exercises

The following might be worth trying

- Use YCoCg format for actual coding (see implementations for lossless coding)
- Add prediction between transform blocks:
 - → Prediction of quantization index for DC coefficient (as in JPEG); or
 - → Subtract mean of surrounding reconstructed samples before transform (should be better), add that mean after reconstruction (dequantization + inverse transform) of prediction error
- Improve entropy coding of quantization indexes:
 - → Adaptive arithmetic coding (see implementations for lossless coding)
 - → Adaptive binary arithmetic coding (see implementations for lossless coding)