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Types of Source Coding

Types of Data Compression

Lossless Compression
Invertible / reversible: Original input data can be completely recovered

Examples: gzip, lzip, 7zip, bzip2 for general files (most suitable for text)
FLAC for audio
PNG, JPEG-LS for images

Lossy Compression
Not invertible: Only approximation of original input data can be recovered
Achieves much higher compression ratios
Dominant form of data compression for media

Examples: MP3, AAC for audio
JPEG, JPEG-2000 for images
MPEG-2, H.264 | AVC, H.265 | HEVC for video
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Lossless Coding / Scalar Variable-Length Codes

Scalar Variable-Length Codes

Scalar Variable-Length Codes
Codeword table: One codeword per alphabet letter

Encoding
Concatenate codewords for symbols of a message

Decoding
No separator symbols
Require unique decodable codes

Efficiency
Average codeword length

¯̀ = E{ `(ak) } =
∑
∀k

p(ak) · `(ak) =
∑
∀k

pk · `k

Example

A = {A,B,C,D,E,F,G,H}

ak p(ak) codeword

A 0.20 00
B 0.15 010
C 0.05 0110
D 0.10 0111
E 0.30 10
F 0.05 1100
G 0.05 1101
H 0.10 111

Goal: Minimize average codeword length while ensuring unique decodability
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Lossless Coding / Scalar Variable-Length Codes

Unique Decodability and Prefix Codes

Unique Decodability
Necessary condition: Different codeword for each alphabet letter
Not sufficient
Each sequence of bits can only be generated by one possible sequence of sources symbols

Prefix Codes
One class of uniquely decodable codes
Property: No codeword represents

a prefix of any other codeword
Can be represented using binary code tree
Simple decoding: Follow tree from root to terminal node
Instantaneously decodable
(enabled switching of codeword tables)

0

0 A

1 0 B
1

0 C
1 D

1
0 E

1 0
0 F
1 G

1 H
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Lossless Coding / Scalar Variable-Length Codes

Optimal Uniquely Decodable Codes

Kraft-McMillan Inequality
Necessary condition for all uniquely decodable codes
The codeword lengths {`k} of a uniquely decodable code must fulfill the inequality∑

∀k

2−`k ≤ 1

Kraft-McMillan Inequality for Prefix Codes
No structural redundancy (all interior nodes have two descendants):

∑
∀k 2
−`k = 1

Structural redundancy (some interior nodes have only one descendant):
∑
∀k 2
−`k < 1

For each set of codeword lengths {`k} that satisfies the Kraft-McMillan inequality,
a prefix code can be constructed

There are no better uniquely decodable codes than the best prefix codes
All lossless codes used in practice are prefix codes

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 5 / 80



Lossless Coding / Scalar Variable-Length Codes

Lower Bound for Average Codeword Length: Entropy

Entropy and Redundancy
Entropy: Lower bound for average codeword length ¯̀(γ) of scalar codes γ

¯̀(γ) ≥ H(S) with H(S) = H(p) = E{− log2 p(S) } = −
∑
∀k

pk · log2 pk

Absolute redundancy %(γ) and relative redundancy r(γ)

%(γ) = ¯̀(γ)− H(p) ≥ 0 and r(γ) =
¯̀(γ)− H(p)

H(p)
≥ 0

Zero-Redundancy Codes ?
Only possible if all probability masses are negative integer powers of two∑

∀k

pk · `k = −
∑
∀k

pk · log2 pk ⇐⇒ `k = − log2 pk

But: Can always construct a prefix code γ (for example, Shannon code: `k = d− log2 pke) with
H(p) ≤ ¯̀(γ) < H(p) + 1
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Lossless Coding / Scalar Variable-Length Codes

Optimal Prefix Codes: The Huffman Algorithm

Subset of Optimal Prefix Codes
For any finite alphabet A, there exists an optimal prefix code C with the following property:

There are two codewords that have the maximum length, differ only in the final bit,
and correspond to the two least likely alphabet letters.

The Huffman Algorithm
1 Select the two letters a and b with the smallest probabilities pa and pb

2 Create a parent node for the two letters a and b in the binary code tree
3 Replace the letters a and b with a new letter with probability pa + pb

4 If the resulting new alphabet contains more than a single letter,
repeat all previous steps with this alphabet

5 Convert the obtained binary code tree into a prefix code

The Huffman algorithm yields one optimal prefix code / optimal uniquely decodable code.
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Lossless Coding / Scalar Variable-Length Codes

Check Your Knowledge: Scalar Variable-Length Codes

1 Develop a prefix code for the alphabet A = {A,B,C}. Write down the bitsream for the message
“CABAC”. Check whether the resulting bitstream can be decoded correctly.

2 Given is the following probability mass function: {0.1, 0.1, 0.15, 0.2, 0.2, 0.25}.
Calculate the entropy.

Develop an optimal scalar variable-length code.

Calculate the average codeword length of the developed code.

Calculate the absolute and relative redundacy of the developed code.

3 Given is a prefix code that does not correspond to a full binary tree (i.e., one or more interior nodes
have only one descendant). Can that code be an optimal code for some sources? Why or why not?

4 Is it true that all optimal codes for a given source are Huffman codes?

5 Is it possible to develop a uniquely decodable code for the following set of codeword lengths:
{7, 7, 7, 7, 5, 4, 3, 2, 1} ? If yes, write down a set of possible codewords.
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Lossless Coding / Conditional Codes, Block Codes, V2V Codes

Conditional Codes

Switch codeword table based on a function cn = f (sn−1, sn−2, · · · ) of preceding symbols
Design codeword table for each possible condition cn (optimal: Huffman algorithm)
Resulting average codeword length

¯̀cond =
∑
∀x

p(Cn = x) · ¯̀(Cn = x)

Can improve coding efficiency for sources with statistical dependencies

conditional Huffman code (assume “Sn−1 =a ” for first symbol)

Sn−1 = a Sn−1 = b Sn−1 = c

x p(x | a) codeword p(x | b) codeword p(x | b) codeword

a 0.90 0 0.15 10 0.25 10
b 0.05 10 0.80 0 0.15 11
c 0.05 11 0.05 11 0.60 0

¯̀cond =
∑
∀x p(Sn−1 = x) · ¯̀(Sn−1 = x) = 521/450 ≈ 1.1578

scalar Huffman code

x p(x) codeword

a 29/45 0
b 11/45 10
c 5/45 11

¯̀scal = 61/45 ≈ 1.3556
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Lossless Coding / Conditional Codes, Block Codes, V2V Codes

Conditional Entropy

Conditional entropy for alphabet A and condition cn = f (sn−1, sn−2, · · · ) is given by

H(Sn |Cn) = E{− log2 p(Sn |Cn) }

= −
∑
∀c

∑
∀a∈A

p(a, c) · log2 p(a | c)

Average codeword length for conditional Huffman code (with same condition) is bounded by

H(Sn |Cn) ≤ ¯̀< H(Sn |Cn) + 1

Conditioning never increases entropy

H(Sn |Cn) ≤ H(Sn) (equality if Sn and Cn are independent)

Conditioning never increases average codeword length (for optimal code)
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Lossless Coding / Conditional Codes, Block Codes, V2V Codes

Block Codes

Joint coding of N > 1 successive symbols (single codeword)
Design code for N-d joint pmf p(s1, s2, · · · , sN)

Optimal block code: Huffman algorithm

Average codeword length is given by

¯̀ =
1
N

∑
a1,a2,··· ,aN

p(a1, a2, · · · , aN) · `(a1, a2, · · · , aN)

Block codes can improve coding efficiency for both
iid sources and sources with memory
Problem: Codeword tables can become extremely large

Example: Document Scans

scalar code: N = 1 symbol

s p(s) codewords

0 0.80 1
1 0.20 0

¯̀ = 1.00

N = 2 symbols

s1s2 p(s1, s2) codewords

00 0.72 1
01 0.08 010
10 0.08 011
11 0.12 00

¯̀ = ¯̀2/2 = 0.72

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 11 / 80



Lossless Coding / Conditional Codes, Block Codes, V2V Codes

Block Entropy

Block entropy for alphabet A and block size N is given by

HN(S) = H(S1,S2, · · · ,SN) = E{− log2 p(S1,S2, · · · ,SN) }

= −
∑
∀a1

∑
∀a2

· · ·
∑
∀aN

p(a1, a2, · · · , aN) · log2 p(a1, a2, · · · , aN)

Average codeword length for block Huffman code is bounded by

HN(S)

N
≤ ¯̀<

HN(S)

N
+

1
N

Increasing the block size never increases lower bound

HN+1(S)

N + 1
≤ HN(S)

N
(equality if S is an iid source)

Increasing the block sizes does not increase average codeword length (for optimal codes)
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Lossless Coding / Conditional Codes, Block Codes, V2V Codes

Fundamental Lossless Coding Theorem

Entropy Rate
Entropy rate: Limit (N →∞) for lower bound of block codes

H̄(S) = lim
N→∞

HN(S)

N
= lim

N→∞

H(S1,S2, · · · ,SN)

N

Fundamental lossless coding theorem

¯̀≥ H̄(S) (for all lossless codes)

Asymptotically achievable with block Huffman coding for large block sizes

Entropy Rate for Selected Sources

IID sources: HN(S) = N · H(S) H̄(S) = H(S)

Markov sources: HN(S) = H(S) + (N − 1) · H(Sn |Sn−1) H̄(S) = H(Sn |Sn−1)
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Lossless Coding / Conditional Codes, Block Codes, V2V Codes

V2V Codes

Generalization of Block Codes
Assign codewords to symbol sequences of variable length

All messages must be representable
Desirable: Redundancy-free set of symbol sequences
Choose full M-ary tree of symbol sequences

Optimal V2V code for given symbol sequences: Huffman
Average codeword length

¯̀ =

∑
k pk · `k∑
k pk · nk

=
avg. codeword length per seq.

avg. number of symbols per seq.

Relation to Block Codes
Block codes = Special V2V codes with perfect m-ary tree
Advantage of V2V codes:
Often smaller codeword table for same efficiency

V2V code (Huffman design)

ak pk codewords

0000000 0.5964 1
0000001 0.0110 00111
000001 0.0101 00100
00001 0.0105 00101
0001 0.0111 0000
001 0.0108 00110
01 0.0145 0001
1 0.3356 01

¯̀seq = 1.582
n̄ = 4.806

}
¯̀ = 0.33

block code with 8 codewords:
¯̀ = 0.42
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Lossless Coding / Conditional Codes, Block Codes, V2V Codes

V2V Example: Run-Level Coding in JPEG, MPEG-2 Video, ...

4 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

4 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

4, 0, 0, 1, 0, 1, 0, · · · , 0

Coding of Block Quantization Indexes (absolute values)

1 Convert block into sequence of indexes (zig-zag scan)

2 Convert sequence of indexes into (run, level) pairs
and a special end-of-block (eob) symbol

run : number of zeros that precede next non-zero index
level : value of next non-zero index
eob : all following indexes are equal to zero (end-of-block)

Example: sequence of indexes : 4 0 0 1 0 1 0 0 · · · 0
(run, level) pairs : (0, 4) (2, 1) (1, 1) (eob)

3 Codewords are assigned to (run, level) pairs

MPEG-2 Video: 112 typical symbol sequences + escape

codeword (run, level) symbol sequence

10 (eob) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, · · ·
11 (0,1) 1
011 (1,1) 0, 1
0100 (0,2) 2
0101 (2,1) 0, 0, 1
0010 1 (0,3) 3
0011 1 (3,1) 0, 0, 0, 1
0011 0 (4,1) 0, 0, 0, 0, 1
0001 10 (1,2) 0, 2
0001 11 (5,1) 0, 0, 0, 0, 0, 1
0001 01 (6,1) 0, 0, 0, 0, 0, 0, 1
0001 00 (7,1) 0, 0, 0, 0, 0, 0, 0, 1
0000 110 (0,4) 4
0000 100 (2,2) 0, 0, 2
0000 111 (8,1) 0, 0, 0, 0, 0, 0, 0, 0, 1
0000 101 (9,1) 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
0000 01 escape < followed by fixed-length codes>
0010 0110 (0,5) 5
0010 0001 (0,6) 6
0010 0101 (1,3) 0, 3
0010 0100 (3,2) 0, 0, 0, 2
0010 0111 (10,1) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
0010 0011 (11,1) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
0010 0010 (12,1) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
· · · · · · · · ·
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Lossless Coding / Conditional Codes, Block Codes, V2V Codes

Check Your Knowledge: Conditional Codes, Block Codes, V2V Codes

1 Which of the following code types may improve coding efficiency relative to scalar Huffman codes
for iid sources: Conditional codes, Block codes, or V2V codes ?

2 Is it possible that conditional Huffman codes become worse than scalar Huffman codes?

3 What is the advantage of V2V codes in comparison to block codes?

4 Assume you have to design an efficient lossless coding algorithm for binary images (for example,
black and white document scans). Which of the following code types do you would use: Scalar
Huffman code, Conditional Huffman code, Block Huffman code, V2V code ?
Why would you use that type of code ?
Explain in somewhat more detail how you would design the binary lossless codec.

5 Why is the run-level coding used in JPEG better than scalar Huffman coding ?
What is the main advantage ?
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Lossless Coding / Arithmetic Codes

Idea of Shannon-Fano-Elias Coding

Special Block Code for N symbols
Order all possible symbol sequences with N symbols: s1, s2, s3, · · ·
Each symbol sequence sk is associated with a half-open interval I(sk) =

[
L, L+W

)
of the cdf F (s)

Transmit any number v inside the interval I(sk) as binary fraction

messages s of N symbols

s1 · · · sk−1 sk+1 · · ·sksk

F (sk−1)

F (sk)

I(sk) =
[
L, L+W

)

L = F (sk−1)

F (s)

W = F (sk)− F (sk−1) = p(sk)

v = 0.01011b codeword “01011”
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Lossless Coding / Arithmetic Codes

Shannon-Fano-Elias Codes: Iterative Encoding Algorithm

Given: Sequence s = {s1, s2, s3, · · · , sN} of N symbols

1 Initialization of probability interval :

W0 = 1 and L0 = 0

2 Iterative refinement ( for n = 1 to N ) :

Wn = Wn−1 · p( sn | · · · )

Ln = Ln−1 + Wn−1 · c( sn | · · · )

3 Determine codeword length and codeword value :

K =
⌈
A− log2 WN

⌉
(A = 0 or 1 )

z =
⌈
LN · 2K

⌉
4 Transmit codeword :

Binary representation of z with K bits

· · ·

Ln−1

Wn−1

· · · sn Wn = Wn−1 · p(sn | ·)

Ln = Ln−1 + Wn−1 · c(sn | ·)

c(sn | ·) =
∑
∀a<sn

p(a | ·)
...
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Lossless Coding / Arithmetic Codes

Shannon-Fano-Elias Codes: Iterative Decoding Algorithm

Given: Codeword: integer z with K bits
Number N of symbols to be decoded
Ordered alphabet A = {a1, a2 · · · }

1 Initialization : W0 = 1, L0 = 0, v = z · 2−K

2 Iterative decoding ( for n = 1 to N ) :

a Upper boundary U1 for first symbol a1 of A

k = 1, Uk = Ln−1 + Wn−1 · p( ak | · · · )

b While ( v ≥ Uk ), proceed to next symbol of A

k = k + 1, Uk = Uk−1 + Wn−1 · p( ak | · · · )

c Output decoded symbol sn = ak

d Update interval : Wn = Wn−1 · p( sn | · · · )
Ln = Uk −Wn

· · ·

Ln−1

Wn−1

· · · sn

v

update :
Wn = Wn−1 · p(sn | ·)
Ln = Uk −Wn

...

U1 = Ln−1 + p(a1 | · · · )

U2 = U1 + p(a2 | · · · )

Uk = Uk−1 + p(ak | · · · )

v ≥ Uk → k = k + 1

v < Uk → sn = ak
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Lossless Coding / Arithmetic Codes

Arithmetic Coding

Arithmetic Coding
Shannon-Fano-Elias coding cannot be implemented due to extreme precision requirements
Observation: Shannon-Fano-Elias code remains decodable as long as intervals are nested
Arithmetic coding = Fixed-precision variant of Shannon-Fano-Elias coding

Basic Concept of Arithmetic Coding
V -bit integer representation of probability masses: p = pV · 2−V , pV > 0,

∑
pV ≤ 2V

U-bit integer representation of interval width: Wn = An · 2−zn , 2U−1 ≤ An < 2U

Downrounding of interval width in each iteration: Keep first ’1’ and U − 1 following bits

Output bits of lower interval boundary that cannot change in following iterations

Ln−1 = 0.

zn−1−U bits︷ ︸︸ ︷
aaaaa · · · a︸ ︷︷ ︸
zn−1−cn−1−U

settled bits

0111111 · · · 1︸ ︷︷ ︸
cn−1

outstanding bits

xxxxx · · · x︸ ︷︷ ︸
U+V

active bits

00000 · · ·︸ ︷︷ ︸
trailing bits
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Lossless Coding / Arithmetic Codes

Practical Aspects of Arithmetic Coding

Coding loss due to integer implementation is negligible
Coding efficiency is determined by probabilities used in coding

Adaptive Arithmetic Coding
Estimate probabilities during encoding and decoding (adapt to actual source statistics)

Example: pV (ak) =
⌊
2V Nk∑

k Nk

⌋
Conditional Arithmetic Coding

Usage of conditional probabilities (e.g., use value of preceeding symbol as condition)
Note: Probability models cannot adapt if we have too many conditions

Binary Arithmetic Coding
Binarization using simple prefix code, followed by arithmetic coding of bins
Complexity reduction, better adaptation of important probabilities
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Lossless Coding / Arithmetic Codes

Check Your Knowledge: Arithmetic Coding

1 Explain the iterative interval refinement in Shannon-Fano-Elias coding.
In which details differs arithmetic coding from Shannon-Fano-Elias coding?

2 Explain how a message is decoded in Shannon-Fano-Elias coding (given the bitstream).

3 Let W represent the final interval width for Shannon-Fano-Elias or arithmetic coding.
Explain why we have to transmit at least K = d− log2 W e bits.

4 What are advantages and disadvantages of arithmetic coding in comparison to scalar Huffman
coding, conditional Huffman coding, and block Huffman coding?

5 Why do most implementations in practice use binary arithmetic coding?

6 Explain how arithmetic coding can be combined with an adaptive estimation of probabilities.

7 Can you use conditional probabilities in arithmetic coding?
Could that help for improving coding efficiency?
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Lossless Coding / Predictive Lossless Coding

Predictive Lossless Coding

entropy
encoder

prediction

+
sn

−
ŝn

un entropy
decoder

prediction

+
sn

ŝn

unbitstream

Predictive Lossless Coding
1 Predict sample sn using function of preceding samples: ŝn = f (sn−1, sn−2, · · · )
2 Entropy coding of prediction error samples: un = sn − ŝn

Effect of Prediction
Sources with memory: Prediction error has smaller variance and entropy than original data
Simpler and less complex than conditional arithmetic coding
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Lossless Coding / Predictive Lossless Coding

Linear and Affine Prediction

Affine Predictor: ŝn = a0 +
K∑

k=1

akbk = a0 + aTbn for any observation set bn = {b1, b2, · · · , bK}

Prediction error variance σ2
U is minimized by choosing a such that

CB · a = c with
CB = E

{(
Bn − E{Bn }

)(
Bn − E{Bn }

)T }
c = E

{(
Sn − E{Sn }

)(
Bn − E{Bn }

)}
Mean of prediction error µU becomes zero if the offset a0 is chosen according to

a0 = µS

(
1−

K∑
k=1

ak

)
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Lossless Coding / Predictive Lossless Coding

Practical Aspects of Predictive Coding

prediction

+
sn

−
ŝn

un 1D signals:

2D signals:

Choice of Observation Set
Choose the samples with highest dependencies to current sample

Prediction for Lossless Coding
Main goal: Minimize entropy of prediction error (approximated by minimization of variance)
Prediction value ŝn must be rounded to integer

Prediction for Instationary Sources
Adapt predictor to actual source statistics
Transmit prediction parameters in regular intervals
Simple variant: Select predictor among set of pre-defined predictors
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Lossless Coding / Predictive Lossless Coding

Check Your Knowledge: Prediction in Lossless Coding

1 Consider linear prediction in lossless image coding. Assume that the correlation coefficient %01

between two samples at coordinates (x0, y0) and (x1, y1) is given by %01 = %
√

(x1−xo)2+(y1−yo)2 ,
where % is the correlation coefficient between two directly neighboring samples.
Write down the Yule-Walker equations for the following three cases:

a sample is predicted using the sample to the left;
a sample is predicted using the sample to the left and the sample above;
a sample is predicted using the sample to the left, the sample above, and the sample left-above.

2 Why do we have to round the predicted value to an integer in lossless coding?

3 What type of statistically dependencies can we utilize using linear and affine prediction?

4 Is it true that lossless coding with prediction can achieve an average codeword length smaller than
the entropy rate?

5 Why do many lossless codecs for media signals (audio, images) use prediction and a simple entropy
coding method instead of more advanced entropy coding techniques?
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Lossless Coding / Dictionary-Based Coding

The Lempel-Ziv 1977 Algorithm (LZ77)

not yet codedalready coded

We know the past but cannot control it. We control the future but cannot know it. · · ·

search buffer
(N symbols)

look-ahead buffer
(L symbols)cursor

(d , `, n) = (15, 7, ’t’)
1357911131517192123252729313335(distance)

The LZ77 Algorithm
Dictionary of variable-length sequences is given by the preceding N symbols (sliding window)

Find longest possible match for the sequence at the start of the look-ahead buffer

Message is coded as sequence of triples (d , `, n):

d : distance of best match from next symbol to be coded
` : length of matched phrase (match starts in search buffer but may reach into look-ahead buffer)
n : next symbol after matched sequence

If no match is found, then (1, 0, n) is coded (with n being the next symbol after the cursor)
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Lossless Coding / Dictionary-Based Coding

LZ77 Variant: The Lempel-Ziv-Storer-Szymanski Algorithm (LZSS)

not yet codedalready coded

We know the past but cannot control it. We control the future but cannot know it. · · ·

search buffer
(N symbols)

look-ahead buffer
(L symbols)cursor

1357911131517192123252729313335(distance)

Changes relative to LZ77 Algorithm
1 At first, code a single bit b to indicate whether a match is found

2 For matches, don’t transmit the following symbol

Message is coded as sequence of tuples (b, {d , `} | n)

The indication bit b signals whether a match is found (b = 1 → match found)

If (b = 0), then code next symbol n as literal

If (b = 1), then code the match as distance-length pair {d , `} (with d ∈ [1,N] and ` ∈ [1, L] )
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Lossless Coding / Dictionary-Based Coding

The Lempel-Ziv 1978 Algorithm (LZ78)

Main Difference to LZ77
Dictionary is not restricted to preceding N symbols

Dictionary is constructed during encoding and decoding

The LZ78 Algorithm
Starts with an empty dictionary

Next variable-length symbol sequence as coded by tuple {k, n}
k : Index for best match in dictionary (or “0” if no match is found)

n : Next symbol (similar to LZ77)

After coding a tuple {k, n}, the represented phrase is added to the dictionary

LZ78 Variant: The Lempel-Ziv-Welch (LZW) Algorithm
Dictionary is initialized with all strings of length one (i.e., all byte codes)

Next symbol is not included in the code
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Lossless Coding / Dictionary-Based Coding

Check Your Knowledge: Dictionary-Based Coding

1 Explain the main principle of the LZ77 algorithm (or any of its variants) with your own words.

2 Explain the main principle of the LZ78 algorithm (or any of its variants) with your own words.
What is the main difference to the LZ77 class of algorithms?

3 Is it possible to improve coding efficiency by combining the LZ77 or LZ78 with advanced entropy
coding techniques such as Huffman coding or arithmetic coding?
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Lossless Coding / Lossless Coding Examples

Lossless Coding: Examples

General File Compression
Unix pack: Marginal Huffman coding (with transmittion of binary tree)
Unix compress: Lempel-Ziv-Welch (LZW) algorithm
ZIP, gzip: DEFLATE (Lempel-Ziv-Storer-Szymanski (LZSS) + Huffman coding)
7zip, xv, lzip: LZ77 Variant (similar to LZSS) + Binary Arithmetic Coding
bzip2: Burrows-Wheeler transform + Move-to-Front transform + Huffman coding

Lossless Audio Compression
FLAC: Linear prediction (4 types) + Rice coding with adaptive Rice parameter selection

Lossless Image Compression
PNG: Linear prediction (5 types, selected per row) + DEFLATE
JPEG-LS: LOCO predictor + 2nd order prediction (context-based) + Rice coding
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Lossy Coding / Rate-Distortion Theory

Mutual Information and Differential Entropy

Mutual Information
Amount of information a random variable A carries about a random variable B (or vice versa)

Discrete random variable A: I (A;B) = I (B;A) = H(A)− H(A |B)

Continuous random variable A: I (A;B) = I (B;A) = h(A)− h(A |B)

Differential Entropy
Measure for continuous random variables (different meaning than discrete entropy)

Marginal differential entropy: h(A) = E{− log2 f (A) } = −
∫
f (a) log2 f (a) da

Conditional differential entropy: h(A |B) = E{− log2 f (A |B) } = −
∫∫

f (a, b) log2 f (a | b) da db

Differential block entropy: hN(A) = E{− log2 f (A1, · · · ,AN) } = −
∫
f (a) log2 f (a) da

Differential entropy rate: h̄(A) = lim
N→∞

1
N

hN(A)
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Lossy Coding / Rate-Distortion Theory

Fundamental Source Coding Theorem

Rate-Distortion Function

Property of source

R(D) = lim
N→∞

inf
gN : δN (gN )≤D

IN( gN )

N

D(R) = lim
N→∞

inf
gN : IN (gN )/N≤R

δN( gN )

R

D

region of
achievable
rate-distortion
points (R,D)

rate-distortion
function R(D)

Fundamental Source Coding Theorem
Rate-distortion function specifies the greatest lower bound for any source code

∀Q : δ(Q) ≤ D =⇒ r(Q) ≥ R(D)

∀Q : r(Q) ≤ R =⇒ δ(Q) ≥ D(R)
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Lossy Coding / Rate-Distortion Theory

Rate-Distortion Function for Discrete and Continuous Sources

Discrete Source

R

D
Dmax

H̄(S) = Rmax

0
0

R = 0

D = 0

Continuous Source

R

D
Dmax0

0

R = 0

+∞

R(D) is non-increasing and convex function
MSE Distortion: Dmax = σ2

S
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Lossy Coding / Rate-Distortion Theory

High-Rate Approximation: Shannon Lower Bound

Maximization of Differential Entropy
Gaussian iid process has the largest N-th order differential entropy among all stationary processes
with the same variance

hN(S) ≤ hGiidN (S) =
N

2
log2

(
2πeσ2)

Shannon Lower Bound for MSE Distortion
High-rate approximation of rate-distortion function (asymptotically tight)

RL(D) = h̄(S)− 1
2

log2(2πe D) and DL(R) =
1

2πe
· 22h̄(S) · 2−2R

General form of distortion-rate function for Shannon lower bound

DL(R) = ε2L · σ2 · 2−2R with ε2L =
1

2πe
· 22 h̄(S/σ)
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Lossy Coding / Rate-Distortion Theory

Shannon Lower Bound and Rate-Distortion Functions for Selected Sources

Shannon Lower Bound for Selected Sources

Uniform IID: h̄(S) =
1
2

log2
(
12σ2 ) DL(R) =

6
πe
· σ2 · 2−2R

Laplacian IID: h̄(S) =
1
2

log2
(
2e2σ2 ) DL(R) =

e

π
· σ2 · 2−2R

Gaussian IID: h̄(S) =
1
2

log2
(
2πe σ2 ) DL(R) = σ2 · 2−2R

Gauss-Markov: h̄(S) =
1
2

log2
(
2πe (1− %2)σ2 ) DL(R) = (1− %2) · σ2 · 2−2R

Rate-Distortion Function for Selected Gaussian Sources

Gaussian IID: D(R) = DL(R) = σ2 · 2−2R for all rates R ≥ 0

Gauss-Markov: D(R) = DL(R) = (1− %2) · σ2 · 2−2R for rates R ≥ log2(1 + %)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 36 / 80



Lossy Coding / Rate-Distortion Theory

Check Your Knowledge: Rate-Distortion Theory

1 What does the rate-distortion function R(D) for a given source tell us?

2 Sketch the rate-distortion function for a discrete source and a continuous source.

3 The rate-distortion function is defined by

R(D) = lim
N→∞

inf
gN :δN (gN )≤D

IN(gN)

N

Show that the fundamental lossless coding theorem is a special case of the fundamental source
coding theorem.

4 What is the Shannon lower bound? Explain its relation to the rate-distortion function.

5 Consider the Shannon lower bound. Write down the general form of the distortion-rate function for
MSE distortion.
By what amount do we have to increase the bit rate in order to get a distortion reduction of 50%?
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Lossy Coding / Scalar Quantization

Scalar Quantization

quantizer Q

encoder
mapping α

decoder
mapping β

s q s ′

quantization indexes

Encoder mapping α: Maps input sample s to a quantizer index q (integer)

q = α( s )

Decoder mapping β: Maps quantizer index q to reconstructed samples s ′

s ′ = β( q )

Overall input-output function: Maps input sample s to reconstructed sample s ′

s ′ = Q( s ) = β(α( s ) )

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 38 / 80



Lossy Coding / Scalar Quantization

Input-Output Function of Scalar Quantizers

s

s ′ = Q(s)

s ′k

s ′k+1

s ′k−1

s ′k−2

s ′k−3

K reconstruction levels

uk−2 uk−1

uk uk+1

K − 1 decision thresholds

∆k

quantization
step sizes

Scalar quantizer mapping: Q : R 7→ { · · · , s ′k−1, s
′
k , s
′
k+1, · · · }

Quantization intervals: Ik = [uk , uk+1)

Quantization step sizes: ∆k = uk+1 − uk

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 39 / 80



Lossy Coding / Scalar Quantization

Coding Efficiency of Scalar Quantizers

s

u−3 u−2 u−1 u0 u1 u2 u3 u4

q = . . . −4 −3 −2 −1 0 1 2 3 4

s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4

Bit rate R and MSE distortion D of a scalar quantizer Q (and associated entropy coding)

R = E
{
`
(
Q(S)

) }
=
∑
∀k

pk · `k =
∑
∀k

`k

∫ uk+1

uk

f (s) ds

D = E
{ (

S − Q(S)
)2 }

=
∑
∀k

∫ uk+1

uk

(
s − s ′k

)2
f (s) ds
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Lossy Coding / Scalar Quantization

Lloyd Quantizer: Minimization of Distortion

Design Goal
Neglect entropy coding or assume fixed-length coding: R = log2 K

Minimize distortion for given quantizer size K

Optimization Criterions for MSE distortion

1 Centroid condition: s ′k = E{S |S ∈ Ik } =

∫ uk+1
uk

s f (s) ds∫ uk+1
uk

f (s) ds

2 Nearest neighbour condition: uk =
1
2
(
s ′k−1 + s ′k

)
Design Algorithm

Choose quantizer size K

Iterate between optimization criterions (using pdf or training set)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 41 / 80



Lossy Coding / Scalar Quantization

Minimization of Distortion and Bit Rate: Lagrange Optimization

Constrained Optimization Problem
Can be formulated as

minD subject to R ≤ Rtarget, or

minR subject to D ≤ Dtarget

Lagrangian Optimization Problem
Reformulation as unconstrained problem

minD + λ · R with λ > 0

Solution for a given λ is also a solution
of the original problem for some Rtarget

α

−λ · R

λ = tanα

C

convex hull

Rtarget

solution of
constrained
problem

D

R

Geometrical interpretation: Minimize distance C to a line D = −λ · R
Solutions of Lagrange optimization problems (for all λ > 0) lie on convex hull
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Lossy Coding / Scalar Quantization

Entropy-Constrained Lloyd Quantizer: Optimal Scalar Quantization

Design Goal
Assume optimal entropy coding: R = H(S ′)

Minimize Lagrangian cost J = D + λ · R (for given operation point, i.e., given λ)

Optimization Criterions for MSE distortion

1 Centroid condition: s ′k = E{ S |S ∈ Ik } =

∫ uk+1
uk

s f (s) ds∫ uk+1
uk

f (s) ds

2 Entropy condition: `k = − log2 pk = − log2

∫ uk+1

uk

f (s) ds

3 Modified nearest neighbour condition: uk =
1
2
(
s ′k−1 + s ′k

)
+
λ

2

(
`k − `k−1

s ′k − s ′k−1

)
Design Algorithm

Choose Lagrange multiplier λ and initial quantizer size K (should be large enough)
Iterate between optimization criterions (using pdf or training set)
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Lossy Coding / Scalar Quantization

Example: EC Lloyd vs Lloyd at Same Entropy (Laplace)

Lloyd Algorithm

s
u1 u2 u3

s ′1 s ′2 s ′3 s ′4

K = 4 (RFL = 2.0)

H = 1.728
D = 0.176

SNR = 7.54 dB

Entropy-Constrained Lloyd Algorithm

s
u−3 u−2 u−1 u0 u1 u2 u3 u4

s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4

λ = 0.1350
H = 1.728
D = 0.104 factor 0.59 smaller

SNR = 9.83 dB 2.29 dB better
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Lossy Coding / Scalar Quantization

High-Rate Approximations for Scalar Quantizers

High-Rate Distortion-Rate Function for MSE Distortion

General form of distortion-rate function

DX (R) = ε2X · σ2 · 2−2R

where the constant factor ε2X depends on
shape of pdf and
quantizer design

Lloyd + FLC: ε2F =
1
12

(∫ ∞
−∞

3
√

f (s/σ) ds
)3

EC-Lloyd + VLC: ε2V =
1
12

22 h(S/σ)

Shannon lower bound: ε2L =
1

2πe
22 h(S/σ)

Comparison of Coding Efficiency
EC-Lloyd often significantly better than Lloyd (Gauss: 2.82 dB; Laplace: 5.63 dB)
Constant performance gap between high-rate EC-Lloyd and Shannon lower bound

DV (R)

DL(R)
=
πe

6
≈ 1.42 (1.53 dB), RV (D)− RL(D) =

1
2

log2
πe

6
≈ 0.25
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Lossy Coding / Scalar Quantization

Comparison of Quantizers and High-Rate Approximations: Laplacian Source

High-rate approximations

DX (R) = ε2X · σ2 · 2−2R

SLB: ε2L =
e

π

Lloyd: ε2F =
9
2

EC-Lloyd: ε2V =
e2

6

DF

DL
=

9π
2 e
≈ 5.20 (7.16 dB)

DV

DL
=

π e

6
≈ 1.42 (1.53 dB) 0 1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

bit rate R [bits per sample]

SN
R
[d
B
]

Shannon lower bound
Panter & Dite
Gish & Pierce
Lloyd quantizers
EC Lloyd quantizers
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Lossy Coding / Scalar Quantization

In Practice: Uniform Reconstruction Quantizers (URQs)

s

u−4 u−3 u−2 u−1 u0 u1 u2 u3 u4 u5

∆ ∆

s ′−5 s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4 s ′5

−5∆ −4∆ −3∆ −2∆ −1∆ 0 1∆ 2∆ 3∆ 4∆ 5∆

Uniform reconstruction quantizers
Equally spaced reconstruction levels (indicated by quantization step size ∆)

Decoder: Reconstruction levels are completely specified by quantization step size ∆

Simple decoding process: s ′n = ∆ · qn

Encoder: Freedom to adapt decision thresholds to source statistics
Simple encoding (rounding) or advanced encoding (Lagrange optimization)

For typical pdfs: Negligible loss relative to optimal scalar quantizers
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Lossy Coding / Scalar Quantization

Check Your Knowledge: Scalar Quantization

1 What is a scalar quantizer? What parameters impact the rate-distortion efficiency?
Write down a formula for the MSE distortion of a scalar quantizer (for a given pdf).

2 Why are most decisions in real-world encoders based on Lagrangian optimization?

3 Assume you are given a large training set for a given source.
Explain how you could derive an optimal scalar quantizer (with variable-length entropy coding)?

4 What are uniform reconstruction quantizers? And why they are typically used in practice instead of
optimal scalar quantizers?

5 Given is a decoder, which consists of scalar Huffman decoding and a uniform reconstruction
quantizer. That means, the decoder entropy decodes quantization indexes q using a pre-defined
codeword table. And given the quantization indexes, the reconstructed samples are obtained
according to s ′ = ∆ · q, where ∆ is a pre-defined quantization step size.
Your task is to implement an optimal encoder for the given decoder. How would you determine the
quantization indexes in the encoder (for a given signal)?
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Lossy Coding / Vector Quantization

Vector Quantization

Vector Quantizers of Quantizer Dimension N

Map N-d input vectors s to N-d output vectors s′k
Q : RN 7→ { s′0, s′1, s′2, · · · }

Partition N-d space into countable number of quantization cells Ck
Ck = { s ∈ RN : Q(s) = s′k }

All input vectors s that fall inside a quantization cell Ck
are mapped to the associated reconstruction vector s′k −4 −2 0 2 4

−4

−2

0

2

4

Vector Quantization and Entropy Coding
Quantization index k indicates quantization cell Ck and reconstruction vector s′k

Encoder mapping: α(s) = k , ∀s ∈ Ck
Decoder mapping: β(k) = s′k
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Lossy Coding / Vector Quantization

Performance of Vector Quantizers

Average MSE distortion D per sample

D =
1
N

E
{ ∣∣∣∣S − Q(S)

∣∣∣∣2
2

}
=

1
N

∑
∀k

∫
Ck

∣∣∣∣ s − s′k
∣∣∣∣2

2 f (s) ds

Average bit rate R per sample

R =
1
N

E
{
`(Q(S) )

}
=

1
N

∑
∀k

pk `k

with probability of quantization cell / index

pk =

∫
Ck

f (s) ds

−4 −2 0 2 4

−4

−2

0

2

4
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Lossy Coding / Vector Quantization

Optimal Vector Quantizer with Fixed-Length Coding

Extension of Lloyd Design to Higher Dimensions
Neglect entropy coding: Assume fixed-length coding: R = (log2 K )/N

Minimize distortion D for given quantizer size K

Optimization Criterions for MSE distortion

1 Centroid condition: s′k = E{S |S ∈ Ck } =

∫
Ck s f (s) ds∫
Ck f (s) ds

2 Nearest neighbour condition: α(s) = arg min
∀k

∥∥s − s′k
∥∥2

2

The Linde-Buzo-Gray (LBG) Algorithm
Choose quantizer size K

Iterate between optimization criterions (using training set)
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Lossy Coding / Vector Quantization

Optimal Vector Quantizer with Variable-Length Coding

Extension of EC-Lloyd Design to Higher Dimensions
Assume optimal entropy coding: R = HN(S ′)/N

Minimize Lagrangian cost J = D + λ · R (for given operation point, i.e., given λ)

Optimization Criterions for MSE distortion

1 Centroid condition: s′k = E{S |S ∈ Ck } =

∫
Ck s f (s) ds∫
Ck f (s) ds

2 Entropy condition: `k = − log2 pk = − log2

∫
Ck

f (s) ds

3 Modified nearest neighbour condition: α(s) = arg min
∀k

∥∥s − s′k
∥∥2

2 + λ · `k

The Chou-Lookabough-Gray (CLG) Algorithm
Choose Lagrange multiplier λ and initial quantizer size K (should be large enough)
Iterate between optimization criterions (using training set)
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Lossy Coding / Vector Quantization

The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects:

Space filling advantage:
ZN lattice is not most efficient sphere packing in N dimensions (N > 1)

Independent from source distribution or statistical dependencies
Maximum gain for N →∞: 1.53 dB

Shape advantage:
Exploit shape of source pdf (even without entropy coding)
Can also be exploited using entropy-constrained scalar quantization

Memory advantage:
Exploit statistical dependencies of the source
Can also be exploited using predictive coding, transform coding,
block entropy coding or conditional entropy coding
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Lossy Coding / Vector Quantization

Space-Filling Advantage: Sphere Packing in N-dimensional Signal Space

Space filling gain: Densest packing of “optimal” quantization cells in signal space
MSE distortion: Densest packing of spheres in N-dimensional space

2 dimensions: Hexagonal lattice (like honeycombs)
3 dimensions: Cuboidal lattice (stapling of cannon balls / oranges)

Space filling gain for MSE distortion approaches 1.53 dB for N →∞
Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 54 / 80



Lossy Coding / Vector Quantization

Example: Gaussian IID (σ2 = 1) at 3 Bits per Sample

LBG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0296
SNR = 15.29 dB

CLG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0214
SNR = 16.70 dB

EC Lloyd (N = 1)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0222
SNR = 16.53 dB

Large gain (1.4 dB) for CLG relative to LBG algorithm (variable-length vs fixed-length coding)
Gain of CLG relative to EC Lloyd reduces to space-filling gain (0.17 dB for N = 2)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Summary 55 / 80



Lossy Coding / Vector Quantization

Example: Gauss-Markov (σ2 = 1, % = 0.9) at 3 Bits per Sample

LBG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0125
SNR = 19.04 dB

CLG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0099
SNR = 20.06 dB

EC Lloyd (N = 1)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0222
SNR = 16.53 dB

Large gain (1.0 dB) for CLG relative to LBG algorithm (variable-length vs fixed-length coding)
Gain of CLG relative to EC Lloyd: Sum of memory gain and space-filling gain
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Lossy Coding / Vector Quantization

Lattice Vector Quantizers

Lattice Vector Quantizer
Reconstruction vectors are located on multi-dimensional lattice

Lattice is specified by N “basis vectors” {bk}
Reconstruction vectors given by matrix of “basis vectors”

s′k1,k2,··· ,kN = M · [k1, k2, · · · , kN ]T

Simple decoder operation possible
Less complex encoding (can still by very complex for large N)

Transform Coding
Lattice vector quantizer with orthonormal “basis vectors”
Very simple encoding and decoding
One of the most often used approaches in lossy coding
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Lossy Coding / Vector Quantization

Check Your Knowledge: Vector Quantization

1 What is a vector quantizer? What is the main difference to a scalar quantizer?

2 Why can vector quantizers achieve a higher coding efficiency than scalar quantizers?
Explain the three vector quantizer advantages.

3 Is it true that vector quantizers can improve the coding efficiency only for sources with memory?

4 Assume you are given a large training set for a considered source.
How could you design an optimal vector quantizer for the considered source.

5 Why are (unconstrained) vector quantizers rarely used in practice?
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Lossy Coding / Transform Coding

Transform Coding

Transform removes (or reduces) linear dependencies between samples before scalar quantization
For correlated sources: Scalar quantization in transform domain is more efficient

encoder

α0

α1
...

αN−1

forward
transform

A

entropy
coding

γ

u0

u1

uN−1

q0

q1

qN−1

s

decoder

β0

β1
...

βN−1

entropy
decoding

γ−1

inverse
transform

A−1

q0

q1

qN−1

u′0

u′1

u′N−1

s ′b

Encoder (block-wise)
Forward transform: u = A · s
Scalar quantization: qk = αk(uk)

Entropy coding: b = γ( {qk} )

Decoder (block-wise)
Entropy decoding: {qk} = γ−1(b)

Inverse quantization: u′k = βk(qk)

Inverse transform: s′ = A−1 · u′
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Lossy Coding / Transform Coding

Orthogonal Block Transforms

Transform matrix has property: A−1 = AT (special case of unitary matrix)

A =


b0
b1
b2
...

bN−1

 A−1 = AT =

 b0 b1 b2 · · · bN−1


Signal is represented as weighted sum of basis vectors: s =

∑
k ukbk , uk = bT

k s

Geometric interpretation: Rotation (and potential reflection) in N-dimensional signal space

Properties of Orthogonal Transforms
Preservation of signal energy / vector length: ||A · s||2 = ||s||2
Same MSE distortion in sample and transform space: ||u′ − u||22 = ||s′ − s||22
Auto-covariance matrix of transform coefficients: CUU = A · CSS · AT

Sum of variances of transform coefficients:
∑

k σ
2
k = N · σ2

S
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Lossy Coding / Transform Coding

Optimal Bit Allocation and High-Rate Approximations

Bit Allocation of Transform Coefficients
Optimal bit allocation: Pareto condition

minD + λ · R ∂

∂Rk
Dk(Rk) = −λ = const

High-Rate Approximation
Optimal bit allocation for high-rate case

Dk(Rk) = D = const ( for URQs: ∆k = ∆ = const )

High-rate distortion rate function for transform coding

D(R) = ε̃2 · σ̃2 · 2−2R with ε̃2 =
(∏

k
ε2k

)1
N

, σ̃2 =
(∏

k
σ2
k

)1
N

High-rate transform coding gain GT and energy-compaction measure GEC

GT =
DSQ(R)

DTC (R)
=
ε2S · σ2

S

ε̃2 · σ̃2 , GEC =
σ2
S

σ̃2 =
1
N

∑
k σ

2
k

N
√∏

k σ
2
k
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Lossy Coding / Transform Coding

Transform Coding as Constrained Vector Quantizer

scalar quantization

quantization cells

transform coding

quantization cells
in transform domain

transform coding

quantization cells
in signal space

Quantization cells are: hyper-rectangles as in conventional scalar quantization
but rotated and aligned with the transform basis vectors

Correlated sources: Uneven distribution of transform coefficient variances
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Lossy Coding / Transform Coding

The Karhunen Loève Transform (KLT)

Design criterion: Orthogonal transform A that yields uncorrelated transform coefficients

CUU = A · CSS · AT =


σ2

0 0 · · · 0
0 σ2

1 · · · 0
...

...
. . .

...
0 0 · · · σ2

N−1

 =⇒ CSS · bk = σ2
k · bk

Eigenvector equation for all basis vectors bk (rows of transform matrix A)

Rows of KLT matrix A are the unit-norm eigenvectors of CSS

Transform coefficient variances σ2
k are the eigenvalues of CSS

A =


b0

b1

...
bN−1

 CUU =


σ2

0 0 · · · 0
0 σ2

1 · · · 0
...

...
. . .

...
0 0 · · · σ2

N−1
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Lossy Coding / Transform Coding

Coding Efficiency of Transform Coding with KLT

High-Rate Approximation for KLT and Gauss-Markov
KLT is the optimal tranform for Gaussian sources
High-rate operational distortion-rate function and transform coding gain (for transform size N)

DN(R) = ε2 · σ2
S · (1− %2)

N−1
N · 2−2R and GN

T = GN
EC = (1− %2)

1−N
N

Transform gain increases with transform size N, but approaches a limit

Comparison to Rate-Distortion Bound
Example: Gauss-Markov, KLT, and optimal scalar quantizers (ECSQ)
Distortion increase relative to Shannon lower bound

D
(KLT)
N (R)

DSLB(R)
=

πe
6 · σ2

S · (1− %2)
N−1
N · 2−2R

σ2
S · (1− %2) · 2−2R =

πe

6
·
(

1
1− %2

)1
N

Large transform sizes (N →∞): Performance gap reduces to space-filling gain (1.53 dB)
Other sources: Transform coding cannot utilize all dependencies (non-linear dependencies)
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Lossy Coding / Transform Coding

Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

signal

DFT:

implicit signal replicaimplicit signal replica

signal

DCT:

mirrored signal

DFT

implicit signal replicaimplicit signal replica

Disadvantage of Discrete Fourier Transform
Sampling of frequency spectrum causes implicit periodic signal extension
Large differences between signal borders reduces rate of convergence of Fourier series

Idea of Discrete Cosine Transform
Introduce mirror symmetry and apply DFT of approximately double size
No discontinuities in periodic signal extension
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Lossy Coding / Transform Coding

The Discrete Cosine Transform of Type II (DCT-II)

Transform Matrix of the Discrete Cosine Transform
The DCT is an orthogonal transform
The transform matrix ADCT = {akn} has the elements

akn = αk · cos

(
π

N
k

(
n +

1
2

))
with αk =

{ √
1/N : k = 0√
2/N : k 6= 0

The basis vectors bk = {akn} represent sampled cosine functions of different frequencies

Relation to KLT
Unit-norm eigenvectors of CSS approach DCT basis vectors for %→ 1
For typical sources: Very small loss in energy compaction relative to KLT

Advantages of DCT
Transform matrix does not depend on the input signal
Fast algorithms for computing the forward and inverse transforms
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Lossy Coding / Transform Coding

Basis Functions of the DCT-II (Example for N = 8)

bk [n] = αk · cos

(
π

N
k

(
n +

1
2

))

b0

b1

b2

b3

b4

b5

b6

b7
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Lossy Coding / Transform Coding

Image & Video Coding: Separable 2D Transforms

Separable Transforms for Blocks of Samples
Successive 1D transforms of rows and columns

Separable forward transform for N × N block

u = A · s · AT

Separable inverse transform for N × N block

s = AT · u · A

Practical importance:
Complexity reduction from O(N4) to O(N3)

Non-separable transforms hard to design
(except KLTs)

Basis blocks of 8× 8 DCT
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Lossy Coding / Transform Coding

Non-Separable KLT vs Separable DCT-II (sorted transform coefficients)

original 4×4 non-separable KLT

GEC = 23.804 dB

4×4 separable DCT-II

GEC = 23.629 dB

Energy compaction slightly decreases due to usage of separable and signal-independent transform
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Lossy Coding / Transform Coding

Check Your Knowledge: Transform Coding

1 Explain the concept of transform coding. Why does it typically improve coding efficiency in
comparison to simple scalar quantization?

2 What is the main reason for using orthogonal transforms in practice?

3 How does the bit allocation among transform coefficients impact the coding efficiency?
What is the optimal bit allocation (general and high rates)?
How is a nearly optimal bit allocation achieved in practice?

4 What is the Karhunen Loève Transform (KLT)?
Show that the following transform is a KLT for all stationary sources:

A =
1√
2

[
1 1
1 −1

]
5 Why do most codecs use the Discrete Cosine Transform (DCT) and not a KLT?

What is the relation of the DCT and the Discrete Fourier Transform?

6 What is a separable transform? Why are separable 2d transforms used in image coding?
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Lossy Coding / Predictive Quantization

Lossy Coding with Prediction: Prediction of Quantization Indexes

entropy
encoder

prediction

quant. +
sn

−
q̂n

qn un entropy
decoder

prediction

dequant.+
s ′n

q̂n

qnunbitstream

Prediction after Quantization
Sources with memory: Quantization indexes have statistical dependencies
Prediction can improve lossless coding of quantization indexes

More accurate: With prediction, entropy coding can be simplified

Require: Predicted value q̂n must be integer (since un must be integer)

Extension: Prediction after Transform and Quantization
Prediction of some transform coefficients (e.g., DC coefficient)
Examples: JPEG, MPEG-2 Video, H.263, MPEG-4 Visual
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Lossy Coding / Predictive Quantization

Lossy Coding with Prediction: Quantization of Prediction Error

entropy
encoder

quant.
qn

prediction

+
sn un

−
ŝn

dequant.+
u′ns ′n

entropy
decoder

dequant. +

prediction

s ′nqn u′n

ŝn

bitstream

Prediction Before Quantization
Idea: Reduce statistical dependencies before quantization (similar to transform coding)
Have to use same prediction signal ŝn at encoder and decoder (otherwise: error accumulation)
Prediction value ŝn has to be derived based on reconstructed samples

ŝn = fpred(s ′n−1, s
′
n−2, · · · )

Requires reconstruction of samples at encoder side
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Lossy Coding / Predictive Quantization

Differential Pulse Code Modulation (DPCM)

Encoder contains decoder except for entropy decoding
Scalar quantizer can be replaced by transform and quantization (DPCM of blocks)

encoder

entropy
encoder

dequant.

+

quant.

prediction

+
sn qn

u′n

s ′n

ŝn

−

un

decoder

entropy
decoder

dequant.

+

prediction

ŝn

u′n

qn

s ′n

bitstream
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Lossy Coding / Predictive Quantization

DPCM for Gauss-Markov Sources

DPCM with Scalar Quantization
Approximation of operational distortion-rate function

D(R) = σ2
U · g(R) = σ2

S ·
1− %2

1− %2 · g(R)
· g(R)

Worse than transform coding at low rates (strong quantization impacts quality of prediction)

High-Rate Approximation
High rates R: g(R) = ε2 · 2−2R and g(R)� 1
Operational distortion-rate function at high rates

D(R) = ε2 · σ2
S · (1− %2) · 2−2R

Same formula as for transform coding with large KLT (N →∞)

Gap to rate-distortion bound represents space-filling gain of vector quantization
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Lossy Coding / Predictive Quantization

Lossy Source Coding: DPCM or Transform Coding ?

Differential Pulse Coding Modulation (DPCM)
Worse coding efficiency than transform coding at low rates (interesting opertation points)
Audio, images, video: Perceptual artifacts when using rather strong quantization

Transform Coding
Better coding efficiency than DPCM at low rates (interesting operation points)
Better subjective quality than DPCM: Can better control perceived quality (frequency spectrum)
Cannot utilize statistical dependencies between blocks (only inside blocks)

Combination of Transform Coding and Prediction
Improve coding efficiency of transform coding by prediction between transform blocks
Two concepts: 1 Prediction after quantization: Only for certain transform coefficients

2 Prediction before transform: DPCM with transform coding as quantizer
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Lossy Coding / Predictive Quantization

Check Your Knowledge: Predictive Quantization

1 Explain two possibilities how the usage of prediction can improve the coding efficiency of lossy
codecs.

2 Explain the concept of differential pulse code modulation (DPCM)
based on a block diagram of an encoder.
Why do we have to derive the predicted value based on reconstructed samples?

3 Does it make sense to use both transform coding and prediction in a codec? Why or why not?
How could these two concepts be combined?
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Lossy Coding / Lossy Coding Examples

Image Coding Example: JPEG

input video picture

(
partitioned
into blocks

)

original
samples

transform
coefficients

quantization
indexes2d block

transform
scalar

quantization
entropy
coding

bitstream

Block-based Transform Coding
1 Transform: Separable DCT-II for 8×8 blocks of samples

2 Quantization: Uniform reconstruction quantizer

3 Entropy Coding: DC Prediction and Run-Level Coding with Huffman tables

a Prediction of quantization index for DC coefficient (mean of block): ∆qn
(0,0) = qn

(0,0) − qn−1
(0,0)

b Huffman table for prediction error ∆qn
(0,0) for DC coefficient

c Run-level coding of remaining quantization indexes (without prediction)
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Lossy Coding / Lossy Coding Examples

Modern Image Coding: Forward-Adaptive DPCM Structure

(
partitioned
into blocks

)
2d block
transform

scalar
quantization

entropy
coding

“inverse”
quantization

inverse
transform

intra-picture
prediction

predictor
selection

sn[x , y ] un[x , y ] tn[x , y ] qn[x , y ] bitstream

t ′n[x , y ]

u′n[x , y ]

s ′n[x , y ]

s ′pic[x , y ]

−

ŝn[x , y ]

moden
sn[x , y ]

s ′pic[x , y ]

moden
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Lossy Coding / Lossy Coding Examples

Hybrid Video Coding

transform &
quantization

entropy
coding

scaling &
inv. transform

motion
estimation

motion
compensation

quantization indexes {k} bitstream

after completion

sn[x , y ]

s ′n−1[x , y ]

(mx ,my )

motion vector (mx ,my )

un[x , y ]

−

u′n[x , y ]

s ′n[x , y ]

current input picture sn

(partitioned into blocks)

buffer for
current picture

frame buffer (s ′n−1)

prediction signal

ŝn[x , y ] = s ′n−1[x + mx , y + my ]
prediction error
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Exam

Oral Exam: 30 Minutes

Possible dates: February, 16 – March, 20 or March, 31 – April, 10

Write e-mail to heiko.schwarz@hhi.fraunhofer.de with 2–3 suggestions for an exam date

Exam will take place at Fraunhofer HHI:

Fraunhofer HHI
Video Coding & Analytics
Salzufer 6
5. Etage
10587 Berlin

Eingang:

Otto-Dibelius Strasse
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