Exercise 1: Properties of Expected Values

Proof the following properties of expected values

Linearity

$$\mathrm{E}\{aX + bY\} = a\mathrm{E}\{X\} + b\mathrm{E}\{Y\}$$

For two independent random variables X and Y, we have

 $\operatorname{E}\{\,XY\,\}=\operatorname{E}\{\,X\,\}\,\operatorname{E}\{\,Y\,\}$

Iterative expectation rule

 $\mathrm{E}\{\,\mathrm{E}\{\,g(X)\,|\,Y\,\}\,\}=\mathrm{E}\{\,g(X)\,\}$

Exercise 2: Correlation and Independence

Investigate the relationship between independence and correlation.

Two random variables X and Y are said to be *correlated* if and only if their covariance $\sigma_{XY}^2 = E\{(X - E\{X\})(Y - E\{Y\})\}$ is not equal to 0.

(a) Can two independent random variables X and Y be correlated?

(b) Are two uncorrelated random variables X and Y also independent?

Exercise 3: Marginal Pmf of Markov Process (Optional)

Given is a stationary discrete Markov process with the alphabet $\mathcal{A} = \{a, b, c\}$ and the conditional pmf

$$p(x_k | x_{k-1}) = P(X_k = x_k | X_{k-1} = x_{k-1})$$

listed in the table below

x _n	$p(x_n \mid a)$	$p(x_n \mid b)$	$p(x_n \mid c)$	$p(x_n)$
а	0.90	0.15	0.25	?
Ь	0.05	0.80	0.15	?
С	0.05	0.05	0.60	?

→ Determine the marginal pmf $p(x) = P(X_k = x)$.

Exercise 4: Unqiue Decodability

Given is a discrete iid process **X** with the alphabet $\mathcal{A} = \{a, b, c, d, e, f, g\}$. The pmf $p_X(x)$ and five example codes are listed in the following table.

x	$p_X(x)$	А	В	С	D	E
а	1/3	1	0	00	01	1
Ь	1/9	0001	10	010	101	100
с	1/27	000000	110	0110	111	100000
d	1/27	00001	1110	0111	010	10000
е	1/27	000001	11110	100	110	000000
f	1/9	001	111110	101	100	1000
g	1/3	01	111111	11	00	10

(a) Calculate the entropy of the source.

- (b) Calculate the average codeword lengths and the redundancies for the given codes.
- (c) Which of the given codes are uniquely decodable codes?

Exercise 5: Prefix Codes

Given is a random variable X with the alphabet $A_X = \{a, b, c, d, e, f\}$. Two sets of codeword lengths are given in the following table.

letter	set A	set B	
а	2	1	
Ь	2	3	
с	2	3	
d	3	3	
е	3	4	
f	4	4	

- (a) For which set(s) can we construct a uniquely decodable code?
- (b) Develop a prefix code for the set(s) determined in (a).
- (c) Consider the prefix code(s) developed in (b). Is it possible to find a pmf p for which the developed code yields an average codedword length $\overline{\ell}$ equal to the entropy H(p)? If yes, write down the probability masses.

Exercise 6: Maximum Entropy (Optional)

Consider an iid process with an alphabet of size N (i.e., the alphabet includes N different letters).

(a) Calculate the entropy $H_{\rm uni}$ for the case that the pmf represents a uniform pmf:

$$orall k, \quad p_k = rac{1}{N}$$

(b) Show that for all other pmfs (i.e., all non-uniform pmfs), the entropy H is less than H_{uni} .