Exercise 1: Huffman Code

Given is a discrete iid process **X** with the alphabet $\mathcal{A} = \{a, b, c, d, e, f, g\}$. The pmf $p_X(x)$ is specified in the following table.

x	$p_X(x)$
а	1/3
Ь	1/9
С	1/27
d	1/27
е	1/27
f	1/9
g	1/3

- (a) Develop a Huffman code for the given pmf $p_X(x)$.
- (b) Calculate the average codeword length of the developed Huffman code.
- (c) Calculate the absolute and relative redundancy for the developed Huffman code.

Exercise 2: Huffman Codes and Entropy Measures

Let $\mathbf{Z} = \{Z_n\}$ be a binary iid process with alphabet $\{0,1\}$ and pmf $\{0.5,0.5\}$ (e.g., coin toss).

Let $\mathbf{X} = \{X_n\}$ be a random process given by $X_n = Z_{n-1} + Z_n$.

- (a) Determine the marginal pmf $p_X(x)$ and the marginal entropy H(X).
- (b) Develop a scalar Huffman code and calculate its average codeword length.
- (c) Determine the conditional pmf $p_{X_n|X_{n-1}}(x_n | x_{n-1})$ and the conditional entropy $H(X_n | X_{n-1})$.

(d) Develop a conditional Huffman code and calculate its average codeword length.

(e) Develop a block Huffman code for N = 2 symbols and calculate its average codeword length. (f) Optional (more difficult):

- Derive a formula for the *N*-th order block entropy $H_N(X_n, \dots, X_{n+N-1})$.
- Determine the entropy rate $\bar{H}(\mathbf{X})$.
- Is X a Markov process?

Exercise 3: Estimate Entropy Measures (Implementation Task)

Write a program (in a programming language of your choice) that estimates the following entropy measures based on the statistics of a given input file:

- Marginal entropy: $H(S_n)$
- 1-st order conditional entropy: $H(S_n | S_{n-1})$
- Block entropy of size N = 2: $H(S_n, S_{n+1})$ [calculate also $H(S_n, S_{n+1})/2$]

Assume that all files represent a sequence of 8-bit samples (i.e., each byte represents a symbol).

Test your program for the following sample files (from course website):

"englishText.txt"

"audioData.raw"

- white uniform noise: "whiteUniformNoise.raw"
- white Gaussian noise: "whiteGaussianNoise.raw"
- correlated Gaussian noise: "correlatedGaussianNoise.raw"
- English text file:
- 8-bit audio data:
- 8-bit image data: "imageData.raw"

What can you conclude about the potential to compress these files?

Heiko Schwarz (Freie Universität Berlin) — Data Compression

Exercise 4: Geometric Pmf (Optional)

Given is a Bernoulli process (binary iid process) $\mathbf{B} = \{B_n\} = \{B\}$ with the alphabet $\mathcal{A}_B = \{0, 1\}$ and the pmf $p_B(0) = p$, $p_B(1) = 1 - p$ with 0 .

Consider the random variable X that specifies the number of successive random variables B_n that have to be observed to get exactly one "1".

- (a) Determine the pmf for X as function of p.
- (b) Determine the entropy H(B) as function of p.
- (c) Determine the entropy H(X) as function of H(B) and p.
- (d) What structure has an optimal scalar variable-length code for X and $p \leq 0.5?$

Calculate its average codeword length as function of p.

Calculate its relative redundancy as function of p.

Hints:

$$\forall_{|a|<1}, \sum_{k=0}^{\infty} a^k = rac{1}{1-a}$$
 and $\forall_{|a|<1}, \sum_{k=0}^{\infty} k a^k = rac{a}{(1-a)^2}$