Exercise 1: Orthogonal Transforms of Size $N=2$ (part I)

If we neglect possible reflections of coordinate axes, all orthogonal transforms for 2-d vectors can be specified by

$$
\boldsymbol{A}=\left[\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]
$$

where α is an arbitrary rotation angle.

Consider a zero-mean Gaussian process with variance σ_{S}^{2} and the first-order correlation coefficient ϱ.
(a) Calculate the variances σ_{0}^{2} and σ_{1}^{2} of the resulting transform coefficients as function of ϱ and α.
(b) Calculate the covariance σ_{01}^{2} between the resulting transform coefficients as function of ϱ and α.
(c) Consider an even rate distribution $R_{0}=R_{1}=R$ and determine the associated high-rate distortion-rate function. Does transform coding improve the coding efficiency relative to scalar quantization for this case?

Exercise 1: Orthogonal Transforms of Size $N=2$ (part II)

(d) Given is the overall rate $R=\left(R_{0}+R_{1}\right) / 2$. Determine the rate distribution $\left(R_{0}, R_{1}\right)$ for which the overall distortion $D=\left(D_{0}+D_{1}\right) / 2$ is minimized (assume that the high rate approximation for scalar quantization of the transform coefficients is valid).
(e) Determine the overall distortion-rate function for optimal rate allocation (and high rates).
(f) Determine the high-rate transform coding gain, which is given by

$$
G_{T}=\frac{D_{\text {scalar quantization }}(R)}{D_{\text {transform coding }}(R)}
$$

(g) For what rotation angles is the high-rate transform coding gain maximized (or the distortion minimized)?

Does the optimal rotation angle depend on the correlation coefficient ϱ ?

Exercise 2: Implement a PSNR Tool for PPM Images

Implement a tool for measuring PSNRs between two PPM images

- Input to the tool shall be two images in PPM format (original and reconstructed)
- The tool should output the following four Peak-Signal-to-Noise Ratios (PSNR measures)
\rightarrow PSNR of red component, PSNR of green component, PSNR of blue component
\Rightarrow Average of the red, green, and blue PSNR

Test the tool by
■ Coding one of our test images with JPEG (e.g., using "convert test.ppm test.jpg")
■ Reconstructing the JPEG-coded image into the ppm format (e.g., using "convert test.jpg rec.ppm")
■ Measuring the PSNRs between the original and reconstructed image using the implemented tool

The PSNR for a color component $c[x, y]$ and its reconstruction $c^{\prime}[x, y]$ is defined as follows

$$
\text { PSNR }=10 \cdot \log _{10}\left(\frac{255^{2}}{\text { MSE }}\right) \quad \text { with } \quad \text { MSE }=\frac{1}{\text { width } \cdot \text { height }} \sum_{x, y}\left(c^{\prime}[x, y]-c[x, y]\right)^{2}
$$

