Exercise 1: Transform Coding Gain for Gauss-Markov Sources

In the video coding standard ITU-T Rec. H.264 the following forward transform is used:

\[
\mathbf{A} = \begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 1 & -1 & -2 \\
1 & -1 & 1 & 1 \\
1 & -2 & 2 & -1
\end{bmatrix}
\]

1. How large is the high-rate transform coding gain (in dB) for a zero-mean Gauss-Markov process with the correlation factor \(\rho = 0.9\)?

2. By what amount (in dB) can the high-rate transform coding gain be increased if the transform is replaced by a KLT?

NOTE: The basis functions of the given transform are orthogonal to each other, but they don’t have the same norm. This has to be taken into account in the calculations.
Consider a zero-mean Gauss-Markov process with variance $\sigma^2_S = 1$ and correlation coefficient $\rho = 0.9$. As transform a KLT of size 3 is used, the resulting transform coefficient variances are

$$\sigma^2_0 = 2.7407, \quad \sigma^2_1 = 0.1900, \quad \sigma^2_2 = 0.0693$$

Consider high-rate quantization with optimal entropy-constrained scalar quantizers.

1. Derive the high-rate operational distortion rate function.

2. What is the optimal high-rate bit allocation scheme for a given overall rate R?

3. Determine the component rates, the overall distortion, and the SNR for a given overall bit rate R of 4 bit per sample.

4. Determine the high-rate transform coding gain.
Prepare a lossy image codec for PPM images. Implement the following:

1. **Reading and writing of PPM images**
 - For details on the PPM format, see older exercises
 - Re-use code from older exercises (see KVV)

2. **Transform coding for sample blocks**
 - **a** Apply a separable 8×8 DCT for an image block (or make the block size $N \times N$ variable)
 - **b** Quantize the resulting transform coefficient by simple rounding (using a fixed quantization step size)
 - **c** Reconstruct transform coefficients (multiplication with quantization step size)
 - **d** Apply the inverse transform (inverse DCT)

3. **Test Your Implementation**
 - Apply the transform coding to all sample blocks of an image (without writing a bitstream)
 - Test the transforms without quantization
 - Test the transform coding with different quantization step sizes (look at reconstructed images)