Source Coding and Compression

Heiko Schwarz

Contact: Dr.-Ing. Heiko Schwarz heiko.schwarz@hhi.fraunhofer.de

Heiko Schwarz

Partl:

Source Coding Fundamentals

Probability, Random Variables and Random Processes

Outline

Part I: Source Coding Fundamentals

• Review: Probability, Random Variables and Random Processes

- Probability
- Random Variables
- Random Processes
- Lossless Source Coding
- Rate-Distortion Theory
- Quantization
- Predictive Coding
- Transform Coding

Part II: Application in Image and Video Coding

- Still Image Coding / Intra-Picture Coding
- Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)

Probability

• Probability theory:

Branch of mathematics for description and modelling of random events

• Modern probability theory – the axiomatic definition of probability – introduced by KOLMOGOROV

Definition of Probability

- Experiment with an uncertain outcome: Random experiment
- Union of all possible outcomes ζ of the random experiment:
 Certain event or sample space O of the random experiment
- **Event**: Subset $\mathcal{A} \subseteq \mathcal{O}$
- Probability: Measure $P(\mathcal{A})$ assigned to \mathcal{A} satisfying the following three axioms
 - **9** Probabilities are non-negative real numbers: $P(\mathcal{A}) \ge 0$, $\forall \mathcal{A} \subseteq \mathcal{O}$
 - ⁽²⁾ Probability of the certain event: $P(\mathcal{O}) = 1$
 - If $\{A_i : i = 0, 1, \dots\}$ is a countable set of events such that $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$P\left(\bigcup_{i} \mathcal{A}_{i}\right) = \sum_{i} P(\mathcal{A}_{i})$$
(14)

Independence and Conditional Probability

• Two events A_i and A_j are **independent** if

$$P(\mathcal{A}_i \cap \mathcal{A}_j) = P(\mathcal{A}_i) P(\mathcal{A}_j)$$
(15)

• The conditional probability of an event A_i given another event A_j , with $P(A_j) > 0$ is

$$P(\mathcal{A}_i|\mathcal{A}_j) = \frac{P(\mathcal{A}_i \cap \mathcal{A}_j)}{P(\mathcal{A}_j)}$$
(16)

• Direct consequence: BAYES' theorem

$$P(\mathcal{A}_i|\mathcal{A}_j) = P(\mathcal{A}_j|\mathcal{A}_i) \frac{P(\mathcal{A}_i)}{P(\mathcal{A}_j)} \quad \text{with} \quad P(\mathcal{A}_i), \ P(\mathcal{A}_j) > 0$$
(17)

• Definitions (15) and (16) also imply that, if A_i and A_j are independent and $P(A_j) > 0$, then

$$P(\mathcal{A}_i \,|\, \mathcal{A}_j) = P(\mathcal{A}_i) \tag{18}$$

Random Variables

• Random variable *S*:

Function of the sample space $\mathcal O$ that assigns a real value $S(\zeta)$ to each outcome $\zeta\in\mathcal O$ of a random experiment

• Define: Cumulative distribution function (cdf) of a random variable S:

$$F_{S}(s) = P(S \le s) = P(\{\zeta : S(\zeta) \le s\})$$
(19)

- Properties of cdfs:
 - $F_S(s)$ is non-decreasing
 - $F_S(-\infty) = 0$
 - $F_S(\infty) = 1$

Joint Cumulative Distribution Function

• Joint cdf or joint distribution of two random variables X and Y

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$
(20)

- N-dimensional random vector $\boldsymbol{S} = (S_0, \cdots, S_{N-1})^{\mathrm{T}}$: Vector of random variables $S_0, S_1, \cdots, S_{N-1}$
- N-dimensional cdf, joint cdf, or joint distribution:

$$F_{\boldsymbol{S}}(\boldsymbol{s}) = P(\boldsymbol{S} \le \boldsymbol{s}) = P(S_0 \le s_0, \cdots, S_{N-1} \le s_{N-1})$$
(21)

with $\boldsymbol{S} = (S_0, \cdots, S_{N-1})^{\mathrm{T}}$ being a random vector

ullet Joint cdf of two random vectors X and Y

$$F_{\boldsymbol{X}\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) = P(\boldsymbol{X} \le \boldsymbol{x}, \boldsymbol{Y} \le \boldsymbol{y})$$
(22)

Conditional Cumulative Distribution Function

• Conditional cdf of random variable S given event ${\cal B}$ with $P({\cal B})>0$

$$F_{S|\mathcal{B}}(s \mid \mathcal{B}) = P(S \le s \mid \mathcal{B}) = \frac{P(\{S \le s\} \cap \mathcal{B})}{P(\mathcal{B})}$$
(23)

 $\bullet\,$ Conditional cdf of a random variable X given another random variable Y

$$F_{X|Y}(x|y) = \frac{F_{XY}(x,y)}{F_Y(y)} = \frac{P(X \le x, Y \le y)}{P(Y \le y)}$$
(24)

ullet Conditional cdf of a random vector X given another random vector Y

$$F_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{x}|\boldsymbol{y}) = \frac{F_{\boldsymbol{X}\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})}{F_{\boldsymbol{Y}}(\boldsymbol{y})}$$
(25)

Continuous Random Variables

- A random variables S is called a **continuous random variable**, if and only if its cdf $F_S(s)$ is a continuous function
- Define: Probability density function (pdf) for continuous random variables

$$f_S(s) = \frac{\mathrm{d}F_S(s)}{\mathrm{d}s} \quad \Longleftrightarrow \quad F_S(s) = \int_{-\infty}^s f_S(t) \,\mathrm{d}t \tag{26}$$

- Properties of pdfs:
 - $f_S(s) \geq 0$, $\forall s$
 - $\int_{-\infty}^{\infty} f_S(t) \, \mathrm{d}t = 1$

Examples for Pdfs

• Uniform pdf:

$$f_S(s) = \begin{cases} 1/A & : -A/2 \le s \le A/2 \\ 0 & : & \text{otherwise} \end{cases}, \quad A > 0$$
 (27)

• Laplacian pdf:

$$f_S(s) = \frac{1}{\sigma_S \sqrt{2}} e^{-|s-\mu_S|\sqrt{2}/\sigma_S}, \qquad \sigma_S > 0$$
 (28)

• Gaussian pdf:

$$f_S(s) = \frac{1}{\sigma_S \sqrt{2\pi}} e^{-(s-\mu_S)^2/(2\sigma_S^2)}, \qquad \sigma_S > 0$$
(29)

Generalized Gaussian Distribution

Joint and Conditional Pdfs

• N-dimensional pdf, joint pdf, or joint density

$$f_{\mathbf{S}}(\mathbf{s}) = \frac{\partial^N F_{\mathbf{S}}(\mathbf{s})}{\partial s_0 \cdots \partial s_{N-1}}$$
(31)

• Conditional pdf or conditional density $f_{S|\mathcal{B}}(s|\mathcal{B})$ of a random variable S given an event \mathcal{B}

$$f_{S|\mathcal{B}}(s|\mathcal{B}) = \frac{\mathrm{d} F_{S|\mathcal{B}}(s|\mathcal{B})}{\mathrm{d} s}$$
(32)

• Conditional density of a random variable X given another random variable Y

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$
(33)

ullet Conditional density of a random vector X given another random vector Y

$$f_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{x}|\boldsymbol{y}) = \frac{f_{\boldsymbol{X}\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})}{f_{\boldsymbol{Y}}(\boldsymbol{y})}$$
(34)

Discrete Random Variables

- A random variable S is called a discrete random variable, if and only if its cdf $F_S(s)$ represents a staircase function
- Discrete random variable S takes values of countable set $\mathcal{A} = \{a_0, a_1, \ldots\}$
- Define: Probability mass function (pmf) for discrete random variables:

$$p_S(a) = P(S = a) = P(\{\zeta : S(\zeta) = a\})$$
(35)

• Cdf of discrete random variable

$$F_S(s) = \sum_{a \le s} p(a)$$
(36)

 $\bullet\,$ Pdf can be constructed using the Dirac delta function $\delta\,$

$$f_S(s) = \sum_{a \in \mathcal{A}} \delta(s-a) \, p_S(a) \tag{37}$$

Examples for Pmfs

• Binary pmf:

$$\mathcal{A} = \{a_0, a_1\} \qquad p_S(a_0) = p, \qquad p_S(a_1) = 1 - p \qquad (38)$$

• Uniform pmf:

$$\mathcal{A} = \{a_0, a_1, \cdots, a_{M-1}\} \qquad p_S(a_i) = 1/M \qquad \forall a_i \in \mathcal{A}$$
(39)

• Geometric pmf:

$$\mathcal{A} = \{a_0, a_1, \cdots\} \qquad p_S(a_i) = (1-p) p^i \qquad \forall a_i \in \mathcal{A} \qquad (40)$$

Joint and Conditional Pmfs

• N-dimensional pmf or joint pmf for a random vector $\boldsymbol{S} = (S_0, \cdots, S_{N-1})^{\mathrm{T}}$

$$p_{\mathbf{S}}(\mathbf{a}) = P(\mathbf{S} = \mathbf{a}) = P(S_0 = a_0, \cdots, S_{N-1} = a_{N-1})$$
 (41)

- Joint pmf of two random vectors ${\bm X}$ and ${\bm Y}:~p_{{\bm X}{\bm Y}}({\bm a}_{{\bm x}},{\bm a}_{{\bm y}})$
- Conditional pmf $p_{S|\mathcal{B}}(a \mid \mathcal{B})$ of a random variable S given an event \mathcal{B} , with $P(\mathcal{B}) > 0$

$$p_{S|\mathcal{B}}(a \mid \mathcal{B}) = P(S = a \mid \mathcal{B})$$
(42)

• Conditional pmf of a random variable X given another random variable Y

$$p_{X|Y}(a_x|a_y) = \frac{p_{XY}(a_x, a_y)}{p_Y(a_y)}$$
(43)

ullet Conditional pmf of a random vector X given another random vector Y

$$p_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{a}_{\boldsymbol{x}}|\boldsymbol{a}_{\boldsymbol{y}}) = \frac{p_{\boldsymbol{X}\boldsymbol{Y}}(\boldsymbol{a}_{\boldsymbol{x}}, \boldsymbol{a}_{\boldsymbol{y}})}{p_{\boldsymbol{Y}}(\boldsymbol{a}_{\boldsymbol{y}})}$$
(44)

Example for a Joint Pmf

- For example, samples in picture and video signals typically show strong statistical dependencies
- Below: Histogram of two horizontally adjacent sampels for the picture 'Lena'

Expectation

• Expectation value or expected value

of a continuous random variable \boldsymbol{S}

$$E\{g(S)\} = \int_{-\infty}^{\infty} g(s) f_S(s) \,\mathrm{d}s \tag{45}$$

of a discrete random variable \boldsymbol{S}

$$E\{g(S)\} = \sum_{a \in \mathcal{A}} g(a) \ p_S(a)$$
(46)

• Important expectation values are mean μ_S and variance σ_S^2

$$\mu_S = E\{S\} \quad \text{and} \quad \sigma_S^2 = E\{(S - \mu_s)^2\} \quad (47)$$

• Expectation value of a function g(S) of a set of N random variables $S = \{S_0, \cdots, S_{N-1}\}$

$$E\{g(\boldsymbol{S})\} = \int_{\mathcal{R}^{N}} g(\boldsymbol{s}) f_{\boldsymbol{S}}(\boldsymbol{s}) \,\mathrm{d}\boldsymbol{s}$$
(48)

Conditional Expectation

• Conditional expectation value of function g(S) given an event $\mathcal{B},$ with $P(\mathcal{B})>0$

$$E\{g(S) \mid \mathcal{B}\} = \int_{-\infty}^{\infty} g(s) f_{S \mid \mathcal{B}}(s \mid \mathcal{B}) \, \mathrm{d}s \tag{49}$$

 \bullet Conditional expectation value of function g(X) given a particular value y for another random variable Y

$$E\{g(X) | y\} = E\{g(X) | Y = y\} = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x, y) \, \mathrm{d}x \qquad (50)$$

- \bullet Note: $E\{g(X)\,|\,y\}$ is a deterministic function of y
- Conditional expectation value of function g(X) given a random variable Y,

$$E\{g(X) | Y\} = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x, Y) \, \mathrm{d}x,$$
(51)

is another random variable

Heiko Schwarz

Iterative Expectation Rule

• Expectation value $E\{Z\}$ of a random variable $Z = E\{g(X)|Y\}$

$$E\{E\{g(X)|Y\}\} = \int_{-\infty}^{\infty} E\{g(X)|y\} f_Y(y) dy$$

=
$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} g(x) f_{X|Y}(x,y) dx\right) f_Y(y) dy$$

=
$$\int_{-\infty}^{\infty} g(x) \left(\int_{-\infty}^{\infty} f_{X|Y}(x,y) f_Y(y) dy\right) dx$$

=
$$\int_{-\infty}^{\infty} g(x) f_X(x) dx$$

=
$$E\{g(X)\}$$
 (52)

 $\implies E\{E\{g(X)|Y\}\} \text{ does not depend on the statistical properties} \\ \text{ of the random variable } Y, \text{ but only on those of } X$

Random Processes

- Series of random experiments at time instants t_n , with n = 0, 1, 2, ...
- Outcome of experiment: Random variable $S_n = S(t_n)$
- **Discrete-time random process**: Series of random variables $S = \{S_n\}$
- Statistical properties of discrete-time random process S: N-th order joint cdf

$$F_{\mathbf{S}_{k}}(\mathbf{s}) = P(\mathbf{S}_{k}^{(N)} \le \mathbf{s}) = P(S_{k} \le s_{0}, \cdots, S_{k+N-1} \le s_{N-1})$$
(53)

• Continuous random process

$$f_{\boldsymbol{S}_{k}}(\boldsymbol{s}) = \frac{\partial^{N}}{\partial s_{0} \cdots \partial s_{N-1}} F_{\boldsymbol{S}_{k}}(\boldsymbol{s})$$
(54)

• Discrete random process

$$F_{\boldsymbol{S}_{k}}(\boldsymbol{s}) = \sum_{\boldsymbol{a} \in \mathcal{A}^{N}} p_{\boldsymbol{S}_{k}}(\boldsymbol{a})$$
(55)

 $\mathcal{A}^{\!N}$ product space of the alphabets \mathcal{A}_n and

$$p_{\mathbf{S}_k}(\mathbf{a}) = P(S_k = a_0, \cdots, S_{k+N-1} = a_{N-1})$$
(56)

Autocovariance and Autocorrelation Matrix

• *N*-th order **autocovariance matrix**

$$\boldsymbol{C}_{N}(t_{k}) = E\left\{\left(\boldsymbol{S}_{k}^{(N)} - \boldsymbol{\mu}_{N}(t_{k})\right)\left(\boldsymbol{S}_{k}^{(N)} - \boldsymbol{\mu}_{N}(t_{k})\right)^{\mathrm{T}}\right\}$$
(57)

• *N*-th order **autocorrelation matrix**

$$\boldsymbol{R}_{N}(t_{k}) = E\left\{\left(\boldsymbol{S}_{k}^{(N)}\right)\left(\boldsymbol{S}_{k}^{(N)}\right)^{\mathrm{T}}\right\}$$
(58)

• Note the following relationship

1

$$C_{N}(t_{k}) = E\left\{\left(\boldsymbol{S}_{k}^{(N)} - \boldsymbol{\mu}_{N}(t_{k})\right)\left(\boldsymbol{S}_{k}^{(N)} - \boldsymbol{\mu}_{N}(t_{k})\right)^{\mathrm{T}}\right\}$$
$$= E\left\{\left(\boldsymbol{S}_{k}^{(N)}\right)\left(\boldsymbol{S}_{k}^{(N)}\right)^{\mathrm{T}}\right\} - E\left\{\boldsymbol{S}_{k}^{(N)}\right\}\boldsymbol{\mu}_{N}(t_{k})^{\mathrm{T}}$$
$$-\boldsymbol{\mu}_{N}(t_{k})E\left\{\boldsymbol{S}_{k}^{(N)}\right\}^{\mathrm{T}} + \boldsymbol{\mu}_{N}(t_{k})\boldsymbol{\mu}_{N}(t_{k})^{\mathrm{T}}$$
$$= \boldsymbol{R}_{N}(t_{k}) - \boldsymbol{\mu}_{N}(t_{k})\boldsymbol{\mu}_{N}(t_{k})^{\mathrm{T}}$$
(59)

Stationary Random Process

• Stationary random process:

Statistical properties are invariant to a shift in time

- $\implies F_{\boldsymbol{S}_k}(\boldsymbol{s}), \ f_{\boldsymbol{S}_k}(\boldsymbol{s}) \text{ and } p_{\boldsymbol{S}_k}(\boldsymbol{a}) \text{ are independent of } t_k \\ \text{and are denoted by } F_{\boldsymbol{S}}(\boldsymbol{s}), \ f_{\boldsymbol{S}}(\boldsymbol{s}) \text{ and } p_{\boldsymbol{S}}(\boldsymbol{a}), \text{ respectively} \end{cases}$
- $\implies \boldsymbol{\mu}_N(t_k), \, \boldsymbol{C}_N(t_k) \text{ and } \boldsymbol{R}_N(t_k) \text{ are independent of } t_k$ and are denoted by $\boldsymbol{\mu}_N, \, \boldsymbol{C}_N$ and \boldsymbol{R}_N , respectively
- $\bullet~N\mbox{-th}$ order autocovariance matrix

$$\boldsymbol{C}_{N} = E\left\{ (\boldsymbol{S}^{(N)} - \boldsymbol{\mu}_{N}) (\boldsymbol{S}^{(N)} - \boldsymbol{\mu}_{N})^{\mathrm{T}} \right\}$$
(60)

is a symmetric Toeplitz matrix

$$C_{N} = \sigma_{S}^{2} \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \cdots & \rho_{N-1} \\ \rho_{1} & 1 & \rho_{1} & \cdots & \rho_{N-2} \\ \rho_{2} & \rho_{1} & 1 & \cdots & \rho_{N-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{N-1} & \rho_{N-2} & \rho_{N-3} & \cdots & 1 \end{pmatrix}$$
(61)

with

$$\rho_{k} = \frac{1}{\sigma_{S}^{2}} E \left\{ (S_{\ell} - \mu_{S}) \left(S_{\ell+k} - \mu_{S} \right) \right\}$$
(62)

Source Coding and Compression

Memoryless and IID Random Processes

• Memoryless random process:

Random process $\boldsymbol{S} = \{S_n\}$ for which the random variables S_n are independent

- Independent and identical distributed (iid) random process: Stationary and memoryless random process
- N-th order cdf $F_{\mathbf{S}}(s)$, pdf $f_{\mathbf{S}}(s)$, and pmf $p_{\mathbf{S}}(a)$ for iid processes, with $s = (s_0, \cdots, s_{N-1})^T$ and $a = (a_0, \cdots, a_{N-1})^T$

$$F_{S}(s) = \prod_{k=0}^{N-1} F_{S}(s_{k})$$
(63)
$$f_{S}(s) = \prod_{k=0}^{N-1} f_{S}(s_{k})$$
(64)
$$p_{S}(a) = \prod_{k=0}^{N-1} p_{S}(a_{k})$$
(65)

 $F_{S}(s),\ f_{S}(s),\ {\rm and}\ p_{S}(a)$ are the marginal cdf, pdf, and pmf, respectively

Markov Processes

• Markov process: Future outcomes do not depend on past outcomes, but only on the present outcome,

$$P(S_n \le s_n \mid S_{n-1} = s_{n-1}, \cdots) = P(S_n \le s_n \mid S_{n-1} = s_{n-1})$$
(66)

Discrete Markov processes

$$p_{S_n}(a_n \mid a_{n-1}, \cdots) = p_{S_n}(a_n \mid a_{n-1})$$
(67)

• Example for a discrete Markov process

a	a_0	a_1	a_2
$p(a a_0)$	0.90	0.05	0.05
$p(a a_1)$	0.15	0.80	0.05
$p(a a_2)$	0.25	0.15	0.60
p(a)			

Continuous Markov Processes

Continuous Markov processes

$$f_{S_n}(s_n \mid s_{n-1}, \cdots) = f_{S_n}(s_n \mid s_{n-1})$$
(68)

• Construction of continuous stationary Markov process $S = \{S_n\}$ with mean μ_S , given a zero-mean iid process $Z = \{Z_n\}$

$$S_n = Z_n + \rho \left(S_{n-1} - \mu_S \right) + \mu_S, \text{ with } |\rho| < 1$$
 (69)

 \implies Variance σ_S^2 of stationary Markov process $oldsymbol{S}$

$$\sigma_S^2 = E\{(S_n - \mu_S)^2\} = E\{(Z_n + \rho(S_{n-1} - \mu_S))^2\} = \frac{\sigma_Z^2}{1 - \rho^2} \quad (70)$$

 \implies Autocovariance function of stationary Markov process S

$$\phi_{k,\ell} = \phi_{|k-\ell|} = E\{(S_k - \mu_S)(S_\ell - \mu_S)\} = \sigma_S^2 \rho^{|k-\ell|}$$
(71)

0

Gaussian Processes

- Gaussian process: Continuous process $S = \{S_n\}$ with the property that all finite collections of random variables S_n represent Gaussian random vectors
- N-th order pdf of stationary Gaussian process with N-th order autocorrelation matrix \pmb{C}_N and mean μ_S

$$f_{\mathbf{S}}(\mathbf{s}) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{C}_N|}} e^{-\frac{1}{2}(\mathbf{s} - \boldsymbol{\mu}_S)^{\mathrm{T}} \mathbf{C}_N^{-1}(\mathbf{s} - \boldsymbol{\mu}_S)} \quad \text{with} \quad \boldsymbol{\mu}_S = \begin{bmatrix} \mu_s \\ \vdots \\ \mu_S \end{bmatrix}$$
(72)

• Stationary Gauss-Markov process:

Stationary process that is a Gaussian process and a Markov process

Chapter Summary

Random variables

- Discrete and continuous random variables
- Cumulative distribution function (cdf)
- Probability density function (pdf)
- Probability mass function (pmf)
- Joint and conditional cdfs, pdfs, pmfs
- Expectation values and conditional expectation values

Random processes

- Stationary processes
- Memoryless processes
- IID processes
- Markov processes
- Gaussian processes
- Gauss-Markov processes

Given is a stationary discrete Markov process with the alphabet $\mathcal{A} = \{a_0, a_1, a_2\}$ and the conditional pmfs listed in the table below

a	a_0	a_1	a_2
$p(a a_0)$	0.90	0.05	0.05
$p(a a_1)$	0.15	0.80	0.05
$p(a a_2)$	0.25	0.15	0.60
p(a)			

Determine the marginal pmf p(a).

Exercise 2

Investigate the relationship between independence and correlation.

(a) Two random variables X and Y are said to be *correlated* if and only if their covariance C_{XY} is not equal to 0.

Can two independent random variables X and Y be correlated?

(b) Let X be a continuous random variable with a variance σ_X² > 0 and a pdf f_X(x). The pdf shall be non-zero for all real numbers, f_X(x) > 0, ∀x ∈ ℝ. Furthermore, the pdf f_X(x) shall be symmetric around zero, f_X(x) = f_X(-x), ∀x ∈ ℝ. Let Y be a random variable given by Y = a X² + b X + c with a, b, c ∈ ℝ. For which values of a, b, and c are X and Y uncorrelated? For which values of a, b, and c are X and Y independent?

- (c) Which of the following statements for two random variables X and Y are true?
 - If X and Y are uncorrelated, they are also independent.
 - If X and Y are independent, $E{XY} = 0$.
 - $\bullet~$ If X and Y are correlated, they are also dependent.