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Probability, Random Variables and Random Processes
.
Outline

Part I: Source Coding Fundamentals
o Review: Probability, Random Variables and Random Processes

e Probability
o Random Variables
o Random Processes

Lossless Source Coding
Rate-Distortion Theory

o
o
@ Quantization
@ Predictive Coding
@ Transform Coding

Part II: Application in Image and Video Coding
o Still Image Coding / Intra-Picture Coding
@ Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Probability, Random Variables and Random Processes

Probability

@ Probability theory:

Probability

Branch of mathematics for description and modelling of random events
@ Modern probability theory — the axiomatic definition of probability —

introduced by KOLMOGOROV
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Ptz iffisy
Definition of Probability

Experiment with an uncertain outcome: Random experiment

@ Union of all possible outcomes ( of the random experiment:
Certain event or sample space O of the random experiment

Event: Subset A C O

o Probability: Measure P(.A) assigned to A satisfying the following three
axioms

© Probabilities are non-negative real numbers: P(A) >0, VYACO
@ Probability of the certain event: P(O) =1

Q@ If {4;:i=0,1,---} is a countable set of events
such that A; N A; =0 for i # j, then

P(U Ai> Yy Py (14)
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Ptz iffisy
Independence and Conditional Probability

@ Two events A; and A; are independent if

| P(Ai N A;) = P(A;) P(A)) | (15)

@ The conditional probability of an event A; given another event A,
with P(A;) > 0is

P(AIA) = T

P(A) (16)

@ Direct consequence: BAYES' theorem

P(A;)
P(A;)

P(.AA.A]) = P(AJ|A1) with  P(A;), P(A]) >0 (17)

@ Definitions (15) and (16) also imply that,
if A; and A; are independent and P(A;) > 0, then

P(A; | Aj) = P(A;) (18)
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Probability, Random Variables and Random Processes Random Variables

Random Variables

o Random variable S:

Function of the sample space O that assigns a real value S({) to each
outcome ( € O of a random experiment

@ Define: Cumulative distribution function (cdf) of a random variable S:

[Fs(s) = P(S< s) = P({C: S < s}) | (19)

@ Properties of cdfs:

o Fg(s) is non-decreasing
° Fs(foo) =0
o Fg(oo) =1
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Probability, Random Variables and Random Processes Random Variables

Joint Cumulative Distribution Function

@ Joint cdf or joint distribution of two random variables X and Y

Fyy(z,y) = P(X <z,Y <y) (20)
@ N-dimensional random vector S = (Sp, -+ ,Sy_1)T:
Vector of random variables Sg, S1, ---, Sn—1

o N-dimensional cdf, joint cdf, or joint distribution:

‘Fs(s) =P(S<s)=P(S< s, ,Sv-1< sn-1) ‘ (21)

with § = (Sp,---,Sn_1)" being a random vector

@ Joint cdf of two random vectors X and Y

Fxy(z,y) = P(X<z,Y<y) (22)
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Probability, Random Variables and Random Processes Random Variables

Conditional Cumulative Distribution Function

e Conditional cdf of random variable S given event B with P(B) > 0

Fais(s|B) = P(S < 5| ) = TS 00 (23)
o Conditional cdf of a random variable X given another random variable Y’
Fiv(aly) = o it = =) (24)
@ Conditional cdf of a random vector X given another random vector Y’
Py (ely) = XY (25)
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Probability, Random Variables and Random Processes Random Variables

Continuous Random Variables

@ A random variables S is called a continuous random variable,
if and only if its cdf Fs(s) is a continuous function

o Define: Probability density function (pdf) for continuous random variables

fS(S)ZdZZfS(s) = Fs(s / fs(t) (26)

@ Properties of pdfs:
° fs(S) Z 0, Vs

f fs(t)dt=1
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Probability, Random Variables and Random Processes Random Variables

Examples for Pdfs

o Uniform pdf:

[ 1A —A/2<S<A/2
fs(s) = { 0 :  otherwise A>0 (27)
e Laplacian pdf:
1
fs(s) = 72 e—|s—us\\/§/os’ og >0 (28)
gs
o Gaussian pdf:
1
fS(S) — e_(s_us)z/(zag)7 og >0 (29)

osV 2T

Heiko Schwarz Source Coding and Compression September 22, 2013 41 / 60



Probability, Random Variables and Random Processes Random Variables

Generalized Gaussian Distribution

fs(s) e~ (z—nl/a)? I'(z) :/ e—t12—1 gt (30)
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Probability, Random Variables and Random Processes Random Variables

Joint and Conditional Pdfs

o N-dimensional pdf, joint pdf, or joint density

0N Fg(s)
=—""" 31
fs(s) D50~ Doy (31)
e Conditional pdf or conditional density fg3(s|B)
of a random variable S given an event B
d Fg5(s|B)
Fsp(slB) = “2E 2 (32)

o Conditional density of a random variable X given another random variable Y

_ Ixy(z,y)

o Conditional density of a random vector X given another random vector Y

_ fxy(z,y)
Ixyy(zly) = ) (34)
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Probability, Random Variables and Random Processes Random Variables

Discrete Random Variables

@ A random variable S is called a discrete random variable,
if and only if its cdf Fis(s) represents a staircase function

Discrete random variable S takes values of countable set A = {ag,a1,...}

Define: Probability mass function (pmf) for discrete random variables:

ps(a) = P(S = a) = P({C: S(Q)=a})| (35)

Cdf of discrete random variable

Fs(s) =Y p(a) (36)

a<s

@ Pdf can be constructed using the Dirac delta function §

fs(s) = 8(s — a)ps(a) (37)

acA
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Probability, Random Variables and Random Processes Random Variables

Examples for Pmfs

o Binary pmf:

A= {ag,a1} ps(ao) = p, ps(a1) =1-p (38)

e Uniform pmf:

A={ao,a1,  ,am-1}  psa;) =1/M Va; € A (39)

o Geometric pmf:

A={ag,a1, -} ps(a;)=(1-p)p*° Va; €A (40)
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Probability, Random Variables and Random Processes Random Variables

Joint and Conditional Pmfs

e N-dimensional pmf or joint pmf for a random vector § = (Sp, - ,Sy_1)"

ps(a) = P(S=a) = P(Sy =ag,--- ,Sx 1=an1)|  (41)

e Joint pmf of two random vectors X and Y: pxy (az,ay)

e Conditional pmf pg(a|B) of a random variable S given an event B,
with P(B) >0
psis(a| B) = P(S = a|B) (42)

o Conditional pmf of a random variable X given another random variable Y

pxiy (aslay) = ’”X;f()) (43)

@ Conditional pmf of a random vector X given another random vector Y

pxy (aslay) = W (49)
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Probability, Random Variables and Random Processes Random Variables

Example for a Joint Pmf
@ For example, samples in picture and video signals typically show strong

statistical dependencies

@ Below: Histogram of two horizontally adjacent sampels for the picture 'Lena’
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Probability, Random Variables and Random Processes Random Variables

Expectation

o Expectation value or expected value
of a continuous random variable S

Blo(s)) = | " () Fs(s) ds

of a discrete random variable S

E{g($)} =) _ g(a) ps(a)

acA

@ Important expectation values are mean ug and variance 052

and | of = B{(5 — )"}

@ Expectation value of a function g(S) of a set of N random variables

S = {SOa"' 7SN71}

Heiko Schwarz

Bo(S)} = [ a(s) fs(s)ds

Source Coding and Compression September 22, 2013

(47)

(48)

48 / 60



Probability, Random Variables and Random Processes Random Variables

Conditional Expectation

o Conditional expectation value of function g(S) given an event B,
with P(B) >0

oo

Bl9(S) 1B} = [ 9(s) Fsin(s| B) ds (#9)

— 00

o Conditional expectation value of function g(X) given a particular value y for

another random variable Y
oo

Blg(0) |y} = B Y=y} = | g@) Fxy(ep) e (50)

—00

e Note: E{g(X) |y} is a deterministic function of y

e Conditional expectation value of function g(X) given a random variable Y,

o0

E{g(X)|Y} = / o) fxpy (@, Y) de, (51)

—0o0
is another random variable
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Probability, Random Variables and Random Processes Random Variables

Iterative Expectation Rule

o Expectation value E{Z} of a random variable Z = E{g(X)|Y'}

BEGWY = [ B0} i)y

- /_OO (/_O; 9(x) fxpy(z,9) da?) fr(y)dy

= /_oig(sc) (/:; fxiv(z,y) fr(y) dy) da

= [ s@rx@as

— 00

E{g(X)} (52)

= E{E{g(X)|Y}} does not depend on the statistical properties
of the random variable Y, but only on those of X
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Probability, Random Variables and Random Processes Random Processes

Random Processes

Fg,(s) = P(S;(CN) <s8)=P(Sk <s0, - ,Sk4+nN-1 < SN-1)

Continuous random

process

N
fss) = 50

— F
S0 - OSN_1 s.(s)

@ Discrete random process

Fg(s)= Y ps,a)

acAN

AN product space of the alphabets A,, and

’pgk(a) =P(Skx=a0, -, Sk4N-1=0aN-1) ‘

Heiko Schwarz

Source Coding and Compression

September 22

Series of random experiments at time instants ¢, withn =0,1,2,...
Outcome of experiment: Random variable S,, = S(t,)
Discrete-time random process: Series of random variables S = {5,,}
Statistical properties of discrete-time random process S: N-th order joint cdf

, 2013

(53)

(54)

(56)
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Probability, Random Variables and Random Processes Random Processes

Autocovariance and Autocorrelation Matrix

@ N-th order autocovariance matrix

Ox(n) = B (81~ (1)) (S0 - nvw) |
@ N-th order autocorrelation matrix
Ry (t) E{ (S](CN)) (S](gN))T}
@ Note the following relationship
Cxlt) = B{ (S0 uutn)) (S8~ na(w) '}
= o{(57) (57"} £{s} e
(1) LS+ a0 i ()"
= Ry (tr) — py(t) pa(te)
Source Coding and Compression September 22, 2013
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Probability, Random Variables and Random Processes Random Processes

Stationary Random Process

o Stationary random process:
Statistical properties are invariant to a shift in time

= Fg,(s), fs,(s) and pg, (a) are independent of ¢

and are denoted by Fg(s), fg(s) and pg(a), respectively
= pp(te), Cn(tk) and Ry (tx) are independent of ¢y

and are denoted by un, Cn and Ry, respectively

@ N-th order autocovariance matrix
Cx = B{(S™) = 1y )(S™) ~ 1) "} (60)

is a symmetric Toeplitz matrix

1 p1 P2 st PN-—1
p1 1 PL st PN-2
CN _ O_SQ PQ pl 1 cee PN73 (61)
PN.—l pN.—z PN.—3 1
with 1
Pk = ?E{(Se — ps) (Sevk — ,US)} (62)
S
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Probability, Random Variables and Random Processes Random Processes

Memoryless and IID Random Processes

@ Memoryless random process:
Random process S = {S,,} for which the random variables S, are
independent

o Independent and identical distributed (iid) random process:
Stationary and memoryless random process

@ N-th order cdf Fg(s), pdf fs(s), and pmf pg(a) for iid processes,

with s = (sg,-++ ,sy-1)7 and @ = (ag, -+ ,an_1)T

N-1

Fs(s) = [] Fs(sk) (63)
-

fs(s) = I fs(se) (64)
k=0
N-1

ps(a) = [] ps(ar) (65)
k=0

Fs(s), fs(s), and ps(a) are the marginal cdf, pdf, and pmf, respectively
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Probability, Random Variables and Random Processes Random Processes

Markov Processes

@ Markov process: Future outcomes do not depend on past outcomes,
but only on the present outcome,

P(Sngsn ‘ Snfl =Sn—1,""" ) = P(Sn Ssn | Snfl :Snfl) (66)
@ Discrete Markov processes

pPs, (an | Qp—1,"" ) =Ps, (an | anfl) (67)

@ Example for a discrete Markov process

a an a1 as
p(a|a0) 090 0.05 0.05
p(a|a1) 0.15 0.80 0.05
p(alaz) | 0.25 0.15 0.60

p(a)
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Probability, Random Variables and Random Processes Random Processes

Continuous Markov Processes

@ Continuous Markov processes
fSn(sn | Sn—1,"" ) = fS'n(Sn | Snfl) (68)

e Construction of continuous stationary Markov process S = {.S,,} with
mean yg, given a zero-mean iid process Z = {Z,,}

Sn="Zn+p (Sn—1—ps)+us, with |p| <1 (69)

— Variance o3 of stationary Markov process S

2
o
05 = E{(Sy —ps)*} = E{(Zn + p (Sn—1 — 1s) )’} = 1_Z (70)
— Autocovariance function of stationary Markov process S

Gre = Gi—e) = E{(Sk — ps)(Se — ps)} = o pl~* (71)
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Probability, Random Variables and Random Processes Random Processes

Gaussian Processes

o Gaussian process: Continuous process S = {5} with the property that all
finite collections of random variables S,, represent Gaussian random vectors

@ N-th order pdf of stationary Gaussian process with N-th order
autocorrelation matrix C'y and mean pug

1 s

— —1(s—p)TCH (s—pg) ; — :
s) = e 2 N with : 72
fs(s) GV O] Hs M_S (72)

o Stationary Gauss-Markov process:
Stationary process that is a Gaussian process and a Markov process

o IID process Z = {Z,} in (69) !
has a Gaussian pdf 0s
o Statistical properties are
completely determined by S o
e mean g
. 2 =0.5]
e variance og
e correlation factor p
Iy 10 20 30 40 50
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Probability, Random Variables and Random Processes Chapter Summary
Chapter Summary

Random variables
@ Discrete and continuous random variables
e Cumulative distribution function (cdf)
@ Probability density function (pdf)
@ Probability mass function (pmf)
@ Joint and conditional cdfs, pdfs, pmfs
@ Expectation values and conditional expectation values

Random processes
@ Stationary processes
@ Memoryless processes
o |ID processes
@ Markov processes
@ Gaussian processes

@ Gauss-Markov processes
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Probability, Random Variables and Random Processes [lSCGEECNEF.Y)

Exercise 1

Given is a stationary discrete Markov process with the alphabet A = {ag,a1,a2}
and the conditional pmfs listed in the table below

a an a1 as
p(alag) | 0.90 0.05 0.05
p(a|a1) 0.15 0.80 0.05
p(alaz) | 0.25 0.15 0.60

p(a)

Determine the marginal pmf p(a).
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Probability, Random Variables and Random Processes [lSCGEECNEF.Y)

Exercise 2

Investigate the relationship between independence and correlation.

(a) Two random variables X and Y are said to be correlated if and only if their
covariance C'xy is not equal to 0.
Can two independent random variables X and Y be correlated?

(b) Let X be a continuous random variable with a variance 0% > 0 and a pdf
fx(z). The pdf shall be non-zero for all real numbers, fx(z) >0, Vx € R.
Furthermore, the pdf fx (z) shall be symmetric around zero,
fx(x) = fx(—x), Yx € R. Let Y be a random variable given by
Y=aX2+bX +cwitha,bccR.

For which values of a, b, and ¢ are X and Y uncorrelated?
For which values of a, b, and ¢ are X and Y independent?

(c) Which of the following statements for two random variables X and Y are

true?

e If X and Y are uncorrelated, they are also independent.
o If X and Y are independent, E{XY} = 0.
e If X and Y are correlated, they are also dependent.
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