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Probability, Random Variables and Random Processes

Outline

Part I: Source Coding Fundamentals

Review: Probability, Random Variables and Random Processes

Probability
Random Variables
Random Processes

Lossless Source Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Probability, Random Variables and Random Processes Probability

Probability

Probability theory:
Branch of mathematics for description and modelling of random events
Modern probability theory – the axiomatic definition of probability –
introduced by Kolmogorov
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Probability, Random Variables and Random Processes Probability

Definition of Probability

Experiment with an uncertain outcome: Random experiment

Union of all possible outcomes ζ of the random experiment:
Certain event or sample space O of the random experiment

Event: Subset A ⊆ O

Probability: Measure P (A) assigned to A satisfying the following three
axioms

1 Probabilities are non-negative real numbers: P (A) ≥ 0, ∀A ⊆ O
2 Probability of the certain event: P (O) = 1

3 If {Ai : i = 0, 1, · · · } is a countable set of events
such that Ai ∩ Aj = ∅ for i 6= j, then

P

(⋃
i

Ai

)
=
∑
i

P (Ai) (14)
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Independence and Conditional Probability

Two events Ai and Aj are independent if

P (Ai ∩ Aj) = P (Ai)P (Aj) (15)

The conditional probability of an event Ai given another event Aj ,
with P (Aj) > 0 is

P (Ai|Aj) =
P (Ai ∩ Aj)
P (Aj)

(16)

Direct consequence: Bayes’ theorem

P (Ai|Aj) = P (Aj |Ai)
P (Ai)
P (Aj)

with P (Ai), P (Aj) > 0 (17)

Definitions (15) and (16) also imply that,
if Ai and Aj are independent and P (Aj) > 0, then

P (Ai | Aj) = P (Ai) (18)
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Random Variables

Random variable S:

Function of the sample space O that assigns a real value S(ζ) to each
outcome ζ∈ O of a random experiment

Define: Cumulative distribution function (cdf) of a random variable S:

FS(s) = P (S≤ s) = P ( {ζ : S(ζ)≤ s} ) (19)

Properties of cdfs:

FS(s) is non-decreasing

FS(−∞) = 0

FS(∞) = 1
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Joint Cumulative Distribution Function

Joint cdf or joint distribution of two random variables X and Y

FXY (x, y) = P (X ≤ x, Y ≤ y) (20)

N -dimensional random vector S = (S0, · · · , SN−1)T:

Vector of random variables S0, S1, · · · , SN−1

N-dimensional cdf, joint cdf, or joint distribution:

FS(s) = P (S≤ s) = P (S0≤ s0, · · · , SN−1≤ sN−1) (21)

with S = (S0, · · · , SN−1)T being a random vector

Joint cdf of two random vectors X and Y

FXY (x,y) = P (X≤ x,Y ≤ y) (22)
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Conditional Cumulative Distribution Function

Conditional cdf of random variable S given event B with P (B) > 0

FS|B(s | B) = P (S≤ s | B) =
P ({S≤ s} ∩ B)

P (B)
(23)

Conditional cdf of a random variable X given another random variable Y

FX|Y (x|y) =
FXY (x, y)

FY (y)
=
P (X≤ x, Y ≤ y)

P (Y ≤ y)
(24)

Conditional cdf of a random vector X given another random vector Y

FX|Y (x|y) =
FXY (x,y)

FY (y)
(25)
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Continuous Random Variables

A random variables S is called a continuous random variable,
if and only if its cdf FS(s) is a continuous function

Define: Probability density function (pdf) for continuous random variables

fS(s) =
dFS(s)

ds
⇐⇒ FS(s) =

∫ s

−∞
fS(t) dt (26)

Properties of pdfs:

fS(s) ≥ 0, ∀s∫∞
−∞ fS(t) dt = 1
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Examples for Pdfs

Uniform pdf:

fS(s) =

{
1/A : −A/2 ≤ s ≤ A/2
0 : otherwise

, A > 0 (27)

Laplacian pdf:

fS(s) =
1

σS
√

2
e−|s−µS |

√
2/σS , σS > 0 (28)

Gaussian pdf:

fS(s) =
1

σS
√

2π
e−(s−µS)

2/(2σ2
S ), σS > 0 (29)
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Generalized Gaussian Distribution

fS(s) =
β

2αΓ(1/β)
· e−(|x−µ|/α)

β

Γ(z) =

∫ ∞
0

e−t tz−1 dt (30)
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Joint and Conditional Pdfs

N-dimensional pdf, joint pdf, or joint density

fS(s) =
∂NFS(s)

∂s0 · · · ∂sN−1
(31)

Conditional pdf or conditional density fS|B(s|B)
of a random variable S given an event B

fS|B(s|B) =
d FS|B(s|B)

d s
(32)

Conditional density of a random variable X given another random variable Y

fX|Y (x|y) =
fXY (x, y)

fY (y)
(33)

Conditional density of a random vector X given another random vector Y

fX|Y (x|y) =
fXY (x,y)

fY (y)
(34)
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Discrete Random Variables

A random variable S is called a discrete random variable,
if and only if its cdf FS(s) represents a staircase function

Discrete random variable S takes values of countable set A = {a0, a1, . . .}

Define: Probability mass function (pmf) for discrete random variables:

pS(a) = P (S = a) = P ( {ζ : S(ζ)= a} ) (35)

Cdf of discrete random variable

FS(s) =
∑
a≤s

p(a) (36)

Pdf can be constructed using the Dirac delta function δ

fS(s) =
∑
a∈A

δ(s− a) pS(a) (37)
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Examples for Pmfs

Binary pmf:

A = {a0, a1} pS(a0) = p, pS(a1) = 1− p (38)

Uniform pmf:

A = {a0, a1, · · ·, aM−1} pS(ai) = 1/M ∀ ai ∈ A (39)

Geometric pmf:

A = {a0, a1, · · · } pS(ai) = (1− p) pi ∀ ai ∈ A (40)
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Joint and Conditional Pmfs

N-dimensional pmf or joint pmf for a random vector S = (S0, · · · , SN−1)T

pS(a) = P (S= a) = P (S0 = a0, · · · , SN−1 = aN−1) (41)

Joint pmf of two random vectors X and Y : pXY (ax,ay)

Conditional pmf pS|B(a | B) of a random variable S given an event B,
with P (B) > 0

pS|B(a | B) = P (S = a | B) (42)

Conditional pmf of a random variable X given another random variable Y

pX|Y (ax|ay) =
pXY (ax, ay)

pY (ay)
(43)

Conditional pmf of a random vector X given another random vector Y

pX|Y (ax|ay) =
pXY (ax,ay)

pY (ay)
(44)
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Example for a Joint Pmf

For example, samples in picture and video signals typically show strong
statistical dependencies

Below: Histogram of two horizontally adjacent sampels for the picture ’Lena’

Relative

frequency 


of 
occurence


Amplitude of

adjacent pixel


Amplitude of

current pixel 
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Expectation

Expectation value or expected value
of a continuous random variable S

E{g(S)} =

∫ ∞
−∞

g(s) fS(s) ds (45)

of a discrete random variable S

E{g(S)} =
∑
a∈A

g(a) pS(a) (46)

Important expectation values are mean µS and variance σ2
S

µS = E{S} and σ2
S = E

{
(S − µs)2

}
(47)

Expectation value of a function g(S) of a set of N random variables
S = {S0, · · · , SN−1}

E{g(S)} =

∫
RN

g(s) fS(s) ds (48)
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Conditional Expectation

Conditional expectation value of function g(S) given an event B,
with P (B) > 0

E{g(S) | B} =

∫ ∞
−∞

g(s) fS|B(s | B) ds (49)

Conditional expectation value of function g(X) given a particular value y for
another random variable Y

E{g(X) | y} = E{g(X) |Y =y} =

∫ ∞
−∞

g(x) fX|Y (x, y) dx (50)

Note: E{g(X) | y} is a deterministic function of y

Conditional expectation value of function g(X) given a random variable Y ,

E{g(X) |Y } =

∫ ∞
−∞

g(x) fX|Y (x, Y ) dx, (51)

is another random variable
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Iterative Expectation Rule

Expectation value E{Z} of a random variable Z = E{g(X)|Y }

E{E{g(X)|Y }} =

∫ ∞
−∞

E{g(X)|y} fY (y) dy

=

∫ ∞
−∞

(∫ ∞
−∞

g(x) fX|Y (x, y) dx

)
fY (y) dy

=

∫ ∞
−∞

g(x)

(∫ ∞
−∞

fX|Y (x, y) fY (y) dy

)
dx

=

∫ ∞
−∞

g(x) fX(x) dx

= E{g(X)} (52)

=⇒ E{E{g(X)|Y }} does not depend on the statistical properties
of the random variable Y , but only on those of X
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Random Processes

Series of random experiments at time instants tn, with n = 0, 1, 2, . . .
Outcome of experiment: Random variable Sn = S(tn)
Discrete-time random process: Series of random variables S = {Sn}
Statistical properties of discrete-time random process S: N -th order joint cdf

FSk(s) = P (S
(N)
k ≤ s) = P (Sk ≤ s0, · · · , Sk+N−1 ≤ sN−1) (53)

Continuous random process

fSk(s) =
∂N

∂s0 · · · ∂sN−1
FSk(s) (54)

Discrete random process

FSk(s) =
∑
a∈AN

pSk(a) (55)

AN product space of the alphabets An and

pSk(a) = P (Sk = a0, · · · , Sk+N−1 = aN−1) (56)
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Autocovariance and Autocorrelation Matrix

N -th order autocovariance matrix

CN (tk) = E

{(
S

(N)
k − µN (tk)

) (
S

(N)
k − µN (tk)

)T}
(57)

N -th order autocorrelation matrix

RN (tk) = E

{(
S

(N)
k

) (
S

(N)
k

)T}
(58)

Note the following relationship

CN (tk) = E

{(
S

(N)
k − µN (tk)

) (
S

(N)
k − µN (tk)

)T}
= E

{(
S

(N)
k

) (
S

(N)
k

)T}
− E

{
S

(N)
k

}
µN (tk)T

−µN (tk)E
{
S

(N)
k

}T

+ µN (tk)µN (tk)T

= RN (tk)− µN (tk)µN (tk)T (59)
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Stationary Random Process

Stationary random process:
Statistical properties are invariant to a shift in time

=⇒ FSk(s), fSk(s) and pSk(a) are independent of tk
and are denoted by FS(s), fS(s) and pS(a), respectively

=⇒ µN (tk), CN (tk) and RN (tk) are independent of tk
and are denoted by µN , CN and RN , respectively

N -th order autocovariance matrix

CN = E
{

(S(N)− µN )(S(N)− µN )T
}

(60)

is a symmetric Toeplitz matrix

CN = σ2
S


1 ρ1 ρ2 · · · ρN−1

ρ1 1 ρ1 · · · ρN−2

ρ2 ρ1 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 (61)

with

ρk =
1

σ2
S

E
{

(S` − µS) (S`+k − µS)
}

(62)
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Memoryless and IID Random Processes

Memoryless random process:
Random process S = {Sn} for which the random variables Sn are
independent

Independent and identical distributed (iid) random process:
Stationary and memoryless random process

N -th order cdf FS(s), pdf fS(s), and pmf pS(a) for iid processes,
with s = (s0, · · · , sN−1)T and a = (a0, · · · , aN−1)T

FS(s) =

N−1∏
k=0

FS(sk) (63)

fS(s) =

N−1∏
k=0

fS(sk) (64)

pS(a) =

N−1∏
k=0

pS(ak) (65)

FS(s), fS(s), and pS(a) are the marginal cdf, pdf, and pmf, respectively
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Markov Processes

Markov process: Future outcomes do not depend on past outcomes,
but only on the present outcome,

P (Sn≤sn |Sn−1 =sn−1, · · · ) = P (Sn≤sn |Sn−1 =sn−1) (66)

Discrete Markov processes

pSn(an | an−1, · · · ) = pSn(an | an−1) (67)

Example for a discrete Markov process

a a0 a1 a2
p(a|a0) 0.90 0.05 0.05
p(a|a1) 0.15 0.80 0.05
p(a|a2) 0.25 0.15 0.60
p(a)
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Continuous Markov Processes

Continuous Markov processes

fSn(sn | sn−1, · · · ) = fSn(sn | sn−1) (68)

Construction of continuous stationary Markov process S = {Sn} with
mean µS , given a zero-mean iid process Z = {Zn}

Sn = Zn + ρ (Sn−1 − µS) + µS , with |ρ| < 1 (69)

=⇒ Variance σ2
S of stationary Markov process S

σ2
S = E

{
(Sn − µS)2

}
= E

{
(Zn + ρ (Sn−1 − µS) )2

}
=

σ2
Z

1− ρ2
(70)

=⇒ Autocovariance function of stationary Markov process S

φk,` = φ|k−`| = E{(Sk − µS)(S` − µS)} = σ2
S ρ
|k−`| (71)
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Gaussian Processes

Gaussian process: Continuous process S = {Sn} with the property that all
finite collections of random variables Sn represent Gaussian random vectors

N -th order pdf of stationary Gaussian process with N -th order
autocorrelation matrix CN and mean µS

fS(s) =
1√

(2π)N |CN |
e−

1
2 (s−µS)

TC−1
N (s−µS) with µS =

 µs
...
µS

 (72)

Stationary Gauss-Markov process:
Stationary process that is a Gaussian process and a Markov process

IID process Z = {Zn} in (69)
has a Gaussian pdf

Statistical properties are
completely determined by

mean µS

variance σ2
S

correlation factor ρ
0 10 20 30 40 50

−1

−0.5

0

0.5

1

t

s(
t)
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Chapter Summary

Random variables

Discrete and continuous random variables

Cumulative distribution function (cdf)

Probability density function (pdf)

Probability mass function (pmf)

Joint and conditional cdfs, pdfs, pmfs

Expectation values and conditional expectation values

Random processes

Stationary processes

Memoryless processes

IID processes

Markov processes

Gaussian processes

Gauss-Markov processes
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Exercise 1

Given is a stationary discrete Markov process with the alphabet A = {a0, a1, a2}
and the conditional pmfs listed in the table below

a a0 a1 a2
p(a|a0) 0.90 0.05 0.05
p(a|a1) 0.15 0.80 0.05
p(a|a2) 0.25 0.15 0.60
p(a)

Determine the marginal pmf p(a).
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Exercise 2

Investigate the relationship between independence and correlation.

(a) Two random variables X and Y are said to be correlated if and only if their
covariance CXY is not equal to 0.
Can two independent random variables X and Y be correlated?

(b) Let X be a continuous random variable with a variance σ2
X > 0 and a pdf

fX(x). The pdf shall be non-zero for all real numbers, fX(x) > 0, ∀x ∈ R.
Furthermore, the pdf fX(x) shall be symmetric around zero,
fX(x) = fX(−x), ∀x ∈ R. Let Y be a random variable given by
Y = aX2 + bX + c with a, b, c ∈ R.
For which values of a, b, and c are X and Y uncorrelated?
For which values of a, b, and c are X and Y independent?

(c) Which of the following statements for two random variables X and Y are
true?

If X and Y are uncorrelated, they are also independent.
If X and Y are independent, E{XY } = 0.
If X and Y are correlated, they are also dependent.
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