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Lossless Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Introduction
Variable-Length Coding for Scalars
Variable-Length Coding for Vectors
Elias and Arithmetic Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Lossless Coding Introduction

Lossless Source Coding – Overview

Reversible mapping of sequence of discrete source symbols
into sequences of codewords

Other names:

Noiseless coding
Entropy coding

Original source sequence can be exactly reconstructed
(Note: Not the case in lossy coding)

Bit rate reduction possible, if and only if source data have statistical
properties that are exploitable for data compression

!! !
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Lossless Coding Introduction

Lossless Source Coding – Terminology

Message s(L) ={s0, · · · , sL−1} drawn from stochastic process S={Sn}

Sequence b(K) ={b0, · · · , bK−1} of K bits (bk ∈ B={0, 1})

Process of lossless coding: Message s(L) is converted to b(K)

Assume:

Subsequence s(N) = {sn, · · · , sn+N−1} with 1 ≤ N ≤ L and

Bits b(`)(s(N)) = {b0, · · · , b`−1} assigned to it

Lossless source code

Encoder mapping:
b(`) = γ

(
s(N)

)
(73)

Decoder mapping:

s(N) = γ−1
(
b(`)

)
= γ−1

(
γ
(
s(N)

) )
(74)
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Lossless Coding Introduction

Classification of Lossless Source Codes

Lossless source code

Encoder mapping:
b(`) = γ

(
s(N)

)
(75)

Decoder mapping:

s(N) = γ−1
(
b(`)

)
= γ−1

(
γ
(
s(N)

) )
(76)

Fixed-to-fixed mapping: N and ` are both fixed

Will be discussed as special case of fixed-to-variable

Fixed-to-variable mapping: N fixed and ` variable

Huffman algorithm for scalars and vectors (discussed in lecture)

Variable-to-fixed mapping: N variable and ` fixed

Tunstall codes (not discussed in lecture)

Variable-to-variable mapping: ` and N are both variable

Elias and arithmetic codes (discussed in lecture)
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Lossless Coding Variable-Length Coding for Scalars

Variable-Length Coding for Scalars

Assign a separate codeword to each scalar symbol sn of a message s(L)

Assume:
Message s(L) generated by stationary discrete random process S = {Sn}

Random variables Sn = S with symbol alphabet A = {a0, · · · , aM−1} and
marginal pmf p(a) = P (S = a)

Lossless source code:
Assign to each ai a binary codeword bi = {bi0, · · · , bi`(ai)−1}, length `(ai) ≥ 1

Example:

Alphabet A = {x, y, z}

Encoder mapping γ(a) =

 0 : a = x
10 : a = y
11 : a = z

Message s = “xyxxzyx”

Bit sequence b = “0100011100”
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Lossless Coding Variable-Length Coding for Scalars

Optimization Problem

Average codeword length is given as

¯̀= E{`(S)} =

M−1∑
i=0

p(ai) · `(ai) (77)

The goal of the lossless code design problem is to minimize the
average codeword length ¯̀ while being able to uniquely decode

ai p(ai) code A code B code C code D code E
a0 0.5 0 0 0 00 0
a1 0.25 10 01 01 01 10
a2 0.125 11 010 011 10 110
a3 0.125 11 011 111 110 111

¯̀ 1.5 1.75 1.75 2.125 1.75
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Lossless Coding Variable-Length Coding for Scalars

Unique Decodability and Prefix Codes

For unique decodability, we need to generate a code γ : ai → bi such that

if ak 6= aj then bk 6= bj (78)

Codes that don’t have that property are called singular codes

For sequences of symbols, above constraint needs to be extended to the
concatenation of multiple symbols

=⇒ For a uniquely decodable code, a sequence of codewords can only be
generated by one possible sequence of source symbols.

Prefix codes: One class of codes that satisfies the constraint of unique
decodability

A code is called a prefix code if no codeword for an alphabet letter
represents the codeword or a prefix of the codeword for any other
alphabet letter

It is obvious that if the code is a prefix code, then any concatenation of
symbols can be uniquely decoded
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Lossless Coding Variable-Length Coding for Scalars

Binary Code Trees

Prefix codes can be represented by trees
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A binary tree contains nodes with two branches (labelled as ’0’ and ’1’)
leading to other nodes starting from a root node

A node from which branches depart is called an interior node while a node
from which no branches depart is called a terminal node

A prefix code can be constructed by assigning letters of the alphabet A to
terminal nodes of a binary tree
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Lossless Coding Variable-Length Coding for Scalars

Parsing of Prefix Codes

Given the code word assignment to terminal nodes of the binary tree, the
parsing rule for this prefix code is given as follows

1 Set the current node ni equal to the root node

2 Read the next bit b from the bitstream

3 Follow the branch labelled with the value of b from the current node ni to the
descendant node nj

4 If nj is a terminal node, return the associated alphabet letter
and proceed with step 1.
Otherwise, set the current node ni equal to nj
and repeat the previous two steps

Important properties of prefix codes:

Prefix codes are uniquely decodable
Prefix codes are instantaneously decodable
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Lossless Coding Variable-Length Coding for Scalars

Classification of Codes

prefix codes 

uniquely decodable codes 

non-singular codes 

all codes 
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Lossless Coding Variable-Length Coding for Scalars

Unique Decodability: Kraft Inequality

Assume fully balanced tree with depth `max (length of longest codeword)

Codewords are assigned to nodes with codeword length `(ak) ≤ `max

Each choice with `(ak) ≤ `max eliminates 2`max−`(ak) other possibilities of
codeword assignment at level `max, example:

→ `max − `(ak) = 0, one option is covered
→ `max − `(ak) = 1, two options are covered

Number of removed terminal nodes must be less than or equal to number of
terminal nodes in balanced tree with depth `max, which is 2`max

M−1∑
i=0

2`max−`(ai) ≤ 2`max (79)

A code γ may be uniquely decodable (McMillan) if

Kraft inequality: ζ(γ) =

M−1∑
i=0

2−`(ai) ≤ 1 (80)
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Lossless Coding Variable-Length Coding for Scalars

Proof of the Kraft Inequality

Consider(
M−1∑
i=0

2−`(ai)

)L
=

M−1∑
i0=0

M−1∑
i1=0

· · ·
M−1∑

iL−1=0

2−
(
`(ai0

)+`(ai1
)+···+`(aiL−1

)
)

(81)

`L = `(ai0) + `(ai1) + · · ·+ `(aiL−1
) represents the combined codeword

length for coding L symbols

Let A(`L) denote the number of distinct symbol sequences that produce a bit
sequence with the same length `L

Let `max be the maximum codeword length

Hence, we can write (
M−1∑
i=0

2−`(ai)

)L
=

L·`max∑
`L=L

A(`L) 2−`L (82)
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Lossless Coding Variable-Length Coding for Scalars

Proof of the Kraft Inequality

We have (
M−1∑
i=0

2−`(ai)

)L
=

L·`max∑
`L=L

A(`L) 2−`L (83)

For a uniquely decodable code, A(`L) must be less than or equal to 2`L ,
since there are only 2`L distinct bit sequences of length `L

Hence, a uniquely decodable code must fulfill the inequality(
M−1∑
i=0

2−`(ai)

)L
=

L·`max∑
`L=L

A(`L) 2−`L ≤
L·`max∑
`L=L

2`L 2−`L = L (`max−1)+1 (84)

The left side of this inequality grows exponentially with L, while the right
side grows only linearly with L

If the Kraft inequality is not fulfilled, we can always find a value of L for
which the condition (84) is violated

=⇒ Kraft inequality specifies a necessary condition for uniquely decodable codes
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Lossless Coding Variable-Length Coding for Scalars

Prefix Codes and the Kraft Inequality

Given is a set of codeword lengths {`0, `1, · · · , `M−1} that satisfies the Kraft
inequality, with `0 ≤ `1 ≤ · · · ≤ `M−1
Construction of prefix code

Start with fully balanced code tree of infinite depth (or depth `M−1)
Choose a node of depth `0 for first codeword and prune tree at this node
Choose a node of depth `1 for second codeword and prune tree at this node
Continue this procedure until all codeword length are assigned

Question: Is that always possible?

Selection of codeword `k removes 2`i−`k codewords with length `i ≥ `k

=⇒ For codeword of length `i, number of available choices is given by

n(`i) = 2`i −
i−1∑
k=0

2`i−`k = 2`i

(
1−

i−1∑
k=0

2−`k

)
(85)
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Lossless Coding Variable-Length Coding for Scalars

Prefix Codes and the Kraft Inequality

Number of available choices for codeword length `i

n(`i) = 2`i −
i−1∑
k=0

2`i−`k = 2`i

(
1−

i−1∑
k=0

2−`k

)
(86)

Kraft inequality is fulfilled
M−1∑
k=0

2−`k ≤ 1 (87)

This yields

n(`i) ≥ 2`i

(
M−1∑
k=0

2−`k −
i−1∑
k=0

2−`k

)
= 2`i

M−1∑
k=i

2−`k = 1 +

M−1∑
k=i+1

2`i−`k ≥ 1

(88)

=⇒ Can construct prefix code for any set of codeword lengths that fulfills
Kraft inequality
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Lossless Coding Variable-Length Coding for Scalars

Practical Importance of Prefix Codes

We have shown:

All uniquely decodable codes fulfill Kraft inequality

Possible to construct prefix code for any set of codeword lengths
that fulfills Kraft inequality

=⇒ There are no uniquely decodable codes that have a smaller average
codeword length than the best prefix code

Prefix codes have further desirable properties

Instantaneous decodability
Easy to construct

=⇒ All variable-length codes used in practice are prefix codes
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Lossless Coding Variable-Length Coding for Scalars

Lower Bound for Average Codeword Length

Average codeword length

¯̀=

M−1∑
i=0

p(ai) `(ai) = −
M−1∑
i=0

p(ai) log2

(
2−`(ai)

p(ai)

)
−

M−1∑
i=0

p(ai) log2 p(ai) (89)

With the definition q(ai) = 2−`(ai)/
(∑M−1

k=0 2−`(ak)
)

, we obtain

¯̀= − log2

(
M−1∑
i=0

2−`(ai)

)
−

M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
−

M−1∑
i=0

p(ai) log2 p(ai) (90)

We will show that

¯̀≥ −
M−1∑
i=0

p(ai) log2 p(ai) = H(S) (Entropy) (91)
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Lossless Coding Variable-Length Coding for Scalars

Historical Reference

C. E. Shannon introduced entropy as an uncertainty measure for random
experiments and derived it based on three postulates

Published 1 year later as: ”The Mathematical Theory of Communication”
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Lossless Coding Variable-Length Coding for Scalars

Lower Bound for Average Codeword Length

Average codeword length

¯̀= − log2

(
M−1∑
i=0

2−`(ai)

)
−

M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
−

M−1∑
i=0

p(ai) log2 p(ai) (92)

Kraft inequality
∑M−1

i=0 2−`(ai) ≤ 1 applied to first term

− log2

(
M−1∑
i=0

2−`(ai)

)
≥ 0 (93)

Inequality lnx ≤ x− 1 (with equality if and only if x = 1), applied to second
term, yields

−
M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
≥ 1

ln 2

M−1∑
i=0

p(ai)

(
1− q(ai)

p(ai)

)

=
1

ln 2

(
M−1∑
i=0

p(ai)−
M−1∑
i=0

q(ai)

)
= 0 (94)

Called divergence inequality
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Lossless Coding Variable-Length Coding for Scalars

Entropy and Redundancy

Average codeword length ¯̀ for uniquely decodable codes is bounded

¯̀≥ H(S) = E{− log2 p(S)} = −
M−1∑
i=0

p(ai) log2 p(ai) (95)

The measure H(S) is called the entropy of a random variable S

The entropy is a measure of the uncertainty of a random variable

Redundancy of a code is given by the difference

% = ¯̀−H(S) =

M−1∑
i=0

p(ai)
(
`(ai)− log2 p(ai)

)
≥ 0 (96)

Redundancy is zero only, if and only if

Kraft inequality is fulfilled with equality (codeword at all terminal nodes)

All probability masses are negative integer powers of two
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Lossless Coding Variable-Length Coding for Scalars

An Upper Bound for the Minimum Average Codeword Length

Upper bound of ¯̀: Choose `(ai) = d− log2 p(ai)e, ∀ai ∈ A

Codewords satisfy Kraft inequality (show using dxe ≥ x)

M−1∑
i=0

2−d− log2 p(ai)e ≤
M−1∑
i=0

2log2 p(ai) =

M−1∑
i=0

p(ai) = 1 (97)

Obtained average codeword length (use dxe < x+ 1)

¯̀=

M−1∑
i=0

p(ai) d− log2 p(ai)e <
M−1∑
i=0

p(ai) (1− log2 p(ai)) = H(S) + 1 (98)

=⇒ Bounds on minimum average codeword length ¯̀
min

H(S) ≤ ¯̀
min < H(S) + 1 (99)
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Lossless Coding Variable-Length Coding for Scalars

Entropy of a Binary Source

A binary source has probabilities p(0) = p and p(1) = 1− p
The entropy of the binary source is given as

H(S) = −p log2 p− (1− p) log2(1− p) = Hb(p) (100)

with Hb(x) being the so-called binary entropy function
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Lossless Coding Variable-Length Coding for Scalars

Relative Entropy or Kullback-Leibler Divergence

Defined as

D(p||q) =

M−1∑
i=0

p(ai) log2

p(ai)

q(ai)
(101)

Divergence inequality (we have already proofed it)

D(p||q) ≥ 0 (equality if and only if p = q) (102)

Note: D(p||q) 6= D(q||p)

What does the measure D(p||q) tell us?
Assume we have an optimal code with an average codeword length equal to
the entropy for a pmf q and apply it to a pmf p
D(p||q) is the difference between average codeword length and entropy

D(p||q) = −
M−1∑
i=0

p(ai) log2 q(ai) +

M−1∑
i=0

p(ai) log2 p(ai)

=

M−1∑
i=0

p(ai)`q(ai)−H(S) = ¯̀
q −H(S) (103)
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Lossless Coding Variable-Length Coding for Scalars

Optimal Prefix Codes

Conditions for optimal prefix codes

1 For any two symbols ai, aj ∈ A with p(ai)> p(aj), the associated codeword
lengths satisfy `(ai) ≤ `(aj)

2 There are always two codewords that have the maximum codeword length
and differ only in the final bit

Justification

1 Otherwise, an exchange of the codewords for the symbols ai and aj would
decrease the average codeword length while preserving the prefix property

2 Otherwise, the removal of the last bit of the codeword with maximum length
would preserve the prefix property and decrease the average codeword length
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Lossless Coding Variable-Length Coding for Scalars

The Huffman Algorithm

How can we generate an optimal prefix code?

The answer to this question was given by D. A. Huffman in 1952

The so-called Huffman algorithm always finds a prefix-free code with
minimum redundancy

For a proof that Huffman codes are optimal instantaneous codes (with
minimum expected length), see Cover and Thomas

General idea

Both optimality conditions are obeyed if the two codewords with maximum
length (that differ only in the final bit) are assigned to the letters ai and aj
with minimum probabilities

The two letters are then treated as a new letter with probability p(ai) + p(aj)

Procedure is repeated for the new alphabet
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Lossless Coding Variable-Length Coding for Scalars

The Huffman Algorithm

Huffman algorithm for given alphabet A with marginal pmf p

1 Select the two letters ai and aj with the smallest probabilities
and create a parent node for the nodes that represent
these two letters in the binary code tree

2 Replace the letters ai and aj by a new letter
with an associated probability of p(ai) + p(aj)

3 If more than one letter remains, repeat the previous steps

4 Convert the binary code tree into a prefix code

Note: There are multiple optimal prefix codes

Assigment of “0” and “1” to tree branches is arbitrary

If some letters have the same probability (at some stage of the algorithm),
there might be multiple ways to select two letters with smallest probabilities

But, all optimal prefix codes have the same average codeword length
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Lossless Coding Variable-Length Coding for Scalars

Example for the Design of a Huffman code
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Lossless Coding Variable-Length Coding for Scalars

Conditional Huffman Codes

Random process {Sn} with memory: Design VLC for conditional pmf

Example:
Stationary discrete Markov process, A = {a0, a1, a2}
Conditional pmfs p(a|ak) = P (Sn =a |Sn−1 =ak) with k = 0, 1, 2

a a0 a1 a2 entropy

p(a|a0) 0.90 0.05 0.05 H(Sn|a0) = 0.5690

p(a|a1) 0.15 0.80 0.05 H(Sn|a1) = 0.8842

p(a|a2) 0.25 0.15 0.60 H(Sn|a2) = 1.3527

p(a) 0.64 0.24 0.1 H(S) = 1.2575

Design Huffman code for conditional pmfs

ai
Huffman codes for conditional pmfs Huffman code

for marginal pmfSn−1 = a0 Sn−1 = a1 Sn−1 = a2

a0 1 00 00 1
a1 00 1 01 00
a2 01 01 1 01

¯̀
0 = 1.1 ¯̀

1 = 1.2 ¯̀
2 = 1.4 ¯̀= 1.3556
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Lossless Coding Variable-Length Coding for Scalars

Average Codeword Length for Conditional Huffman Codes

We know: Average codeword length ¯̀
k = ¯̀(Sn−1 =ak) is bounded by

H(Sn|ak) ≤ ¯̀
k < H(Sn|ak) + 1 (104)

with conditional entropy of Sn given the event {Sn−1 =ak}

H(Sn|ak) = H(Sn|Sn−1 =ak) = −
M−1∑
i=0

p(ai|ak) log2 p(ai|ak) (105)

Resulting average codeword length

¯̀=

M−1∑
k=0

p(ak) ¯̀
k (106)

Resulting bounds

M−1∑
k=0

p(ak)H(Sn|Sn−1 =ak) ≤ ¯̀<

M−1∑
k=0

p(ak)H(Sn|Sn−1 =ak) + 1 (107)
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Lossless Coding Variable-Length Coding for Scalars

Conditional Entropy

Lower bound is called conditional entropy H(Sn|Sn−1) of the random
vriable Sn given random variable Sn−1

H(Sn|Sn−1) = E{− log2 p(Sn|Sn−1)}

= =

M−1∑
k=0

p(ak)H(Sn|Sn−1 =ak)

= −
M−1∑
i=0

M−1∑
k=0

p(ai, ak) log2 p(ai|ak), (108)

Minimum average codeword length for conditional code is bounded by

H(Sn|Sn−1) ≤ ¯̀
min < H(Sn|Sn−1) + 1 (109)
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Lossless Coding Variable-Length Coding for Scalars

Conditioning May Reduce Minimum Average Codeword Length

Minimum average codeword length ¯̀
min

H(Sn|Sn−1) ≤ ¯̀
min < H(Sn|Sn−1) + 1 (110)

Conditioning may reduce minimum average codeword length
(use divergence inequality)

H(S)−H(Sn|Sn−1) = −
M−1∑
i=0

M−1∑
k=0

p(ai, ak)
(

log2 p(ai)− log2 p(ai|ak)
)

= −
M−1∑
i=0

M−1∑
k=0

p(ai, ak) log2

p(ai) p(ak)

p(ai, ak)

≥ 0 (111)

Note: Equality for iid process, p(ai, ak) = p(ai) p(ak)

For the example Markov source:
No conditioning: H(S) = 1.2575, `min = 1.3556

Conditioning: H(Sn|Sn−1) = 0.7331, `min = 1.1578
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Lossless Coding Variable-Length Coding for Vectors

Huffman Coding of Fixed-Length Vectors

Consider stationary discrete random sources S = {Sn} with an M -ary
alphabet A = {a0, · · · , aM−1}

N symbols are coded jointly (code vector instead of scalar)

Design Huffman code for joint pmf
p(a0, · · · , aN−1) = P (Sn =a0, · · · , Sn+N−1 =aN−1)

Average codeword length ¯̀
min per symbol is bounded

H(Sn, · · · , Sn+N−1)

N
≤ ¯̀

min <
H(Sn, · · · , Sn+N−1)

N
+

1

N
(112)

Define block entropy

H(Sn, · · · , Sn+N−1)

= E{− log2 p(Sn, · · · , Sn+N−1)}
= −

∑
a0

· · ·
∑
aN−1

p(a0, · · · , aN−1) log2 p(a0, · · · , aN−1) (113)
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Lossless Coding Variable-Length Coding for Vectors

Entropy Rate

Entropy rate

The following limit is called entropy rate

H̄(S) = lim
N→∞

H(S0, · · · , SN−1)

N
(114)

The limit in (114) always exists for stationary sources

Fundamental lossless source coding theorem

Entropy rate H̄(S): Greatest lower bound for the average codeword length ¯̀

per symbol
¯̀≥ H̄(S) (115)

Always asymptotically achievable with block Huffman coding for N →∞
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Lossless Coding Variable-Length Coding for Vectors

Entropy Rate for Special Sources

Entropy rate for iid processes

H̄(S) = lim
N→∞

E{− log2 p(S0, S1, · · · , SN−1)}
N

= lim
N→∞

∑N−1
n=0 E{− log2 p(Sn)}

N
= lim

N→∞
E{− log2 p(Sn)}

= H(S) (116)

Entropy rate for stationary Markov processes

H̄(S) = lim
N→∞

E{− log2 p(S0, S1, · · · , SN−1)}
N

= lim
N→∞

E{− log2 p(S0)}+
∑N−1

n=1 E{− log2 p(Sn|Sn−1)}
N

= lim
N→∞

E{− log2 p(S0)}
N

+ E{− log2 p(Sn|Sn−1)}

= H(Sn|Sn−1) (117)
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Lossless Coding Variable-Length Coding for Vectors

Example for Block Huffman Coding

Example:

Joint Huffman coding of 2 symbols for example Markov source

Efficiency of block Huffman coding for different N

Table sizes for different N

aiak p(ai, ak) codewords

a0a0 0.58 1
a0a1 0.032 00001
a0a2 0.032 00010
a1a0 0.036 0010
a1a1 0.195 01
a1a2 0.012 000000
a2a0 0.027 00011
a2a1 0.017 000001
a2a2 0.06 0011

N ¯̀ NC
1 1.3556 3
2 1.0094 9
3 0.9150 27
4 0.8690 81
5 0.8462 243
6 0.8299 729
7 0.8153 2187
8 0.8027 6561
9 0.7940 19683
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Lossless Coding Variable-Length Coding for Vectors

Huffman Codes for Variable-Length Vectors

Assign codewords to variable-length vectors: V2V codes

Associate each leaf node Lk of the symbol tree with a codeword

Use pmf of leaf nodes p(Lk) for Huffman design

Average number of bits per alphabet letter

¯̀=

∑NL−1
k=0 p(Lk) `k∑NL−1
k=0 p(Lk)Nk

(118)

where Nk denotes number of alphabet letters associated with Lk
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Lossless Coding Variable-Length Coding for Vectors

V2V Code Performance

Example Markov process: H̄(S) = H(Sn|Sn−1) = 0.7331

Faster reduction of ¯̀ with increasing NC compared to fixed-length vector
Huffman coding

ak p(Lk) codewords

a0a0 0.5799 1
a0a1 0.0322 00001
a0a2 0.0322 00010
a1a0 0.0277 00011
a1a1a0 0.0222 000001
a1a1a1 0.1183 001
a1a1a2 0.0074 0000000
a1a2 0.0093 0000001
a2 0.1708 01

NC ¯̀

5 1.1784
7 1.0551
9 1.0049

11 0.9733
13 0.9412
15 0.9293
17 0.9074
19 0.8980
21 0.8891
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Lossless Coding Summary on Variable-Length Coding

Summary on Variable-Length Coding

Uniquely decodable codes

Necessary condition: Kraft inequality

Prefix codes: Instantaneously decodable

Can construct prefix codes for codeword lengths that fulfill Kraft inequality

Bounds for lossless coding

Entropy

Conditional entropy

Block entropy

Entropy rate

Optimal prefix codes

Huffman algorithm for given pmf

Scalar Huffman codes

Conditional Huffman codes

Block Huffman codes

V2V codes
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Lossless Coding Exercises (Set B)

Exercise 3

A fair coin is tossed an infinite number of times. Let Yn be a random variable, with n ∈ Z, that
describes the outcome of the n-th coin toss. If the outcome of the n-th coin toss is head, Yn is
equal to 1; if it is tail, Yn is equal to 0. Now consider the random process X = {Xn}. The
random variables Xn are determined by Xn = Yn + Yn−1, and thus describe the total number
of heads in the n-th and (n− 1)-th coin tosses.

(a) Determine the marginal pmf pXn (xn) and the marginal entropy H(Xn). Is it possible to
design a uniquely decodable code with one codeword per possible outcome of Xn that has
an average codeword length equal to the marginal entropy?

(b) Determine the conditional pmf pXn|Xn−1
(xn|xn−1) and the conditional entropy

H(Xn|Xn−1). Design a conditional Huffman code. What is the average codeword length of
the conditional Huffman code?

(c) Is the random process X a Markov process?

(d) Derive a general formula for the N -th order block entropy HN = H(Xn, · · · , Xn−N+1).
How many symbols have to be coded jointly at minimum for obtaining a code that is more
efficient than the conditional Huffman code developed in (b)?

(e) Calculate the entropy rate H̄(X) of the random process X. Is it possible to design a
variable length code with finite complexity and an average codeword length equal to the
entropy rate? If yes, what requirement has to be fulfilled?
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Lossless Coding Exercises (Set B)

Exercise 4

Given is a discrete iid process X with the alphabet A = {a, b, c, d, e, f, g}. The pmf
pX(x) and 6 example codes are listed in the following table.

x pX(x) A B C D E F
a 1/3 1 0 00 01 000 1
b 1/9 0001 10 010 101 001 100
c 1/27 000000 110 0110 111 010 100000
d 1/27 00001 1110 0111 010 100 10000
e 1/27 000001 11110 100 110 111 000000
f 1/9 001 111110 101 100 011 1000
g 1/3 01 111111 11 00 001 10

(a) Develop a Huffman code for the given pmf pX(x), calculate its average codeword
length and its absolute and relative redundancy.

(b) For all codes A, B, C, D, E, and F, do the following:

Calculate the average codeword length per symbol;
Determine whether the code is a singular code;
Determine whether the code is uniquely decodable;
Determine whether the code is a prefix code;
Determine whether the code is an optimal prefix code.

(c) Briefly describe a process for decoding a symbol sequence given a finite sequence of
K bits that is coded with code F.
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Lossless Coding Exercises (Set B)

Exercise 5

Given is a Bernoulli process X with the alphabet A = {a, b} and the pmf
pX(a) = p, pX(b) = 1− p. Consider the three codes in the following table.

Code A Code B Code C
symbols codeword symbols codeword symbol codeword
aa 1 aa 0001 a 0
ab 01 ab 001 b 1
b 00 ba 01

bb 1

(a) Calculate the average codeword length per symbol for the three codes.

(b) For which probabilities p is the code A more efficient than code B?

(c) For which probabilities p is the simple code C more efficient than both code A
and code B?
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Lossless Coding Exercises (Set B)

Exercise 6

Given is a Bernoulli process B = {Bn} with the alphabet AB = {0, 1}, the pmf
pB(0) = p, pB(1) = 1− p, and 0 ≤ p < 1. Consider the random variable X that
specifies the number of random variables Bn that have to be observed to get
exactly one “1”.

Calculate the entropies H(Bn) and H(X).

For which value of p, with 0 < p < 1, is H(X) four times as large as H(Bn)?

Hint: ∀|a|<1,

∞∑
k=0

ak =
1

1− a

∀|a|<1,

∞∑
k=0

k ak =
a

(1− a)2
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Lossless Coding Exercises (Set B)

Exercise 7

Proof the chain rule for the joint entropy,

H(X,Y ) = H(X) +H(Y |X).
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Lossless Coding Exercises (Set B)

Exercise 8

Investigate the entropy of a function of a random variable X. Let X be a discrete
random variable with the alphabet AX = {0, 1, 2, 3, 4} and the binomial pmf

pX(x) =

 1/16 : x = 0 ∨ x = 4
1/4 : x = 1 ∨ x = 3
3/8 : x = 2

.

(a) Calculate the entropy H(X).

(b) Consider the functions g1(x) = x2 and g2(x) = (x− 2)2.
Calculate the entropies H(g1(X)) and H(g2(X)).

(c) Proof that the entropy H(g(X)) of a function g(x) of a random variable X is
not greater than the entropy of the random variable X,

H(g(X)) ≤ H(X)

Determine the condition under which equality is achieved.
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