
o

Source Coding and Compression
Heiko Schwarz

Contact:

Dr.-Ing. Heiko Schwarz
heiko.schwarz@hhi.fraunhofer.de

Heiko Schwarz Source Coding and Compression November 24, 2013 1 / 160

o

Lossless Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Introduction
Variable-Length Coding for Scalars
Variable-Length Coding for Vectors
Elias and Arithmetic Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)

Heiko Schwarz Source Coding and Compression November 24, 2013 106 / 160

o

Lossless Coding Elias and Arithmetic Coding

Elias Coding and Arithmetic Coding

Scalar and conditional Huffman codes can be very inefficient

Main drawback of block Huffman codes: Large table sizes

Another class of uniquely decodable codes are Elias and Arithmetic codes

Mapping of a string of N symbols s = {s0, s1, ..., sN−1} onto a string of K
bits b = {b0, b1, ..., bK−1}

γ : s→ b (119)

Decoding or parsing maps the bit string onto the string of symbols

γ−1 : b→ s (120)

Complexity of code construction: Linear per symbol

Suitable for adapting pmfs to instationary statistics

Heiko Schwarz Source Coding and Compression November 24, 2013 107 / 160

o

Lossless Coding Elias and Arithmetic Coding

Idea of Elias Coding

x

F(x)

xk

F(xk-1)

F(xk)

xk-1

p(xk)

Order symbols or messages

Transmit number in interval [0, 1) which characterizes the symbol or message

Number of transmitted bits depends on probability of the message

Heiko Schwarz Source Coding and Compression November 24, 2013 108 / 160

o

Lossless Coding Elias and Arithmetic Coding

Define an Order of Symbol Sequences

Consider coding of symbol sequences s = {s0, s1, . . . , sN−1}
Realization of sequence of random variables S = {S0, S1, . . . , SN−1}
Number N of symbols is known at encoder and decoder

Each random variable Sn is characterized by an alphabet An of Mn symbols

Statistical properties are characterized by joint pmf

p(s) = P (S=s) = P (S0 =s0, S1 =s1, · · · , SN−1 =sN−1) (121)

Need to define an order for symbol sequences

For example: Symbol sequence sa = {sa0 , sa1 , · · · , saN−1} is less than another

symbol sequence sb = {sb0, sb1, · · · , sbN−1} if and only if there exists an
integer n, with 0 ≤ n < N such that

sak = sbk for k = 0, · · · , n− 1 and san < sbn (122)

Heiko Schwarz Source Coding and Compression November 24, 2013 109 / 160

o

Lossless Coding Elias and Arithmetic Coding

Mapping of Symbol Sequences to Intervals

Joint pmf

p(s) = P (S=s) = P (S0 =s0, S1 =s1, · · · , SN−1 =sN−1) (123)

Using the defined order for symbol sequences, the pmf of s can be written

p(s) = P (S=s) = P (S≤s)− P (S<s) (124)

Mapping of s = {s0, s1, . . . , sN−1} to half-open interval IN ⊂ [0, 1)

IN (s) = [LN , LN +WN) =
[
P (S<s), P (S≤s)

)
(125)

with

LN = P (S < s) (126)

WN = P (S = s) = p(s) (127)

Heiko Schwarz Source Coding and Compression November 24, 2013 110 / 160

o

Lossless Coding Elias and Arithmetic Coding

Unique Identification: The Intervals are Disjoint

Consider two symbol sequences sa and sb, with sa < sb

Intervals are disjoint if and only if Lb
N ≥ La

N +W a
N

Proof:

Lb
N = P (S<sb)

= P ({S≤sa} ∪ {sa< S< sb})
= P (S≤sa) + P (sa < S < sb)︸ ︷︷ ︸

≥0

≥ P (S≤ sa)

= La
N +W a

N (128)

=⇒ Intervals IaN and IbN do not overlap

=⇒ Any number v in the interval IN (s) uniquely identifies s

Heiko Schwarz Source Coding and Compression November 24, 2013 111 / 160

o

Lossless Coding Elias and Arithmetic Coding

How Many Bits for Identifying an Interval?

Identify an interval IN (s) for a sequence s by a number v

Number v can be represented as a binary fraction with K bits

v =

K−1∑
i=0

bi · 2i−1 = 0.b0b1 · · · bK−1 ∈ IN (s) (129)

For identifying s: Transmit bit sequence b = {b0, b1, · · · , bK−1}
Elias code: Assignment of bit sequences b to symbol sequences s

Question: How many bits do we need to uniquely identify an interval IN (s)?

Intuitively: Size of interval, given by p(s), governs number K of bits that are
needed to identify the interval

p(s)=1/2 → B={.0, .1}
p(s)=1/4 → B={.00, .01, .10, .11}
p(s)=1/8 → B={.000, .001, .010, .011, .100, .101, .110, .111}

Heiko Schwarz Source Coding and Compression November 24, 2013 112 / 160

o

Lossless Coding Elias and Arithmetic Coding

How Many Bits for Identifying an Interval?

Goal: Choose real number v ∈ IN that can be represented with the
minimum amount of bits

Distance between successive binary fractions of K bits is 2−K

To be sure that a binary fraction of K bits falls inside an interval
of width WN , we need

2−K ≤ WN

K ≥ − log2WN (130)

Hence, we choose

K = K(s) = d− log2WNe = d− log2 p(s)e (131)

The binary number v identifying the interval IN can be determined by

v = dLN · 2Ke · 2−K (132)

Heiko Schwarz Source Coding and Compression November 24, 2013 113 / 160

o

Lossless Coding Elias and Arithmetic Coding

Verification of Selection of Bits and Bitstring

Binary number v identifying the interval In

v = dLN · 2Ke · 2−K with K = d− log2WNe (133)

With x ≤ dxe and dxe < x+ 1, we obtain

LN ≤ v < LN + 2−K (134)

Using the expression for the required number of bits

K = d− log2 p(s)e ≥ − log2 p(s) =⇒ 2−K ≤ p(s) = WN (135)

yields
LN ≤ v < LN +WN (136)

The representative v = 0.b0b1 . . . bK−1 always lies inside the interval IN (s)

=⇒ Message s can be uniquely decoded from the transmitted bit string
b = {b0, b1, . . . , bK−1} of K(s) = d− log2 p(s)e bits

Heiko Schwarz Source Coding and Compression November 24, 2013 114 / 160

o

Lossless Coding Elias and Arithmetic Coding

Redundancy of Elias Coding

Average codeword length per symbol

¯̀=
E{K(S)}

N
=
E
{⌈
− log2 p(S)

⌉}
N

(137)

Applying inequalities x ≤ dxe and dxe < x+ 1, we obtain

E{− log2 p(S)}
N

≤ ¯̀<
E{1− log2 p(S)}

N
(138)

Average codeword length is bounded

HN (S)

N
≤ ¯̀≤ HN (S)

N
+

1

N
(139)

Note: Same bounds as for block Huffman codes

For specific application: One additional bit required (see exercise)

Question: What is the advantage?

Heiko Schwarz Source Coding and Compression November 24, 2013 115 / 160

o

Lossless Coding Elias and Arithmetic Coding

Derivation of Iterative Algorithm for Elias Coding

Iterative construction of codewords

Consider sub-sequences s(n) = {s0, s1, · · · , sn−1} with 1 ≤ n ≤ N

Interval width Wn+1 for the sub-sequence s(n+1) = {s(n), sn}

Wn+1 = P
(
S(n+1) =s(n+1)

)
= P

(
S(n) =s(n), Sn =sn

)
= P

(
S(n) =s(n)

)
· P
(
Sn =sn

∣∣ S(n) =s(n)
)

Iteration rule for interval width

Wn+1 = Wn · p(sn | s0, s1, . . . , sn−1) (140)

Since p(sn | s0, s1, . . . , sn−1) ≤ 1, it follows

Wn+1 ≤Wn (141)

Heiko Schwarz Source Coding and Compression November 24, 2013 116 / 160

o

Lossless Coding Elias and Arithmetic Coding

Derivation of Iterative Algorithm for Elias Coding

Derivation for lower interval border Ln+1 for the
sub-sequence s(n+1) = {s(n), sn}

Ln+1 = P
(
S(n+1)<s(n+1)

)
= P

(
S(n)<s(n)

)
+ P

(
S(n) =s(n), Sn<sn

)
= P

(
S(n)<s(n)

)
+ P

(
S(n) =s(n)

)
· P
(
Sn<sn

∣∣S(n) =s(n)
)

Iteration rule of lower interval boundary

Ln+1 = Ln +Wn · c(sn | s0, s1, . . . , sn−1) (142)

with the cmf c(·) being defined as

c(sn | s0, s1, . . . , sn−1) =
∑

∀a∈An: a<sn

p(a | s0, s1, . . . , sn−1) (143)

Note: The function c(·) excludes the current symbol

Since Wn · c(sn | s0, s1, . . . , sn−1) ≥ 0, it follows

Ln+1 ≥ Ln (144)

Heiko Schwarz Source Coding and Compression November 24, 2013 117 / 160

o

Lossless Coding Elias and Arithmetic Coding

Intervals Are Nested

Iteration rules:

Wn+1 = Wn · P
(
Sn = sn

∣∣S(n) = s(n)
)

Ln+1 = Ln +Wn · P
(
Sn < sn

∣∣S(n) = s(n)
)

We have already shown: Ln+1 ≥ Ln

Now, we consider upper interval boundary Ln+1 +Wn+1

Ln+1 +Wn+1 = Ln +Wn · P
(
Sn < sn

∣∣S(n) = s(n)
)

+Wn · P
(
Sn = sn

∣∣S(n) = s(n)
)

= Ln +Wn · P
(
Sn ≤ sn

∣∣S(n) = s(n)
)

= Ln +Wn −Wn · P
(
Sn > sn

∣∣S(n) = s(n)
)︸ ︷︷ ︸

≥0

≤ Ln +Wn (145)

=⇒ Intervals are nested: In+1 ⊂ In
Heiko Schwarz Source Coding and Compression November 24, 2013 118 / 160

o

Lossless Coding Elias and Arithmetic Coding

Iterative Algorithm for IID and Markov Sources

Derivation above for general case of dependent and differently distributed
random variables (may even have different alphabets)

Initialization

W0 = 1 (146)

L0 = 0 (147)

For iid sources, interval refinement can be simplified

Wn+1 = Wn · p(sn) (148)

Ln+1 = Ln +Wn · c(sn) (149)

For Markov sources: Conditional pmf p(sn|sn−1) and cmf c(sn|sn−1)

Wn+1 = Wn · p(sn|sn−1) (150)

Ln+1 = Ln +Wn · c(sn|sn−1) (151)

Non-stationary sources: Probabilities p(·) can be adapted during coding

Heiko Schwarz Source Coding and Compression November 24, 2013 119 / 160

o

Lossless Coding Elias and Arithmetic Coding

Elias Coding Example: IID Source

Example for an iid source for which an optimum Huffman code exists

symbol ak pmf p(ak) Huffman code cmf c(ak)

a0=‘A’ 0.25 = 2−2 00 0.00 = 0
a1=‘B’ 0.25 = 2−2 01 0.25 = 2−2

a2=‘C’ 0.50 = 2−1 1 0.50 = 2−1

Suppose we intend to send the symbol string s = “CABAC”

Using the Huffman code, the bit string would be b = 10001001 (8 bits)

An alternative to Huffman coding is Elias coding

Probability of the symbol string “CABAC” is given by

p(s) = p(′C ′) · p(′A′) · p(′B′) · p(′A′) · p(′C ′) =
1

2

1

4

1

4

1

4

1

2
=

1

256

The size of the bit string is

K = d− log2 p(s)e = 8 bits

Heiko Schwarz Source Coding and Compression November 24, 2013 120 / 160

o

Lossless Coding Elias and Arithmetic Coding

Encoding Algorithm for Elias Codes

Encoding algorithm:

1 Given is a sequence {s0, · · · , sN−1} of N symbols

2 Initialization of the iterative process by W0 = 1, L0 = 0

3 For each n = 0, 1, · · · , N − 1, determine the interval In+1 by

Wn+1 = Wn · p(sn|s0, · · · , sn−1)

Ln+1 = Ln +Wn · c(sn|s0, · · · , sn−1)

4 Determine the codeword length by K = d− log2WNe

5 Transmit the codeword b(K) of K bits that represents
the fractional part of v = dLN 2Ke 2−K

Heiko Schwarz Source Coding and Compression November 24, 2013 121 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Elias Encoding

s0=‘C’ s1=‘A’ s2=‘B’

W1 = W0 · p(‘C’) W2 = W1 · p(‘A’) W3 = W2 · p(‘B’)
= 1 · 2−1 = 2−1 = 2−1 · 2−2 = 2−3 = 2−3 · 2−2 = 2−5

= (0.1)2 = (0.001)2 = (0.00001)2

L1 = L0 +W0 · c(‘C’) L2 = L1 +W1 · c(‘A’) L3 = L2 +W2 · c(‘B’)
= 0 + 1 · 2−1 = 2−1 + 2−1 · 0 = 2−1 + 2−3 · 2−2

= 2−1 = 2−1 = 2−1 + 2−5

= (0.1)2 = (0.100)2 = (0.10001)2

s3=‘A’ s4=‘C’ termination

W4 = W3 · p(‘A’) W5 = W4 · p(‘C’) K = d− log2 W5e = 8
= 2−5 · 2−2 = 2−7 = 2−7 · 2−1 = 2−8

= (0.0000001)2 = (0.00000001)2 v =
⌈
L5 2K

⌉
2−K

L4 = L3 +W3 · c(‘A’) L5 = L4 +W4 · c(‘C’) = 2−1 + 2−5 + 2−8

= (2−1 + 2−5) + 2−5 · 0 = (2−1 + 2−5) + 2−7 · 2−1

= 2−1 + 2−5 = 2−1 + 2−5 + 2−8 b = ‘10001001′

= (0.1000100)2 = (0.10001001)2

Heiko Schwarz Source Coding and Compression November 24, 2013 122 / 160

o

Lossless Coding Elias and Arithmetic Coding

Illustration of Iteration

C

B

A

0

1

CC

CB

CA

0.12

1.02

CAC

CAB

CAA

0.1002

0.1012

CABC

CABB

CABA

0.100012

0.100102

CABAC

CABAB

CABAA

0.10001002

0.10001012

0.100010012

0.100010102

0.100010012

CABAC

Heiko Schwarz Source Coding and Compression November 24, 2013 123 / 160

o

Lossless Coding Elias and Arithmetic Coding

Decoding Algorithm for Elias Codes

Decoding algorithm:

1 Given is the number N of symbols to be decoded and
a codeword b(K) = {b0, · · · , bK−1} of KN bits

2 Determine the interval representative v according to

v =

K−1∑
i=0

bi 2−i

3 Initialization of the iterative process by W0 = 1, L0 = 0

4 For each n = 0, 1, · · · , N − 1, do the following:

1 For each ai ∈ An, determine the interval In+1(ai) by

Wn+1(ai) = Wn · p(ai|s0, . . . , sn−1)

Ln+1(ai) = Ln +Wn · c(ai|s0, . . . , sn−1)

2 Select the letter ai ∈ An for which v ∈ In+1(ai)
and set sn = ai, Wn+1 = Wn+1(ai), Ln+1 = Ln+1(ai)

Heiko Schwarz Source Coding and Compression November 24, 2013 124 / 160

o

Lossless Coding Elias and Arithmetic Coding

Properties of Elias Codes

Efficiency

Bounds on average codeword length are the same as for block Huffman codes

Concatenations cannot always be decoded using iterative procedure

Issue can be solved by adding one bit per message (see exercise)

Block Huffman codes of same size N are optimal

=⇒ No higher efficiency than block Huffman codes of same size

Code construction

Can iteratively construct the codeword for a given message

Don’t need to construct and store the entire code table

Easy to incorporate adaptation of probabilities to source statistics

=⇒ That’s the advantage of Elias codes

Are there any issues?

Require extremely high precision arithmetic for calculating interval size and
lower interval boundary for long messages

Solution: Approximation using fixed-precision integer arithmetic

Heiko Schwarz Source Coding and Compression November 24, 2013 125 / 160

o

Lossless Coding Elias and Arithmetic Coding

Arithmetic Coding

Elias coding

Very efficient for long symbol sequences (if suitable probabilities are used)

Simple codeword construction

Do not need to store codeword tables

Problem: Precision requirement for Wn and Ln

Arithmetic coding

Fixed-precision variant of Elias coding

Can be realized with standard precision integer arithmetic

Loss in efficiency due to fixed-precision arithmetic is negligible

Following approximations are used

=⇒ Represent probabilities with fixed-precision integers

=⇒ Represent interval width with fixed-precision integers

=⇒ Output bits as soon as they cannot be modified in following steps

Heiko Schwarz Source Coding and Compression November 24, 2013 126 / 160

o

Lossless Coding Elias and Arithmetic Coding

Quantization of Pmf and Cmf

Represent pmfs p(a) and cmfs c(a) by V -bit integers pV (a) and cV (a)

p(a) = pV (a) · 2−V (152)

c(a) = cV (a) · 2−V =
∑
ai<a

pV (ai) · 2−V (153)

Following condition has to be fulfilled(∑
∀ai

pV (ai)

)
· 2−V ≤ 1 (154)

Simple (but not necessarily best) approach

pV (ai) =
⌊
p(ai) · 2V

⌋
(155)

Note: V must be so large that pV (ai) > 0 for all ai

Heiko Schwarz Source Coding and Compression November 24, 2013 127 / 160

o

Lossless Coding Elias and Arithmetic Coding

Quantization of Interval Width

Observation: Elias code remains decodable if intervals are always nested

0 < Wn+1 ≤Wn · p(sn) (156)

=⇒ Rounding down of Wn ·p(sn) at each iteration (for fixed-precision rep.)

Represent Wn by U -bit integer An and integer zn ≥ U

Wn = An · 2−zn (157)

Initialization: Approximate W0 = 1 by

A0 = 2U − 1 and z0 = U (158)

Restriction for An

2U−1︸ ︷︷ ︸
max. precision

≤ An < 2U︸︷︷︸
U-bit integer

(159)

Heiko Schwarz Source Coding and Compression November 24, 2013 128 / 160

o

Lossless Coding Elias and Arithmetic Coding

Rounding in Interval Refinement

Representation of interval width

Wn = An · 2−zn with 2U−1 ≤ An < 2U (160)

Interval refinement for arbitrary precision

Wn+1 = Wn · p(sn)

An+1 · 2−zn+1 = An · 2−zn · pV (sn) · 2−V

=
(
An · pV (sn) · 2−yn+1

)
· 2−zn−V+yn+1 (161)

Interval refinement for fixed-precision arithmetic

An+1 =
⌊
An · pV (sn) · 2−yn+1

⌋
(simple right shift by yn+1 bits) (162)

zn+1 = zn + V − yn+1 (163)

Choose yn+1 so that 2U−1 ≤ An+1 < 2U (some comparison operations)

yn+1 =
⌈

log2(An · pV (sn) + 1)
⌉︸ ︷︷ ︸

pos. of most-sign. bit in AnpV (sn)

− U (164)

Heiko Schwarz Source Coding and Compression November 24, 2013 129 / 160

o

Lossless Coding Elias and Arithmetic Coding

Analysis of Binary Representations

Binary representation of interval width Wn = An · 2−zn :

Wn = 0.

zn bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

1xx · · ·x︸ ︷︷ ︸
U bits

000 · · ·

Binary representation of cmf c(sn) = cV (sn) · 2−V :

c(sn) = 0. xxx · · ·x︸ ︷︷ ︸
V bits

000 · · ·

Binary representation of product Wn · c(sn) (added to Ln in update):

Wn · c(sn) = 0.

zn+V bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

xxx · · ·x︸ ︷︷ ︸
U+V bits

000 · · ·

Heiko Schwarz Source Coding and Compression November 24, 2013 130 / 160

o

Lossless Coding Elias and Arithmetic Coding

Effect on Lower Interval Boundary

Remember: Update of lower interval boundary Ln+1 = Ln +Wn · c(sn)

Binary representation of the product Wn · c(sn):

Wn · c(sn) = 0.

zn+V bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

xxx · · ·x︸ ︷︷ ︸
U+V bits

000 · · ·

What is the effect on lower interval boundary

Ln = 0.

zn−U bits︷ ︸︸ ︷
aaaaa · · · a︸ ︷︷ ︸
zn−cn−U
settled bits

0111111 · · · 1︸ ︷︷ ︸
cn

outstanding bits

xxxxx · · ·x︸ ︷︷ ︸
U+V

active bits

00000 · · ·︸ ︷︷ ︸
trailing bits

Trailing bits: Equal to 0, but maybe changed later
Active bits: Directly modified by the update Ln+1 = Ln +Wn · c(sn)
Outstanding bits: May be modified by a carry from the active bits
Settled bits: Not modified in any following interval update

Heiko Schwarz Source Coding and Compression November 24, 2013 131 / 160

o

Lossless Coding Elias and Arithmetic Coding

Representation of Lower Interval Boundary

Lower interval boundary Ln

Ln = 0.

zn−U bits︷ ︸︸ ︷
aaaaa · · · a︸ ︷︷ ︸
zn−cn−U
settled bits

0111111 · · · 1︸ ︷︷ ︸
cn

outstanding bits

xxxxx · · ·x︸ ︷︷ ︸
U+V

active bits

00000 · · ·︸ ︷︷ ︸
trailing bits

Active bits can be represented by an (U + V)-bit integer Bn

Outstanding bits can be represented by a counter cn

Settled bits are output as soon as they become settled

Total number of bits to output is

K = d− log2WNe = zn − blog2ANc = zn − U + 1 (165)

Termination of arithmetic coding
=⇒ Output all outstanding bits
=⇒ Output most significant bit of (U + V)-integer Bn

Heiko Schwarz Source Coding and Compression November 24, 2013 132 / 160

o

Lossless Coding Elias and Arithmetic Coding

Overview of Process of Arithmetic Coding

Initialization:

Initialize integer representation of interval width: A0 = 2U − 1

Initialize U + V active bits: B0 = 0

Initialize number of outstandig bits: c0 = 0

Iterative coding (for n = 0 to n = N − 1):

Calculate product A∗n+1 = An · pV (sn)

Determine bit shift parameter yn+1 (check first bit equal to “1” in A∗n+1)

Update interval width: An+1 = A∗n+1 >> yn+1

Output settled bits

Update active bits Bn+1 and counter cn+1 for outstanding bits

Termination

Output outstanding bits

Output most significant bit of (U + V)-integer BN

Heiko Schwarz Source Coding and Compression November 24, 2013 133 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding

Consider iid process with symbol alphabet A = {M, I,S,P}
Marginal pmf given by p(ai) = {1/11, 4/11, 4/11, 2/11}
Consider arithmetic coding with V = 4 and U = 4

Consider coding of symbol sequence “MISSISSIPPI”

Preparation: Quantization of pmf (and cmf) with V = 4 bits

ai p(ai) p(ai) · 24 pV (ai) cV (ai)
M 1/11 16/11 ≈ 1.45 1 0
I 4/11 64/11 ≈ 5.82 6 1
S 4/11 64/11 ≈ 5.82 6 7
P 2/11 32/11 ≈ 2.91 3 13

Note: Quantized pmf pQ(an) fulfills the requirement
∑
pQ(an) ≤ 1∑

∀ai

pQ(ai) =
∑
∀ai

pV (ai) · 2−4 = 16 · 2−4 = 1

Heiko Schwarz Source Coding and Compression November 24, 2013 134 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 1

sn pV cV parameter updates & output

A0 = 15 = ’1111’

initialization c0 = 0 (’’)

B0 = 0 = ’0000 0000’

bitstream = “”

“M” 1 0 A0 · pV = 15 · 1 = 15 = ’0000 1111’

B0 +A0 · cV = 0 + 15 · 0 = 0 = ’0 0000 0000’

y1 = 0

A1 = ’1111’ = 15

c1 = 1 (’0’)

B1 = ’0000 0000’ = 0

output = “000”

bitstream = “000”

Heiko Schwarz Source Coding and Compression November 24, 2013 135 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 2

sn pV cV parameter updates & output

A1 = 15 = ’1111’

after step 1 c1 = 1 (’0’)

B1 = 0 = ’0000 0000’

bitstream = “000”

“I” 6 1 A1 · pV = 15 · 6 = 90 = ’0101 1010’

B1 +A1 · cV = 0 + 15 · 1 = 15 = ’0 0000 1111’

y2 = 3

A2 = ’1011’ = 11

c2 = 1 (’0’)

B2 = ’0001 1110’ = 30

output = “0”

bitstream = “0000”

Heiko Schwarz Source Coding and Compression November 24, 2013 136 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 3

sn pV cV parameter updates & output

A2 = 11 = ’1011’

after step 2 c2 = 1 (’0’)

B2 = 30 = ’0001 1110’

bitstream = “0000”

“S” 6 7 A2 · pV = 11 · 6 = 66 = ’0100 0010’

B2 +A2 · cV = 30 + 11 · 7 = 107 = ’0 0110 1011’

y3 = 3

A3 = ’1000’ = 8

c3 = 1 (’0’)

B3 = ’1101 0110’ = 214

output = “0”

bitstream = “0000 0”

Heiko Schwarz Source Coding and Compression November 24, 2013 137 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 4

sn pV cV parameter updates & output

A3 = 8 = ’1000’

after step 3 c3 = 1 (’0’)

B3 = 214 = ’1101 0110’

bitstream = “0000 0”

“S” 6 7 A3 · pV = 8 · 6 = 48 = ’0011 0000’

B3 +A3 · cV = 214 + 8 · 7 = 270 = ’1 0000 1110’

y4 = 2

A4 = ’1100’ = 12

c4 = 1 (’0’)

B4 = ’0011 1000’ = 56

output = “10” (invert outstanding bits)

bitstream = “0000 010”

Heiko Schwarz Source Coding and Compression November 24, 2013 138 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 5

sn pV cV parameter updates & output

A4 = 12 = ’1100’

after step 4 c4 = 1 (’0’)

B4 = 56 = ’0011 1000’

bitstream = “0000 010”

“I” 6 1 A4 · pV = 12 · 6 = 72 = ’0100 1000’

B4 +A4 · cV = 56 + 12 · 1 = 68 = ’0 0100 0100’

y5 = 3

A5 = ’1001’ = 9

c5 = 1 (’0’)

B5 = ’1000 1000’ = 136

output = “0”

bitstream = “0000 0100”

Heiko Schwarz Source Coding and Compression November 24, 2013 139 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 6

sn pV cV parameter updates & output

A5 = 9 = ’1001’

after step 5 c5 = 1 (’0’)

B5 = 136 = ’1000 1000’

bitstream = “0000 0100”

“S” 6 7 A5 · pV = 9 · 6 = 54 = ’0011 0110’

B5 +A5 · cV = 136 + 9 · 7 = 68 = ’0 1100 0111’

y6 = 2

A6 = ’1101’ = 13

c6 = 3 (’011’)

B6 = ’0001 1100’ = 28

output = “”

bitstream = “0000 0100”

Heiko Schwarz Source Coding and Compression November 24, 2013 140 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 7

sn pV cV parameter updates & output

A6 = 13 = ’1101’

after step 6 c6 = 3 (’011’)

B6 = 28 = ’0001 1100’

bitstream = “0000 0100”

“S” 6 7 A6 · pV = 13 · 6 = 78 = ’0100 1110’

B6 +A6 · cV = 28 + 13 · 7 = 119 = ’0 0111 0111’

y7 = 3

A7 = ’1001’ = 9

c7 = 1 (’0’)

B7 = ’1110 1110’ = 238

output = “011”

bitstream = “0000 0100 011”

Heiko Schwarz Source Coding and Compression November 24, 2013 141 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 8

sn pV cV parameter updates & output

A7 = 9 = ’1001’

after step 7 c7 = 1 (’0’)

B7 = 238 = ’1110 1110’

bitstream = “0000 0100 011”

“I” 6 1 A7 · pV = 9 · 6 = 54 = ’0011 0110’

B7 +A7 · cV = 238 + 9 · 1 = 247 = ’0 1111 0111’

y8 = 2

A8 = ’1101’ = 13

c8 = 3 (’011’)

B8 = ’1101 1100’ = 220

output = “”

bitstream = “0000 0100 011”

Heiko Schwarz Source Coding and Compression November 24, 2013 142 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 9

sn pV cV parameter updates & output

A8 = 13 = ’1101’

after step 8 c8 = 3 (’011’)

B8 = 220 = ’1101 1100’

bitstream = “0000 0100 011”

“P” 3 13 A8 · pV = 13 · 3 = 39 = ’0010 0111’

B8 +A8 · cV = 220 + 13 · 13 = 389 = ’1 1000 0101’

y9 = 2

A9 = ’1001’ = 9

c9 = 1 (’0’)

B9 = ’0001 0100’ = 20

output = “1001” (invert outstanding bits)

bitstream = “0000 0100 0111 001”

Heiko Schwarz Source Coding and Compression November 24, 2013 143 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 10

sn pV cV parameter updates & output

A9 = 9 = ’1001’

after step 9 c9 = 1 (’0’)

B9 = 20 = ’0001 0100’

bitstream = “0000 0100 0111 001”

“P” 3 13 A9 · pV = 9 · 3 = 27 = ’0001 1011’

B9 +A9 · cV = 20 + 9 · 13 = 137 = ’0 1000 1001’

y10 = 1

A10 = ’1101’ = 13

c10 = 1 (’0’)

B10 = ’0100 1000’ = 72

output = “010”

bitstream = “0000 0100 0111 0010 10”

Heiko Schwarz Source Coding and Compression November 24, 2013 144 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 11

sn pV cV parameter updates & output

A10 = 13 = ’1101’

after step 10 c10 = 1 (’0’)

B10 = 72 = ’0100 1000’

bitstream = “0000 0100 0111 0010 10”

“I” 6 1 A10 · pV = 13 · 6 = 78 = ’0100 1110’

B10 +A10 · cV = 72 + 13 · 1 = 85 = ’0 0101 0101’

y11 = 3

A11 = ’1001’ = 9

c11 = 1 (’0’)

B11 = ’1010 1010’ = 170

output = “0”

bitstream = “0000 0100 0111 0010 100”

Heiko Schwarz Source Coding and Compression November 24, 2013 145 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Termination

sn pV cV parameter updates & output

A11 = 9 = ’1001’

after step 11 c11 = 1 (’0’)

B11 = 170 = ’1010 1010’

bitstream = “0000 0100 0111 0010 100”

termination output = “01” (outstanding + first bit of B11)

bitstream = “0000 0100 0111 0010 1000 1”

Transmitted bitstream: “0000 0100 0111 0010 1000 1”

Number of transmitted bits: K = 21

Heiko Schwarz Source Coding and Compression November 24, 2013 146 / 160

o

Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Efficiency

Number of written bits using arithmetic coding: KAC = 21

Number of bits for Elias coding

KEC =
⌈
− log2 p(“MISSISSIPPI”)

⌉
=

⌈
− log2

(
1

11
· 4

11
· 4

11
· 4

11
· 4

11
· 4

11
· 4

11
· 4

11
· 2

11
· 2

11
· 4

11

)⌉
=
⌈
− log2(0.000 000 918 · · ·)

⌉
=
⌈
20.053 · · ·

⌉
= 21

Scalar Huffman coding

ai p(ai) codeword
M 1/11 000
I 4/11 01
S 4/11 1
P 2/11 001

Bitstream:
“0000 1110 1110 1001 0010 1”

Number of written bits: KHC = 21

Heiko Schwarz Source Coding and Compression November 24, 2013 147 / 160

o

Lossless Coding Elias and Arithmetic Coding

Efficiency of Arithmetic Coding

Excess rate due to down rounding of interval width

∆` =
⌈
− log2WN

⌉
−
⌈
− log2 p(s)

⌉
< 1 + log2

p(s)

WN
(166)

Upper bound for increase in codeword length per symbol of arithmetic coding
relative to infinite precision Elias coding

∆¯̀<
1

N
+ log2

(
1 + 21−U

)
− log2

(
1− 2−V

pmin

)
(167)

For a derivation see Wiegand, Schwarz, page 51-52

Example:

number of coded symbols N = 1000,
precision for representing probabilities V = 16,
precision for representing intervals U = 12,
minimum probablity pmin = 0.02

=⇒ Increase in codeword length is less than 0.003 bit per symbol

Heiko Schwarz Source Coding and Compression November 24, 2013 148 / 160

o

Lossless Coding Elias and Arithmetic Coding

Binary Arithmetic Coding

Complexity reduction: Most popular type of arithmetic coding

MQ-coder in JPEG 2000
M-coder in H.264/AVC and H.265/HEVC

Binarization of S ∈ {a0, a1, . . . , aM−1} produces C ∈ {0, 1}
Any prefix code can be used for binarization

Example in table: Unary truncated binarization

Sn number of bins B C0 C1 C2 · · · CM−2 CM−1

a0 1 1
a1 2 0 1
...

...
...

...
. . .

aM−2 M − 2 0 0 0 · · · 0 1
aM−1 M − 2 0 0 0 · · · 0 0

Entropy and efficiency of coding unchanged due to binarization S 7→ C

H(S) = E{− log2 p(S)} = E{− log2 p(C)} = H(C)

Heiko Schwarz Source Coding and Compression November 24, 2013 149 / 160

o

Lossless Coding Comparison of Lossless Coding Techniques

Comparison of Lossless Coding Techniques

Experimental determination of average codeword length

Coding of 1 000 000 realizations of our example stationary Markov source

Determine average codeword length for sequences of 1 to 1000 symbols

Tested lossless coding techniques

Scalar Huffman coding (3 codewords)

Conditional Huffman coding (9 codewords)

Block Huffman coding of 5 symbols (243 codewords)

Huffman coding for variable-length vectors (17 codewords)

Arithmetic coding with U = V = 16

Bounds for lossless coding

Marginal entropy H(S) for coding of a single symbol

Entropy rate H̄(S) for coding of infinite many symbols

Instantaneous entropy rate H̄inst(S, L) for coding L symbols

H̄inst(S, L) =
1

L
H(S0, S1, . . . , SL−1) (168)

Heiko Schwarz Source Coding and Compression November 24, 2013 150 / 160

o

Lossless Coding Comparison of Lossless Coding Techniques

Comparison of Lossless Coding Techniques

0.0

0.5

1.0

1.5

2.0

2.5

1 10 100 1000

a
v
e
ra

g
e
 c

o
d

e
w

o
rd

 l
e
n

g
th

 p
e
r

s
y
m

b
o

l

number of coded symbols (logarithmic scale)

entropy rate

instantaneous entropy rate

scalar Huffman code (3 codewords)

conditional Huffman code (3 3 codewords)

Huffman code for fixed-length vectors (5 symbols, 243 codewords)

Huffman code for variable-length vectors (17 codewords)

arithmetic coding (16 bits of precision for interval sizes and probabilities)

Heiko Schwarz Source Coding and Compression November 24, 2013 151 / 160

o

Lossless Coding Sources with Memory and Instationary Sources

Conditional and Adaptive Codes

Question: How can we efficiently code sources with memory and/or with
varying statistics

Conditional Huffman coding (adaptive for instationary sources)

The resulting number of code tables is often too large in practice
Adaptation of Huffman code tables is often considered as to complex

Block Huffman coding (adaptive for instationary sources)

Code tables are typically too large to be used in practice
Adaptation of Huffman code tables is often considered as to complex

Conditional and adaptive arithmetic coding

Easy to incorporate conditional probabilities as well as varying probabilities
In adaptive arithmetic coding, probabilities p(ak) are estimated/adapted
simultaneously at encoder and decoder
Statistical dependencies can be exploited using so-called context modeling
techniques: Conditional probabilities p(ak|zk) with zk being a context/state
that is simultaneously computed at encoder and decoder based on already
transmitted symbols

Heiko Schwarz Source Coding and Compression November 24, 2013 152 / 160

o

Lossless Coding Sources with Memory and Instationary Sources

Forward and Backward Adaptation

The two basic approaches for adaptation are

Forward adaptation:

Gather statistics for a large enough block of source symbols
Transmit adaptation signal to decoder as side information
Disadvantage: Increased bit rate due to side information

Backward adaptation:

Gather statistics simultaneously at coder and decoder
Drawback: Error resilience

With today’s packet-switched transmission systems, an efficient combination of
the two adaptation approaches can be achieved:

1 Gather statistics for the entire packet and provide initialization of entropy
code at the beginning of the packet

2 Conduct backwards adaptation for each symbol inside the packet in order to
minimize the size of the packet

Heiko Schwarz Source Coding and Compression November 24, 2013 153 / 160

o

Lossless Coding Sources with Memory and Instationary Sources

Forward and Backward Adaptation

Heiko Schwarz Source Coding and Compression November 24, 2013 154 / 160

o

Lossless Coding Chapter Summary

Chapter Summary

Uniquely decodable codes and bounds for lossless coding

Kraft inequality, prefix codes

Entropy, conditional entropy, block entropy

Entropy rate, instantaneous entropy rate

Huffman codes for scalars and vectors (optimal prefix codes)

Efficient and simple entropy coding method

Needs a code table

Can be inefficient for certain probabilities

Difficult to use for sources with memory or time-varying statistics

Arithmetic coding (fixed-precision variant of Elias coding)

Universal method for encoding strings of symbols

Does not need a code table, but a table for storing probabilities

Approaches entropy for long symbol sequences

Well suited for exploiting statistical dependencies and coding of instationary
sources (probability updates)

Heiko Schwarz Source Coding and Compression November 24, 2013 155 / 160

o

Lossless Coding Exercises (Set C)

Exercise 9 – Part 1/2

Given is a Bernoulli process X = {Xn} with the alphabet A = {a, b} and the pmf
pX(a) = 1/4 and pX(b) = 3/4.

(a) Consider Elias coding and derive the codeword for the symbol sequence
“abba” using the iterative encoding procedure.

(b) Develop the complete code for an Elias coding of 3 symbols (i.e., determine
the codewords for all symbol sequences that consist of 3 symbols).

Determine the average codeword length per symbol and compare it to the
entropy rate and the average codeword length per symbol for a joint Huffman
code for sequences of 3 symbols.

Is the Elias code more efficient than the Huffman code for the same number
of jointly coded symbols?

(c) Decode the 3-symbol sequence {s0, s1, s2} represented by the bit string “100”
using the iterative Elias decoding algorithm.

Heiko Schwarz Source Coding and Compression November 24, 2013 156 / 160

o

Lossless Coding Exercises (Set C)

Exercise 9 – Part 2/2

(d) Consider the case in which the developed Elias code is used for coding
multiple 3-symbol sequences. The codewords for the 3-symbol sequences are
concatenated. Given is a bit string “10011100”.

Decode the symbol sequence using the developed code table.

Decode the first three symbols (i.e., the first 3-symbol sequence) using the
iterative decoding algorithm.

What do you observe?

(e) How many bits have to be used for a codeword in order to make an Elias code
uniquely decodable using the iterative decoding algorithm for a sequence of
codewords.

Derive a lower and upper bound for the average codeword length per symbol
for the corresponding Elias code if a codeword is generated for a sequences of
N symbols.

Heiko Schwarz Source Coding and Compression November 24, 2013 157 / 160

o

Lossless Coding Exercises (Set C)

Exercise 10 – Part 1/3 (Optional Self Study)

Given is a discrete iid process X = {Xn} with the symbol alphabet
A = {’M’, ’I’, ’S’, ’P’} and the pmf

pX(x) =

0.1 : x = ’M’
0.3 : x = ’I’
0.4 : x = ’S’
0.2 : x = ’P’

Consider binary arithmetic coding of the given source.

(a) Use a fixed-length code for binarizing the given source X.

Verify on the given example that binarization does not have any impact on
the coding efficiency (assuming a successive coding that achieves the entropy
rate).

What binarization schemes can be used in the context of binary arithmetic
coding?

Show that binarization does not change the lower bound for the average
codeword length per symbol.

Heiko Schwarz Source Coding and Compression November 24, 2013 158 / 160

o

Lossless Coding Exercises (Set C)

Exercise 10 – Part 2/3 (Optional Self Study)

(b) For arithmetic coding, the probability masses have to be represented with
finite precision. Round the pmfs for the binary symbols to a precision of
V = 4 bit.

What conditions need to be fulfilled for the rounded version of a pmf? Are
these conditions fulfilled for the example?

Investigate the impact on the average codeword length per symbol of the
given source X (assuming that the following arithmetic coding process does
not have any negative impact on the coding efficiency).

(c) For arithmetic coding, the interval width has to be represented with finite
precision.

Show that, for a coding of N symbols, the corresponding increase in average
codeword length per arithmetically coded symbol is less than
1/N + log2(1 + 21−U) bits, if U is the number of bits used for representing
the interval width.

Determine the minimum precision U that is required to guarantee that the
coding efficiency loss due to rounding the interval width is less than 0.1%
when more than 10000 symbols X are transmitted.

Heiko Schwarz Source Coding and Compression November 24, 2013 159 / 160

o

Lossless Coding Exercises (Set C)

Exercise 10 – Part 3/3 (Optional Self Study)

(d) Consider arithmetic coding that uses U bits for representing the interval width
and V bits for representing the probability masses.

Show that the lower interval boundaries can be represented by a counter and
an integer value of U + V bits.

(e) Consider binary arithmetic coding for the given source X with fixed-length
binarization, V = 4 bits for representing the probability masses, and U = 4
bits for representing the interval width.

Generate the arithmetic codeword for the symbol sequence “MISS”.

Compare the length of the arithmetic codeword with the length of the
codeword that would be generated by Elias coding.

Heiko Schwarz Source Coding and Compression November 24, 2013 160 / 160

	Lossless Coding
	Elias and Arithmetic Coding
	Comparison of Lossless Coding Techniques
	Sources with Memory and Instationary Sources
	Chapter Summary
	Exercises (Set C)

