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Rate-Distortion Theory Introduction

Rate-Distortion Theory – Motivation

Lossy coding: Decoded signal is an approximation of original

Rate-distortion theory: Information theoretical bounds for lossy compression

Results are obtained without consideration of a specific coding method

Goal of rate-distortion theory is to calculate the minimum transmission bit
rate for a given distortion and source

Example for a rate-distortion function of a discrete iid source
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Rate-Distortion Theory Introduction

Transmission System and Variables

Transmission system

Coder Decoder Source Sink 

Distortion 

Bit-Rate 
€ 

D

€ 

S

€ 

S'

€ 

R

Derivation in two steps

Define S, S′, coder/decoder, distortion D and rate R

Establish a functional relationship between S, S′, D, and R

For two types of random variables

Discrete random variables

Continuous-amplitude random variables (Gaussian, Laplacian, etc.)
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Rate-Distortion Theory The Operational Rate-Distortion Function

General Structure of Lossy Source Codecs

Encoder:

Irreversible encoder mapping α : s→ i

Lossless mapping γ : i→ b

Decoder:

Lossless mapping γ−1 : b→ i

Decoder mapping β : i→ s′
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Rate-Distortion Theory The Operational Rate-Distortion Function

Source Codes

A source code Q = (α, β, γ) is given by an encoder mapping α, a decoder
mapping β and a lossless mapping γ

Special case: N -dimensional block source code QN = {αN , βN , γN}
Blocks of N consecutive input samples are independently coded
Each block of input samples s(N) = {s0, · · · , sN−1} is mapped to a vector of
K quantization indexes

i(K) = αN (s(N)) (169)

Resulting vector of indexes i(N) is converted into a bit sequence

b(`) = γN (i(K)) = γN (αN (s(N))) (170)

At decoder side, index vector is recovered

i(K) = γ−1
N (b(`)) = γ−1

N (γN (i(K))) (171)

Index vector is mapped to a block of reconstructed samples
s′(N)

= {s′0, · · · , s′N−1}

s′(N)
= βN (i(K)) = βN (αN (s(N))) (172)
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Rate-Distortion Theory The Operational Rate-Distortion Function

Distortion

Distortion: Measure of difference between a block of N input samples
s(N) = {s0, s1, . . . , sN−1} and the corresponding block of reconstructed

samples s′
(N)

= {s′0, s′1, . . . , s′N−1},

dN

(
s(N), s′

(N)
)

Typically: Additive distortion measures

dN (s(N), s′
(N)

) =
1

N

N−1∑
i=0

d1(si, s
′
i) (173)

with the single symbol distortion d1(s, s′) ≥ 0 (equality, if and only if s = s′)

In this lecture: Mean squared error d1(s, s′) = (s− s′)2

dN

(
s(N), s′

(N)
)

=
1

N

N−1∑
i=0

d1(si, s
′
i) =

1

N

N−1∑
i=0

(si − s′i)2 (174)
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Rate-Distortion Theory The Operational Rate-Distortion Function

Average Distortion for Source Codes

Average distortion for a stationary random process S = {Sn} and an
N -dimensional block source code QN = {αN , βN , γN}

δ(QN ) = E
{
dN
(
S(N), βN (αN (S(N)))

)
)
}

(175)

=

∫
RN

f(s) dN
(
s, βN (αN (s))

)
ds (176)

For arbitrary random process S = {Sn} and arbitrary code Q

δ(Q) = lim
N→∞

E
{
dN
(
S(N), βN (αN (S(N)))

)
)
}

(177)

For additive distortion measures (such as the MSE distortion)

δ(Q) = δ(S, S′) = E{d1(S, S′)} =

∫
s

∫
s′
fSS′(s, s

′) d1(s, s′) dsds′ (178)
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Rate-Distortion Theory The Operational Rate-Distortion Function

Average Rate for Source Codes

Average number of bits per input symbol (| · | denotes the number of bits)

rN (s(N)) =
1

N

∣∣γN (αN (s(N)))
∣∣ with b(`) = γN (αN (s(N))) (179)

Stationary random process S = {Sn} and N -dimensional block source code
QN = {αN , βN , γN}

r(QN ) =
1

N
E
{∣∣γN (αN (S(N)))

∣∣} (180)

=
1

N

∫
RN

f(s)
∣∣γN (αN (s))

∣∣ds (181)

For arbitrary random process S = {Sn} and arbitrary code Q

r(Q) = lim
N→∞

1

N
E
{∣∣γN (αN (S(N)))

∣∣} (182)
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Rate-Distortion Theory The Operational Rate-Distortion Function

Operational Rate-Distortion Function

For given source S:

Each code Q is associated with a rate distortion point (R,D) = (r(Q), δ(Q))

A rate distortion point is achievable, if there exist a code Q
such that r(Q) ≤ R and δ(Q) ≤ D
The operational rate-distortion function R(D) and its inverse,
the operational distortion-rate function D(R) are defined by

R(D) = inf
Q: δ(Q)≤D

r(Q) D(R) = inf
Q: r(Q)≤R

δ(Q) (183)
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Rate-Distortion Theory The Information Rate-Distortion Function

Motivation for Information Rate-Distortion Function

Operational rate-distortion function

Defined by
R(D) = inf

Q: δ(Q)≤D
r(Q) (184)

Specifies a fundamental performance bound for lossy source coding

Difficulty to evaluate (minimization over all possible codes)

Information rate-distortion function

Introduced by Shannon in [Shannon 1948; Shannon1959]

Obtain expression of rate-distortion bound that involves the distribution of
the source using mutual information

Show that information rate-distortion function is achievable
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Discrete Random Variables

Mutual information between two discrete random variables A and B is
defined by

I(A;B) = H(A)−H(A|B) (185)

Entropy H(A) is a measure of uncertainty about random variable A

Conditional entropy H(A|B) is a measure of uncertainty about random
variable A after observing random variable B

Mutual information is a measure for the reduction of uncertainty about A
due to the observation of B

=⇒ Average amount of information that A carries about B

Mutual information for discrete random variables A ∈ A and B ∈ B

I(A;B) = H(A)−H(A|B) =
∑
a∈A

∑
b∈B

p(a, b) log2

p(a|b)
p(a)

(186)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Discrete Random Variables

Mutual information rewritten using Bayes’ rule

I(A;B) =
∑
a∈A

∑
b∈B

p(a, b) log2

p(a|b)
p(a)

=
∑
a∈A

∑
b∈B

p(a, b) log2

p(a, b)

p(a) p(b)

=
∑
a∈A

∑
b∈B

p(a, b) log2

p(b|a)

p(b)

= H(B)−H(B|A) (187)

Mutual information between two random variables A and B represents
the average amount of information that

the random variable A carries about the random variable B, or

the random variable B carries about the random variable A
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Discrete Random Vectors

Mutual information between two random variables A and B

I(A;B) = H(A)−H(A|B)

= H(B)−H(B|A)

=
∑
a∈A

∑
b∈B

p(a, b) log2

p(a, b)

p(a) p(b)
(188)

Extension to N -dimensional random vectors A = (A0, A1, · · · , AN−1)T and
B = (B0, B1, · · · , BN−1)T

IN (A;B) = HN (A)−HN (A|B)

= HN (B)−HN (B|A)

=
∑

a∈AN

∑
b∈BN

p(a, b) log2

p(a, b)

p(a) p(b)
(189)
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Rate-Distortion Theory The Information Rate-Distortion Function

Properties of Mutual Information for Discrete RV

Mutual information between discrete random vectors A and B

IN (A;B) = HN (A)−HN (A|B) (190)

= HN (B)−HN (B|A) (191)

Since the conditional entropies are non-negative

IN (A;B) ≤ HN (A) (192)

IN (A;B) ≤ HN (B) (193)

For independent random vectors A and B

IN (A;B) = 0 (194)

If the random vector B is a deterministic function of the random vector A,

B = f(A) =⇒ IN (A;B) = HN (B) (195)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Coding of Discrete Sources

Consider mutual information IN (S;S′) between a vector of N successive
input samples S and the corresponding vector of N reconstructed samples S′

IN (S;S′) = HN (S′)−HN (S′|S)

≤ HN (S′) (196)

where equality is achieved if and only if the vector S′ of reconstructed
samples is a deterministic function of the input vector S

Recall: Fundamental bound for lossless coding

r(Q) ≥ H̄(S′) = lim
N→∞

HN (S′)

N
(197)

Rate of for code Q

r(Q) ≥ lim
N→∞

HN (S′)

N
≥ lim
N→∞

IN (S′;S)

N
(198)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Continuous Random Variables

Remember: Discrete random variables

Mutual information for discrete random variables A and B

I(A;B) = H(A)−H(A|B) (199)

= H(B)−H(B|A) (200)

For continuous random variables, the discrete entropies are not defined
(they approach infinity)

Definition of mutual information for continuous random variables

Quantize pdfs with a quantization step size ∆

Calculate mutual information for resulting discrete random variables

Consider limit for quantization step size ∆ approaching zero
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Rate-Distortion Theory The Information Rate-Distortion Function

Discretization of Continuous Random Variables

Approximation f
(∆)
X of pdf fX

∀x : xi ≤ x < xi+1 f
(∆)
X (x) =

1

∆

∫ xi+1

xi

fX(x′) dx′ (201)

Pmf pX∆ for random variable X∆

pX∆
(xi) =

∫ xi+1

xi

fX(x′) dx′ = f
(∆)
X (xi) ·∆ (202)

Joint pmf of two discrete approximations X∆ and Y∆

pX∆Y∆(xi, yj) = f
(∆)
XY (xi, yj) ·∆2 (203)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Continuous Random Variables

Mutual information for discrete random variables X∆ ∈ AX∆
and Y∆ ∈ AY∆

I(X∆;Y∆) =
∑

xi∈AX∆

∑
yi∈AY∆

pX∆Y∆
(xi, yj) log2

pX∆Y∆(xi, yi)

pX∆
(xi) pY∆

(yj)
(204)

=
∑

xi∈AX∆

∑
yi∈AY∆

f
(∆)
XY (xi, yj) · log2

f
(∆)
XY (xi, yj)

f
(∆)
X (xi) f

(∆)
Y (yj)

·∆2

The mutual information I(X;Y ) for the continuous random variables X
and Y is obtained for ∆ approaching zero,

I(X;Y ) = lim
∆→0

I(X∆;Y∆) (205)

For ∆→ 0, the piecewise constant pdf approximations f
(∆)
XY , f

(∆)
X , and f

(∆)
Y

approach the pdfs fXY , fX , and fY , and we obtain

I(X;Y ) =

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y) log2

fXY (x, y)

fX(x) fY (y)
dxdy (206)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Continuous Random Vectors

Mutual information for continuous random variables X and Y

I(X;Y ) =

∞∫
−∞

∞∫
−∞

fXY (x, y) log2

fXY (x, y)

fX(x) fY (y)
dxdy (207)

Consider extension to N -dimensional random vectors
X = (X0, X1, · · · , XN−1)T and Y = (Y0, Y1, · · · , YN−1)T

IN (X;Y ) =

∫
RN

∫
RN

fXY (x,y) log2

fXY (x,y)

fX(x) fY (y)
dx dy (208)

Using fXY (x,y) = fX(x)fY |X(x,y), we can also write

IN (X;Y ) =

∫
RN

∫
RN

fX(x)fY |X(x,y) log2

fY |X(x,y)

fY (x)
dx dy (209)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information between Discrete and Continuous RV

Let Y be a discrete random vector with alphabet ANY
fY (y) =

∑
a∈ANY

δ(y − a) pY (a) (210)

fY |X(y|x) =
∑
a∈ANY

δ(y − a) pY |X(a|x) (211)

Rewriting mutual information using above pmfs yields

IN (X;Y ) =

∫
RN

∫
RN

fX(x)fY |X(x,y) log2

fY |X(x,y)

fY (x)
dx dy

=

∫
RN

fX(x)
∑
a∈ANY

pY |X(a|x) log2

pY |X(a|x)

pY (a)
dx

=

∫
RN

fX(x)
∑
a∈ANY

pY |X(a|x)
(

log2 pY |X(a|x)− log2 pY (a)
)

dx

(212)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information between Discrete and Continuous RV

Continue reformulation of mutual information IN (X;Y )

IN (X;Y ) =

∫
RN

fX(x)
∑
a∈ANY

pY |X(a|x)
(

log2 pY |X(a|x)− log2 pY (a)
)

dx

= −
∑
a∈ANY

 ∫
RN

pY |X(a|x)fX(x) dx

 log2 pY (a)

+

∫
RN

fX(x)

 ∑
a∈ANY

pY |X(a|x) log2 pY |X(a|x)

 dx

= −
∑
a∈ANY

pY (a) log2 pY (a)−
∫
RN

fX(x)HN (Y |X = x) dx

= HN (Y )−
∫
RN

fX(x)HN (Y |X = x) dx (213)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information between Discrete and Continuous RV

Mutual information between a discrete random vector Y and a continuous
random vector X

IN (X;Y ) = HN (Y )−
∫
RN

fX(x)HN (Y |X = x) dx (214)

where HN (Y ) is the entropy of the discrete random vector Y and

HN (Y |X=x) = −
∑
a∈AN

Y

pY |X(a|x) log2 pY |X(a|x) (215)

is the conditional entropy of Y given the event {X=x}

Since the conditional entropy HN (Y |X=x) is always nonnegative, we have

IN (X;Y ) ≤ HN (Y ) (216)

with equality if and only if Y is a deterministic function of X

If X and Y are independent, we have IN (X;Y ) = 0
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Coding of Continuous Sources

Consider mutual information IN (S;S′) between a vector of N successive
input samples S and the corresponding vector of N reconstructed samples S′

Since vectors of reconstructed samples are discrete, we can write

IN (S;S′) = HN (S′)−
∫
RN

fS(s)HN (S′|S = s) ds ≤ HN (S′) (217)

where equality is achieved if and only if the vector S′ of reconstructed
samples is a deterministic function of the input vector S

Using the fundamental bound for lossless coding, we have for the average
rate of a source code Q,

r(Q) ≥ lim
N→∞

HN (S′)

N
≥ lim
N→∞

IN (S′;S)

N
(218)

=⇒ Same expression as for coding of discrete sources
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Rate-Distortion Theory The Information Rate-Distortion Function

Description of a Source Code using a Conditional Pdf

Statistical properties of a mapping s′ = β(α(s)) can be described by an
N -th order conditional pdf gN (s′|s)

Example 1: Mapping s→ s′ : s′ = bs/∆c ·∆

g1(s
′|s)

⌊s/∆⌋∆ s′

g1(s′|s) = δ(s′ − bs/∆c ·∆)

For N > 1, gN (s′|s) are multivariate conditional pdfs

The pdfs gN (s′|s) obtained by a deterministic mapping (codes) are a subset
of the set of all conditional pmfs
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Rate-Distortion Theory The Information Rate-Distortion Function

Description of a Source Code using a Conditional Pdf

Example 2: Mapping (sn, sn+1)→ (s′n, s
′
n+1)

(s′n, s
′
n+1) =


(1, 1) : sn + sn+1 > 1
(−1,−1) : sn + sn+1 < −1
(0, 0) : otherwise

1 sn

sn+1

1

−1

−1

g1(s
′|s)

1−1 s′

g1(s′|s) = x·δ(s′+1)+y·δ(s′)+z·δ(s′−1)

with x+ y + z = 1
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Rate-Distortion Theory The Information Rate-Distortion Function

Distortion for a Source Code using Conditional Pdf

Let gQN (s′|s) be the N -th order conditional pdf of a source code Q
with s′ ∈ RN and s ∈ RN

N -th order distortion

δN (gN ) = E{dN (S,S′)}

=

∫
RN

∫
RN

fSS′(s, s′) · dN (s, s′) dsds′

=

∫
RN

∫
RN

fS(s) · gQN (s′|s) · dN (s, s′) dsds′ (219)

Recall: General expression for distortion δ(Q) of a source code Q

δ(Q) = lim
N→∞

E{dN (S,S′)} (220)

Distortion for a source code Q can be written as

δ(Q) = lim
N→∞

δN (gQN ) (221)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for a Source Code using Conditional Pdf

N -th order mutual information

IN (gN ) = E

{
log2

fSS′(S,S′)

fS(S)fS′(S′)

}
=

∫
RN

∫
RN

fSS′(s, s′) · log2

fSS′(S,S′)

fS(S)fS′(S′)
dsds′

=

∫
RN

∫
RN

fS(s) · gN (s′|s) · log2

gN (s′|s)
fS′(s′)

dsds′ (222)

with

fS′(s′) =

∫
RN

fS(s) · gN (s′|s) ds. (223)

For a given source S, both the N -th order distortion δN and the N -th order
mutual information IN are completely determined by the N -th order
conditional pdf gQN (s′|s)
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Rate-Distortion Theory The Information Rate-Distortion Function

Information Rate-Distortion Function

Consider any source code Q with a distortion δ(Q) ≤ D
Associated rate is denoted by r(Q)

Output S′ of source codec is a discrete random process

Remember: Fundamental theorem for lossless coding

r(Q) ≥ H̄(S′) = lim
N→∞

HN (S′)

N
(224)

Using mutual information, we can write

r(Q) ≥ lim
N→∞

HN (S′)

N
≥ lim
N→∞

IN (S;S′)

N
= lim
N→∞

IN (gQN )

N
(225)

Deterministic mapping gQN as given by a source code Q is a special case of a
random mapping gN

IN (gQN ) ≥ inf
gN :δN (gN )≤D

IN (gN ) (226)

Heiko Schwarz Source Coding and Compression November 24, 2013 189 / 242



o

Rate-Distortion Theory The Information Rate-Distortion Function

Information Rate-Distortion Function

Hence, we have

r(Q) ≥ lim
N→∞

IN (gQN )

N
≥ lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(227)

Information rate-distortion function

R(I)(D) = lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(228)

Fundamental source coding theorem

∀Q : δ(Q) ≤ D, r(Q) ≥ R(I)(D) (229)

=⇒ For a given maximum distortion D, the rate r(Q) for each source code Q
that yields a distortion δ(Q) ≤ D is greater than or equal to the information
rate-distortion function R(I)(D)
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Rate-Distortion Theory The Information Rate-Distortion Function

Information vs Operational Rate-Distortion Function

We have shown that information rate-distortion function R(I)(D) represents
a lower bound for all source codes Q

=⇒ Lower bound for operational rate-distortion function

It can also be shown that R(I)(D) is asymptotically achievable

For any ε > 0, there exists a code Q with

δ(Q) ≤ D and

r(Q) ≤ R(I)(D) + ε

(see proof in [Cover and Thomas])

=⇒ Information rate-distortion function is equal to
operational rate-distortion function

Use the term rate-distortion function R(D) for both in the following
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Rate-Distortion Theory The Information Rate-Distortion Function

(Information) Distortion-Rate Function

Fundamental source coding theorem

∀Q : δ(Q) ≤ D, r(Q) ≥ R(D) (230)

with (information) rate-distortion function

R(D) = lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(231)

Alternative formulation by interchanging roles of rate and distortion

∀Q : r(Q) ≤ R, δ(Q) ≥ D(I)(R) (232)

with (information) distortion-rate function

D(R) = lim
N→∞

inf
gN : IN (gN )/N≤R

δN (gN ) (233)

Distortion-rate function D(R) is inverse of rate-distortion function R(D)
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Rate-Distortion Theory The Information Rate-Distortion Function

R(D) for Discrete Sources and Additive Distortion Measures

1
0
0

€ 

(H(S),Dmin = 0)

€ 

(H(S) −H(S | ′ S ) = 0,Dmax )

€ 

D
Dmax

Example of R(D) for
a discrete iid source

R(D) is a non-increasing
and convex function of D

There exists a value Dmax, so that

∀D ≥ Dmax R(D) = 0 (234)

=⇒ For MSE distortion measure: Dmax is equal to the variance σ2 of the source

Minimum rate required for lossless transmission of a discrete source is equal
to the entropy rate

Dmin = 0 R(0) = H̄(S) (235)

=⇒ Fundamental bound for lossless coding:
Special case of the fundamental bound for lossy coding

Heiko Schwarz Source Coding and Compression November 24, 2013 193 / 242



o

Rate-Distortion Theory The Information Rate-Distortion Function

R(D) for Continuous Sources and Additive Distortion Meas.

Example of R(D) for an amplitude-continuous source

1
0
0

 R(D) for continuous amplitude sources


€ 

D /σ 2

 R [bits]
 ∞


R(D) is a non-increasing and convex function of D

There exists a value Dmax, so that

∀D ≥ Dmax R(D) = 0 (236)

=⇒ For MSE distortion measure: Dmax is equal to the variance σ2 of the source

R(D) approaches infinity as D approaches zero
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Rate-Distortion Function for IID Sources

N -th order distortion δN (gN ) for additive distortion measures

δN (gN ) = E{dN (S,S′)} = E

{
1

N

N−1∑
i=0

d1(Si, S
′
i)

}
= E{d1(S, S′)}

=

∞∫
−∞

fS(s) · g1(s′|s) · d1(s, s′) ds = δ1(g) (237)

N -th order mutual information for iid sources
(Note: If the source S is iid, the reconstruction S′ is also iid)

IN (gN ) = E

{
log2

fSS′(S,S′)

fS(S) fS′(S′)

}
= E

{
log2

(
fSS′(S, S

′)

fS(S) fS′(S′)

)N}

= N · E
{

log2

fSS′(S, S
′)

fS(S) fS′(S′)

}

= N

∞∫
−∞

∞∫
−∞

fS(s) g1(s′|s) log2

g1(s′|s)
fS′(s′)

dsds′ = N · I1(g) (238)
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Rate-Distortion Function for IID Sources

For iid sources and additive distortion measures, we have

δN (gQN ) = δ1(gQ) and IN (gQN ) = N · I1(gQ) (239)

Rate-distortion function for iid sources and additive distortion measures

R(D) = lim
N→∞

inf
gN : δN (gN )≤D

IN (gN )

N
= inf
g1: δ1(g1)≤D

I1(g1) (240)

=⇒ Also called first-order rate-distortion function R1(D)

Distortion-rate function for iid sources and additive distortion measures

D(R) = lim
N→∞

inf
gN : IN (gN )/N≤R

δN (gN ) = inf
g1: I1(g1)≤R

δ1(g1) (241)

=⇒ Also called first-order distortion-rate function D1(R)
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N -th Order Rate-Distortion Functions

Can define N -th order rate-distortion and distortion-rate functions

RN (D) = inf
gN : δN (gN )≤D

IN (gN )

N
(242)

DN (R) = inf
gN : IN (gN )/N≤R

δN (gN ) (243)

In general, the rate-distortion and distortion-rate functions can be written as

R(D) = lim
N→∞

RN (D) and D(R) = lim
N→∞

DN (R) (244)

For iid sources and additive distortion measures, we have

R(D) = R1(D) and D(R) = D1(R) (245)
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Discussion of Rate-Distortion Functions

Operational rate-distortion function

R(D) = inf
Q: δ(Q)≤D

r(Q) (246)

Minimization over all possible source codes

Easy to define, but impossible to evaluate

Information rate-distortion function

R(D) = lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(247)

Property of source: Don’t need to consider all possible codes

Still impossible to evaluate directly (minimization over all conditional pdfs)

Numerical minimization for discrete sources: Blahut-Arimoto algorithm

How can we proceed?

Can derive lower bound for (information) rate-distortion function
For some sources and distortion measures (e.g., Gaussian and MSE):

=⇒ Can show that lower bound is achievable
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Differential Entropy

Mutual information between a continuous random vector X and a
continuous or discrete random vector Y

I(X;Y ) = E

{
log2

fXY (X,Y )

fX(X) fY (Y )

}
= E

{
log2

fX|Y (X|Y )

fX(X)

}
= E{− log2 fX(X)} − E

{
− log2 fX|Y (X|Y )

}
= h(X)− h(X|Y ) (248)

Define: Differential entropy of a continuous random vector X

h(X) = E{− log2 fX (X)} = −
∫
RN

fX (x) log2 fX (x) dx (249)

Define: Conditional differential entropy of X given Y

h(X|Y ) = E
{
− log2 fX|Y (X|Y )

}
= −

∫
RN

∫
RN

fXY (x,y) log2 fX|Y (x|y) dx dy (250)
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Example: Differential Entropy for an Uniform IID Source

For an continuous iid source S, differential entropy is defined as

h(S) = E{− log2 f(S)} = −
∫ ∞
−∞

f(s) log2 f(s) ds (251)

h(S) for uniform distribution f(s) = 1/A for −A/2 ≤ s ≤ A/2

h(S) = −
∫ A/2

−A/2

1

A
log2

1

A
ds =

1

A
log2A

∫ A/2

−A/2
ds = log2A (252)

Differential entropy can become negative (in contrast to discrete entropy)

!2 !1.5 !1 !0.5 0 0.5 1 1.5 2
0
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Differential Entropy for an Gaussian IID Source

Gaussian iid process

fS(s) =
1√

2πσ2
e−

(s−µ)2

2σ2 (253)

Differential entropy

h(S) = −
∞∫
−∞

fS(s) log2 fS(s)ds

= −
∞∫
−∞

fS(s)

[
− (s− µ)2

2σ2
log2 e− log2

√
2πσ2

]
ds

=
E
{

(S − µ)2
}

2σ2
· log2 e+

1

2
log2(2πσ2)

=
1

2
log2 e+

1

2
log2(2πσ2)

=
1

2
log2(2πeσ2) (254)
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N -th Order Differential Entropy

N-th order differential entropy

hN (S) = h(S(N)) = h(S0, · · · , SN−1) = E
{
− log2 fS(S(N))

}
(255)

Differential entropy rate

h̄(S) = lim
N→∞

hN (S)

N
= lim
N→∞

h(S0, · · · , SN−1)

N
(256)

N -th order pdf of a stationary Gaussian process

fG(s) =
1

(2π)N/2 |CN |1/2
e−

1
2 (s−µN )TC−1

N (s−µN ) (257)

N -th order differential entropy of stationary Gaussian process

h
(G)
N (S) = −

∫
RN

fG(s) log2 fG(s) ds

=
1

2
log2

(
(2π)N |CN |

)
+

log2 e

2

∫
RN

fG(s) (s−µN )TC−1
N (s−µN ) ds (258)
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N -th order Differential Entropy of Stationary Gaussian Process

General stationary process with pdf fS(s), mean µN , covariance matrix CN∫
RN

fS(s) (s−µN )TC−1
N (s−µN ) ds

= E
{

(S−µN )TC−1
N (S−µN )

}
= E


N−1∑
i=0

N−1∑
j=0

(Si − µi)(C−1)i,j(Sj − µj)


=

N−1∑
i=0

N−1∑
j=0

E{(Si − µi)(Sj − µj)} (C−1)i,j

=

N−1∑
i=0

N−1∑
j=0

Cj,i(C
−1)i,j

=

N−1∑
i=0

(CC−1)j,j

= N (259)
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N -th order Differential Entropy of Stationary Gaussian Process

Showed for general pdf fS(s)∫
RN

fS(s) (s−µN )TC−1
N (s−µN ) ds = N (260)

Continue derivation for stationary Gaussian source

h
(G)
N (S) =

1

2
log2

(
(2π)N |CN |

)
+

log2 e

2

∫
RN

fG(s) (s−µN )TC−1
N (s−µN ) ds

=
1

2
log2

(
(2π)N |CN |

)
+
N

2
log2 e

=
1

2
log2

(
(2π)N |CN |

)
+

1

2
log2 e

N

=
1

2
log2

(
(2πe)N |CN |

)
(261)
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N -th order Differential Entropy of Stat. Non-Gaussian Process

Consider stationary non-Gaussian process with N -th order pdf f(s)

Let fG(s) be the N -th order pdf of a Gaussian process with the same N -th
order autocovariance matrix CN

By applying the divergence inequality for pdfs, we obtain

hN (S) = −
∫
RN

f(s) log2 f(s) ds

≤ −
∫
RN

f(s) log2 fG(s) ds

=
1

2
log2

(
(2π)N |CN |

)
+

log2 e

2

∫
RN

f(s)(s−µN )TC−1
N (s−µN ) ds

=
1

2
log2

(
(2πe)N |CN |

)
= h

(G)
N (S) (262)

=⇒ Gaussian process with a given N-th order autocovariance matrix CN

has the largest N-th order differential entropy among all processes
with the same autocovariance matrix CN

Heiko Schwarz Source Coding and Compression November 24, 2013 205 / 242



o

Rate-Distortion Theory Shannon Lower Bound

Eigendecomposition of the Covariance Matrix

Determinant |CN |: Product of the eigenvalues ξi of the matrix CN ,

CN = ANΞNA
T
N → |CN | = |AN |︸︷︷︸

=1

·|ΞN | · |AT
N |︸︷︷︸

=1

=

N−1∏
i=0

ξ
(N)
i (263)

AN : Orthogonal matrix with the N unit-norm eigenvectors as columns

AN =
(
v

(N)
0 ,v

(N)
1 , · · · ,v(N)

N−1

)
(264)

ΞN : Diagonal matrix with the N eigenvalues of CN on its main diagonal

ΞN =


ξ

(N)
0 0 . . . 0

0 ξ
(N)
1 . . . 0

...
...

. . . 0

0 0 0 ξ
(N)
N−1

 (265)
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Maximum Differential Entropy

Determinant of a matrix is the product of its eigenvalues

|CN | =
N−1∏
i=0

ξ
(N)
i (266)

Trace of a matrix is the sum of its eigenvalues (trace is similarity invariant)

tr (|CN |) =

N−1∑
i=0

ξ
(N)
i = N · σ2 (267)

Inequality of arithmetic and geometric means:(
N−1∏
i=0

xi

)1
N

≤ 1

N

N−1∑
i=0

xi, (268)

with equality if and only if x0 =x1 = . . .=xN−1

(when geometric mean is maximized)
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Maximum Differential Entropy

Apply inequality to determinant of autocovariance matrix

|CN | =
N−1∏
i=0

ξi ≤
(

1

N

N−1∑
i=0

ξi

)N
= σ2N (269)

=⇒ Equality if and only if source is iid (all eigenvalues are the same)

For N -th order differential entropy of any source S, we get

hN (S) ≤ 1

2
log2

(
(2πe)N |CN |

)
(equality for Gaussian)

≤ N

2
log2

(
2πeσ2

)
(equality for iid) (270)

=⇒ Equality if and only if source is Gaussian iid

=⇒ For a given variance σ2, the N-th order differential entropy is
maximized for Gaussian iid processes

hN (S) ≤ N

2
log2

(
2πeσ2

)
(271)

Heiko Schwarz Source Coding and Compression November 24, 2013 208 / 242



o

Rate-Distortion Theory Shannon Lower Bound

Shannon Lower Bound

Lower bound for rate-distortion function R(D)

R(D) = lim
N→∞

inf
gN : δN (gN )≤D

IN (S;S′)

N

= lim
N→∞

inf
gN : δN (gN )≤D

hN (S)− hN (S|S′)

N

= lim
N→∞

hN (S)

N
− lim
N→∞

sup
gN : δN (gN )≤D

hN (S|S′)

N

= h̄(S)− lim
N→∞

sup
gN : δN (gN )≤D

hN (S − S′|S′)

N
(272)

Define: Shannon Lower Bound

RL(D) = h̄(S)− lim
N→∞

sup
gN : δN (gN )≤D

hN (S − S′)

N
(273)

Since conditioning does not increase differential entropy, we have

R(D) ≥ RL(D) (equality if S − S′ is independent of S′) (274)
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Shannon Lower Bound for MSE Distortion

For MSE distortion: Distortion is given by variance of differences

δN (gN ) = σ2
Z with Z = S − S′ and µZ = 0 (275)

Remember: Maximum differential entropy

hN (S − S′) = hN (Z) ≤ N

2
log2

(
2πeσ2

Z) =
N

2
log2

(
2πeD) (276)

Shannon lower bound for MSE distortion

RL(D) = h̄(S)− 1

2
log2

(
2πeD

)
(277)

=⇒ For given CN or ΦSS(ω), maximized for Gaussian processes
=⇒ For given σ2, maximized for Gaussian iid processes

When is the Shannon lower bound for MSE achievable?
=⇒ Difference process Z = S − S′ has to be zero-mean Gaussian iid

=⇒ Difference process Z = S − S′ has to be independent of S′:

gZ|S′(z|s′) = gZ(z)
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Shannon Lower Bound for IID Sources MSE Distortion

Shannon lower bound for MSE distortion

RL(D) = h̄(S)− 1

2
log2

(
2πeD

)
DL(R) =

1

2πe
· 2 2 h̄(S) · 2−2R (278)

For iid sources S, we have

h̄(S) = lim
N→∞

hN (S)

N
= lim
N→∞

1

N
E{− log2 fS(S)}

= lim
N→∞

1

N

N−1∑
i=0

E{− log2 fS(Si)} = lim
N→∞

N

N
E{− log2 fS(S)}

= E{− log2 fS(S)} = h(S) (279)

Shannon lower bound for MSE distortion and iid sources

RL(D) = h(S)− 1

2
log2

(
2πeD

)
DL(R) =

1

2πe
· 2 2h(S) · 2−2R (280)
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Shannon Lower Bound Selected IID Sources

Uniform pdf:

h(S) =
1

2
log2(12σ2) =⇒ DL(R) =

6

πe︸︷︷︸
≈0.7

σ2 · 2−2R (281)

Laplacian pdf:

h(S) =
1

2
log2(2e2σ2) =⇒ DL(R) =

e

π︸︷︷︸
≈0.865

σ2 · 2−2R (282)

Gaussian pdf:

h(S) =
1

2
log2(2πeσ2) =⇒ DL(R) = σ2 · 2−2R (283)
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Shannon Lower Bound Selected IID Sources

Shannon lower bound using MSE and SNR

SNR = 10 log10

σ2

MSE
(284)

Uniform iid process: red

Laplace iid process: green

Gauss iid process: blue
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Asymptotic Tightness of the Shannon Lower Bound

Shannon lower bound approaches distortion rate function for small distortions
or high rates

lim
D→0

R(D)−RL(D) = 0. (285)

Comparison of D(R) with DL(R) for the Laplacian iid source
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Shannon Lower Bound for Gaussian Sources with Memory

Differential entropy for Gaussian sources

h
(G)
N (S) =

1

2
log2

(
(2πe)N |CN |

)
(286)

Shannon lower bound for MSE distortion

RL(D) = lim
N→∞

h
(G)
N (S)

N
− 1

2
log2

(
2πeD

)
= lim

N→∞

log2((2πe)N |CN |)
2N

− 1

2
log2

(
2πeD

)
=

1

2
log2(2πe) + lim

N→∞

log2(|CN |)
2N

− 1

2
log2

(
2πeD

)
= lim

N→∞

log2 |CN |
2N

− 1

2
log2D

= lim
N→∞

1

2N

N−1∑
i=0

log2 ξ
(N)
i − 1

2
log2D (287)

Heiko Schwarz Source Coding and Compression November 24, 2013 215 / 242



o

Rate-Distortion Theory Shannon Lower Bound

Grenander and Szegö’s theorem

Assume zero-mean process: CN = RN

Given the conditions

RN is a sequence of Hermitian Toeplitz matrices with elements φk on the
k-th diagonal
The infimum Φinf = infω Φ(ω) and supremum Φsup = supω Φ(ω) of the
Fourier series are finite

Φ(ω) =

∞∑
k=−∞

φk e
−jωk (288)

The function G is continuous in the interval [Φinf ,Φsup]

The following expression holds

lim
N→∞

1

N

N−1∑
i=0

G
(
ξ

(N)
i

)
=

1

2π

∫ π

−π
G (Φ(ω)) dω (289)

where ξ
(N)
i , for i = 0, 1, . . . , N − 1, denote the eigenvalues of the N -th

matrix RN

Heiko Schwarz Source Coding and Compression November 24, 2013 216 / 242



o

Rate-Distortion Theory Shannon Lower Bound

Shannon Lower Bound for Gaussian Sources with Memory

We have already derived

RL(D) = lim
N→∞

1

2N

N−1∑
i=0

log2 ξ
(N)
i − 1

2
log2D (290)

Applying Grenander and Szegö’s theorem

lim
N→∞

1

N

N−1∑
i=0

G
(
ξ

(N)
i

)
=

1

2π

∫ π

−π
G (Φ(ω)) dω (291)

yields

RL(D) =
1

4π

∫ π

−π
log2 ΦSS(ω) dω − 1

2
log2D

=
1

4π

∫ π

−π
log2 ΦSS(ω) dω − 1

4π
log2D

∫ π

−π
dω

=
1

4π

∫ π

−π
log2

ΦSS(ω)

D
dω (292)
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Power Spectral Density of a Gauss-Markov Process

Zero-mean Gauss-Markov process with |ρ| < 1

Sn = Zn + ρ · Sn−1 (293)

Auto-correlation function
φ[k] = σ2 · ρ|k| (294)

Using the relationship
∞∑
k=1

ak e−jkx =
a

e−jx − a (295)

we obtain
ΦSS(ω) =

∞∑
k=−∞

φ[k] · e−jωk

=

∞∑
k=−∞

σ2 · ρ|k| · e−jωk

= σ2 ·
(

1 +
ρ

e−jω − ρ +
ρ

ejω − ρ

)
= σ2 · 1− ρ2

1− 2ρ cosω + ρ2
(296)
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Shannon Lower Bound for Gaussian-Markov Processes

Shannon lower bound for a zero-mean Gauss-Markov process with |ρ| < 1

RL(D) =
1

4π

∫ π

−π
log2

ΦSS(ω)

D
dω

=
1

4π

∫ π

−π
log2

σ2(1− ρ2)

D
dω −

1

4π

∫ π

−π
log2(1− 2ρ cosω + ρ2) dω︸ ︷︷ ︸

=0

RL(D) =
1

2
log2

σ2 (1− ρ2)

D
(297)

where we used ∫ π

0

ln(a2 − 2ab cosx+ b2) dx = 2π ln a (298)

Shannon lower bound as distortion-rate function

DL(R) = (1− ρ2)σ2 2−2R (299)
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Rate-Distortion Function for Gaussian IID Sources

Consider Gaussian iid source

fS(s) =
1

2πσ2
e−

(s−µ)2

2σ2 (300)

Shannon lower bound for Gaussian iid sources

DL(R) = σ2 · 2−2R ⇐⇒ RL(D) =

{
1
2 log2

σ2

D : D ≤ σ2

0 : D > σ2 (301)

For Gaussian iid sources: Rate-distortion function = Shannon lower bound

How can we proof it?

Could show that Shannon lower bound is achievable
=⇒ Need to find gS′|S(s′|s) for which the Shannon lower bound is achieved

Remember: Discussed that Shannon lower bound is achievable if

Difference signal Z = S − S′ is independent of S′

Difference signal Z = S − S′ has a zero-mean Gaussian distribution
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Rate-Distortion Function for Gaussian IID Sources

Consider conditional pdf gZ|S′(z|s′) = gS−S′|S′(s− s′|s′) instead of gS′|S(s′|s)
Given gZ|S′(z|s′), conditional pdf gS′|S(s′|s) can be derived by

gS′|S(s′|s) = gS|S′(s|s′) ·
fS′(s

′)

fS(s)
with gS|S′(s|s′) = gZ|S′(z + s′|s′)

(302)

Shannon lower bound coincides with rate-distortion function,
only if the difference signal Z = S − S′ fulfills the conditions:

Difference signal Z = S − S′ is independent of S′

Difference signal Z = S − S′ has a zero-mean Gaussian distribution

Hence, gZ|S′(z|s′) has to have the form

gZ|S′(z|s′) =
1√

2πσ2
Z

e
− z2

2σ2
Z =

1√
2πD

e−
z2

2D = fZ(z) (303)

Need to verify that this is a valid choice!
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Rate-Distortion Function for Gaussian IID Sources

Question: Is the conditional pdf gZ|S′(z|s′) a valid choice?

gZ|S′(z|s′) = fZ(z) =
1√

2πD
e−

z2

2D (304)

Source S is the sum of two independent random variables Z = S − S′ and S′

Hence, fS(s) is given by the convolution

fS(s) = fZ(z) ∗ fS′(s′) (305)

Note: Convolution of two Gaussians f(µ1, σ
2
1) and f(µ2, σ

2
2) is a Gaussian

with µ = µ1 + µ2 and σ = σ2
1 + σ2

2

Hence, the pdf of the reconstructed samples is

fS′(s
′) =

1√
2π (σ2 −D)

e
− (s′−µ)2

2(σ2−D) (306)

This is a valid pdf for S′ (no negative values)

=⇒ Our choice for gZ|S′(z|s′) is valid
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Rate-Distortion Function for Gaussian IID Sources

Check distortion and rate (mutual information)

Distortion given by variance of difference process Z = S − S′

δ(g) = E
{

(S − S′)2
}

= E
{
Z2
}

= D (307)

Mutual information

I(g) = h(S)− h(S|S′)
= h(S)− h(S − S′|S′)
= h(S)− h(Z|S′)
= h(S)− h(Z)

=
1

2
log2

(
2πeσ2

)
− 1

2
log2

(
2πeD

)
= R(D) =

1

2
log2

σ2

D
(308)

=⇒ For Gaussian iid processes and MSE distortion, the rate-distortion
function coincides with the Shannon lower bound
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Rate-Distortion Function for Gaussian IID Sources

Considered Gaussian iid source with a variance σ2 and MSE distortion
Shannon lower bound coincides with the rate-distortion function
The rate-distortion function R(D) is given by

R(D) =

{
1
2 log2

σ2

D , 0 ≤ D ≤ σ2

0, D > σ2 (309)

The distortion-rate function is given as

D(R) = σ2 · 2−2R (310)

The signal-to-noise ratio (SNR) is given as

SNR(R) = 10 · log10

σ2

D(R)
= 10 · log10 22R ≈ 6R [dB] (311)

For MSE distortion and a given variance σ2, the rate-distortion
function R(D) is maximized for Gaussian iid processes

=⇒ Gaussian iid processes are the hardest to code
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Rate-Distortion Function for Gaussian Sources with Memory

N -th order pdf of stationary Gaussian random process

f
(G)

S (s) =
1

(2π)N/2 |CN |1/2
e−

1
2 (s−µN )TC−1

N (s−µN ) (312)

Eigendecomposition of covariance matrix CN ,

CN = AN ·ΞN ·AT
N (313)

AN : Matrix with columns are equal to the N unit-norm eigenvectors

AN =
(
v

(N)
0 ,v

(N)
1 , · · · ,v(N)

N−1

)
(314)

ΞN : Diagonal matrix with eigenvalues of CN on its main diagonal

ΞN =


ξ

(N)
0 0 . . . 0

0 ξ
(N)
1 . . . 0

...
...

. . . 0

0 0 0 ξ
(N)
N−1

 (315)
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Signal Space Rotation

Given stationary Gaussian source {Sn}: Construct source {Un} by
decomposing {Sn} into vectors S of size N and applying the transform

U = A−1
N (S − µN ) = AT

N (S − µN ) (316)

Linear transformation of a Gaussian random vector results in another
Gaussian random vector

The chosen transform yields independent random variables Ui

fU (u) =
1

(2π)N/2 |ΞN |1/2
e−

1
2u

TΞ−1

N u =

N−1∏
i=0

1√
2πξ

(N)
i

e
− u2

i

2 ξ
(N)
i (317)

Mean
E{U} = AT

N (E{S} − µN ) = AT
N (µN − µN ) = 0 (318)

Covariance

E
{
U UT

}
= AT

N E
{

(S − µN ) (S − µN )
T
}
AN

= AT
N CN AN = ΞN (319)
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Distortion and Mutual Information

Inverse transform after compression identical to forward transform

S′ = AN U
′ + µN , (320)

With(
U ′ −U

)
= AT

N

(
S′ − S

)
⇐⇒

(
S′ − S

)
= AN

(
U ′ −U

)
(321)

MSE distortion between any realization s of S and its reconstruction s′

dN (s; s′) =
1

N

N−1∑
i=0

(si − s′i)2 =
1

N
(s− s′)T (s− s′)

=
1

N
(u− u′)TAT

NAN (u− u′) =
1

N
(u− u′)T (u− u′)

=
1

N

N−1∑
i=0

(ui − u′i)2 = dN (u;u′) (322)

Since coordinate transform is invertible,

IN (S;S′) = IN (U ;U ′) (323)
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Distortion-Rate Function

Mutual information and average distortion considering independence of the
components Ui

IN (gQN ) =

N−1∑
i=0

I1(gQi ) and δN (gQN ) =
1

N

N−1∑
i=0

δ1(gQi ) (324)

N -th order distortion rate function DN (R)

DN (R) =
1

N

N−1∑
i=0

Di(Ri) with R =
1

N

N−1∑
i=0

Ri (325)

Di(Ri): Distortion-rate function for Gaussian iid processes for component Ui

Di(Ri) = σ2
i 2−2Ri = ξ

(N)
i 2−2Ri (326)

with ξ
(N)
i being the eigenvalues of CN
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Optimal Bit Allocation

Have to distribute the bit rate in an optimal way

min
R0,R1,...,RN−1

DN (R) =
1

N

N−1∑
i=0

ξ
(N)
i 2−2Ri such that R ≥ 1

N

N−1∑
i=0

Ri

Comparison on different types of mean computations

DN (R) =
1

N

N−1∑
i=0

ξ
(N)
i 2−2Ri ≥

(
N−1∏
i=0

ξ
(N)
i 2−2Ri

) 1
N

=

(
N−1∏
i=0

ξ
(N)
i

) 1
N

︸ ︷︷ ︸
=|CN |

1
N =ξ̃(N)

· 2−2R

with
∏N−1
i=0 2−2Ri = 2−2R0 · 2−2R1 · · · 2−2RN−1 = 2−

∑N−1
i=0 2Ri = 2−2RN

Expression on the right-hand side of above inequality is constant:

equality achieved when all terms ξ
(N)
i 2−2Ri = ξ̃(N)2−2R

Ri = R+
1

2
log2

ξ
(N)
i

ξ̃(N)
=

1

2
log2

ξ
(N)
i

ξ̃(N)2−2R
with ξ̃(N) =

(
N−1∏
i=0

ξ
(N)
i

) 1
N
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Condition for Partial Bit Rates

So far, we have ignored that Ri cannot be less than 0

Ri =
1

2
log2

ξ
(N)
i

ξ̃(N)2−2R
≥ 0 =⇒ Ri = 0 if ξ

(N)
i ≤ ξ̃(N)2−2R (327)

Introducing the parameter θ, with 0 ≤ θ ≤ D, yields

Ri =

{
1
2 log2

ξ
(N)
i

θ : θ ≤ ξ(N)
i

0 : θ > ξ
(N)
i

(328)

and

Di =

{
θ : θ ≤ ξ(N)

i

ξ
(N)
i : θ > ξ

(N)
i

(329)

Can also be written as

Ri(θ) = max

(
0,

1

2
log2

ξ
(N)
i

θ

)
and Di(θ) = min

(
ξ

(N)
i , θ

)
(330)

This rate allocation concept is also referred to as reverse water filling
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Reverse Water Filling for Independents Gaussian RV

Di = min
(
σ2
i , θ
)

𝜎𝑖
2 

𝑖 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 

𝜃 𝐷0 

𝐷1 

𝐷2 𝐷3 

𝐷4 

Optimal rate allocation for independent Gaussian RV and MSE distortion

Code random variable with σ2
i > θ so that the same distortion is obtained

Do not assign any rate to random variables with σ2
i ≤ θ
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N -th Order Rate-Distortion Function

N -th order distortion-rate function DN (R)

DN (R) =
1

N

N−1∑
i=0

Di(Ri) with R =
1

N

N−1∑
i=0

Ri (331)

Optimal rate allocation

Ri(θ) = max

(
0,

1

2
log2

ξ
(N)
i

θ

)
and Di(θ) = min

(
ξ

(N)
i , θ

)
(332)

Parametric expressions for N -th order rate-distortion function

DN (θ) =
1

N

N−1∑
i=0

Di =
1

N

N−1∑
i=0

min
(
ξ

(N)
i , θ

)
(333)

RN (θ) =
1

N

N−1∑
i=0

Ri =
1

N

N−1∑
i=0

max

(
0,

1

2
log2

ξ
(N)
i

θ

)
(334)
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Parametric Rate-Distortion Function

Rate-distortion function is given by limit for N →∞

D(θ) = lim
N→∞

DN (θ) = lim
N→∞

1

N

N−1∑
i=0

min
(
ξ
(N)
i , θ

)
(335)

R(θ) = lim
N→∞

RN (θ) = lim
N→∞

1

N

N−1∑
i=0

max

(
0,

1

2
log2

ξ
(N)
i

θ

)
(336)

Recall: Grenander and Szegös theorem for infinite Toeplitz matrices

lim
N→∞

1

N

N−1∑
i=0

G(ξ
(N)
i ) =

1

2π

∫ π

−π
G(Φ(ω))dω (337)

=⇒ Rate-distortion function R(D) for Gaussian sources with memory

D(θ) =
1

2π

∫ π

−π
min{ΦSS(ω), θ}dω

R(θ) =
1

2π

∫ π

−π
max

{
0,

1

2
log2

ΦSS(ω)

θ

}
dω (338)

=⇒ Specifies upper bound for R(D) of all processes with the same ΦSS(ω)
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Illustration of Minimization Approach

white noise 

 reconstruction error  
spectrum  

no signal transmitted 

€ 

Φss(ω)

€ 

θ

ω

€ 

preserved spectrum Φ ′ s ′ s (ω)

€ 

θ

Similar to reverse water filling

At each frequency, the variance of the frequency component as given by the
spectral density ΦSS(ω) is compared to the parameter θ, which represents
the target mean squared error of that frequency component

When ΦSS(ω) is found to be larger than θ, the rate 1
2 log2

Φss(ω)
θ is assigned,

otherwise zero rate is assigned to that frequency component
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Rate-Distortion Function for Gauss-Markov Sources

R(D) for zero-mean Gauss-Markov process with |ρ| < 1 and variance σ2

Sn = Zn + ρ · Sn−1 (339)

Auto-correlation function and spectral density function are given as

φ[k] = σ2|ρ|k Φ(ω) =

∞∑
k=−∞

φ[k]e−jkω =
σ2(1− ρ2)

1− 2ρ cosω + ρ2
(340)

If we choose

θ ≥ min
∀ω

ΦSS(ω) = σ2 1− ρ2

1− 2ρ+ ρ2
= σ2 1− ρ

1 + ρ
(341)

we obtain

R(D) =
1

2
log2

σ2(1− ρ2)

D
(342)
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Rate-Distortion Function for Gauss-Markov Sources

Corresponding distortion rate function for R ≥ log2(1 + ρ) is given by

D(R) = (1− ρ2) · σ2 · 2−2R (343)

Includes result for Gaussian iid sources (ρ = 0)

R [bits]

0
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ρ
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ρ
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ρ
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ρ
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ρ
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ρ
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€ 

SNR [dB]

€ 

D*
σ 2 ≤

1− ρ
1+ ρ
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Chapter Summary

Rate-distortion theory

Determine minimum rate R for a given distortion D and source

Determine minimum distortion D for a given distortion R and source

Operational rate-distortion function

Fundamental bound as minimum over all possible source codes

Information rate-distortion function

Minimum over all conditional pdfs gS′|S(s′|s)
Coincides with operational rate-distortion function

Use term rate-distortion function R(D) for both

Fundamental bound for lossless coding is given by R(0)

Discrete sources: R(D) is a convex function with R(0) = H̄(S)

Continuous sources: R(D) is a convex function with R(0)→∞
MSE distortion measure: D(0) = σ2
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Chapter Summary

Shannon lower bound

Lower bound of rate-distortion function

Asymptotically tight for high rates

Suitable reference for performance evaluation at high rates

Shannon lower bound RL(D) can often be computed analytically

Computed RL(D) for several iid sources and Gaussian source with memory

Rate-distortion function for Gaussian sources and MSE distortion

R(D) for Gaussian iid sources coincides with Shannon lower bound

Any other source than the Gaussian iid source with the same variance
requires less bits for same MSE distortion

R(D) for Gaussian source with memory can be specified as parametric
expression using the power spectral density ΦSS(ω)

Derived analytic expression for Gauss-Markov source and R ≥ log2(1 + ρ)

R(D) for Gaussian source with memory and a spectral density ΦSS(ω)
specifies an upper bound for all other sources with the same spectral density

=⇒ Gaussian sources are the most difficult to code
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Exercise 11

A fair die is rolled at the same time as a fair coin is tossed. Let A be the number
on the upper surface of the die and let B describe the outcome of the coin toss,
where B is equal to 1 if the result is “head” and it is equal to 0 if the result if
“tail”. The random variables X and Y are given by X = A+B and Y = A−B,
respectively.

Calculate:

the joint entropy H(X,Y ),

the marginal entropies H(X) and H(Y ),

the conditional entropies H(X|Y ) and H(Y |X),

the mutual information I(X;Y ).
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Exercise 12

Consider a stationary Gauss-Markov process X = {Xn} with mean µ, variance σ2,
and the correlation coefficient ρ (correlation coefficient between two successive
random variables).

Determine the mutual information I(Xk;Xk+N ) between two random variables
Xk and Xk+N , where the distance between the random variables is N times the
sampling interval.

Interpret the results for the special cases ρ = −1, ρ = 0, and ρ = 1.

Hint: In the lecture, we showed

E
{

(X− µN )T ·C−1
N · (X− µN )

}
= N,

which can be useful for the problem.
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Exercise 13

Show that for discrete random processes the fundamental bound for lossless
coding is a special case of the fundamental bound for lossy coding.
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Exercise 14

Determine the Shannon lower bound with MSE distortion, as distortion-rate
function, for iid processes with the following pdfs:

The exponential pdf fE(x) = λ · e−λ·x, with x ≥ 0

The zero-mean Laplace pdf fL(x) = λ
2 · e−λ·|x|

Express the distortion-rate function for the Shannon lower bound as a function of
the variance σ2.

Which of the given pdfs is easier to code (if the variance is the same)?
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