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o

Quantization Introduction

Quantization – Introduction

Quantization is the realization of the ”lossy part” of source coding

Typically allows for a trade-off between signal fidelity and bit rate

Quantizer 
s
 s’


Quantization is a functional mapping of an input point to an output point

the input can be discrete or continuous scalars or vectors
the set of obtainable output points is countable
less obtainable output points than input points

=⇒ Non-reversible loss in signal fidelity
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Quantization Introduction

Structure of Quantizers

Quantizer description is split into encoder α and decoder β,
between which a quantization index i is transmitted

α

i


β

s
 s’


Adding lossless coding γ of quantization indices

α
s
 i
 s’
β
i
 γ
 γ-1
channel b
 b


Quantization procedure

1 Encoder α maps one or more samples of input signal s to indices i
2 Lossless mapping γ codes the indices i into a bit stream b
3 Channel outputs transmitted bit stream b′ (error-free: b′ = b)
4 Inverse lossless mapping γ−1 reproduces quantization indices i
5 Decoder β maps index i to one or more samples of decoded signal s′

Heiko Schwarz Source Coding and Compression November 24, 2013 246 / 318



o

Quantization Introduction

Quantizer Mappings

Encoder mappings α, γ have their counterparts at decoder β, γ−1

Decoder mappings must be either implemented at receiver and/or transmitted

General case: Mapping for N -dimensional vectors

Q : RN → {s′0, s′1, · · · , s′K−1} (344)

Quantization cells: Subsets Ci of the N -dimensional Euclidean space RN

Ci =
{
s ∈ RN : Q(s) = s′i

}
(345)

Quantization cells Ci form partition of the N -dimensional Euclidean space RN

K−1⋃
i=0

Ci = RN with ∀i 6= j : Ci ∩ Cj = ∅ (346)

Specify quantization mapping

Q(s) = s′i ∀s ∈ Ci (347)
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Quantization Introduction

Performance of Quantizers

Encoder mapping α : RN → I introduces distortion

α

s
 i
 s’


β

i


γ
 γ-1
Channel

b
 b


β
s’


D
 R


Assume random process {Sn} to be stationary: Distortion and rate

D = E{dN (Sn, Q(Sn))} =
1

N

K−1∑
i=0

∫
Ci
dN (s, Q(s)) fS(s) ds (348)

R =
1

N
E{ |γ(Q(Sn) )| } =

1

N

N−1∑
i=0

pi · |γ(s′i)| =
1

N

N−1∑
i=0

pi · `i (349)

where |γ(s′i)| denotes codeword length `i and pi denotes the pmf for s′i

pi = p(s′i) =

∫
Ci
fS(s) ds (350)
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Quantization Scalar Quantization

Scalar Quantization

Input/output function of a scalar quantizer

K-1 decision

thresholds


K 

reconstruction


levels 


Input �
signal s


ui+1


s’i+2


ui+1


s’i+1

s’i


ui


Output signal s’


A scalar (one-dimensional) quantizer is a mapping

Q : R→ {s′0, s′1, . . . , s′K−1} (351)

Quantization cells Ci = [ui, ui+1) with u0 = −∞ and uK =∞
Step size for reconstruction level i is denoted as ∆i = ui+1 − ui
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Quantization Scalar Quantization

Performance of Scalar Quantizers

Scalar quantization of an amplitude-continuous random variable S can be
viewed as a discretization of its continuous pdf f(s)

Average MSE distortion is given as

D = E{d1(S,Q(S))} = E{d1(S, S′)} =

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2 · f(s) ds (352)

Average rate is given by the expectation value of the codeword length

R = E{|γ(Q(S))|} =
N−1∑
i=0

pi · |γ(s′i)| =
N−1∑
i=0

pi · `i (353)

Goal of design: Optimize mappings α (i.e. ui), β (i.e. s′i), and γ
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Quantization Scalar Quantization

Scalar Quantization with Fixed-Length Codes

Consider restriction on lossless mapping γ:

=⇒ Assign codeword of same length to all quantization indices

Quantizer of size K:

=⇒ Codeword length must be greater than or equal to dlog2Ke

If K is not a power of 2, quantizer requires the same minimum codeword
length as a quantizer of size K ′ = 2dlog2Ke

Since K < K ′, quantizer of size K ′ can achieve a smaller distortion

Define rate according to
R = log2K, (354)

while only considering quantizer sizes K that represent integer powers of 2
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Quantization Scalar Quantization

Simplest Case: Pulse-Code-Modulation (PCM)

PCM: Uniform mappings α and β
All quantization intervals have same size ∆
Reconstruction values s′i lie in the middle of the intervals

PCM for random processes with amplitude range [smin, smax]

A = smax − smin =⇒ ∆ =
A

K
= A · 2−R (355)

Quantization mapping

Q(s) = round

(
s− smin

∆
+ 0.5

)
·∆ + smin (356)

Example: Uniform distribution f(s) = 1
A for −A2 ≤ s ≤

A
2

D =

K−1∑
i=0

∫ smin+(i+1)∆

smin+i∆

1

A

(
s− smin −

(
i+

1

2

)
·∆
)2

ds (357)

Resulting operational rate distortion function

DPCM,uniform(R) =
A2

12
· 2−2R = σ2 · 2−2R (358)
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Quantization Scalar Quantization

PCM for Sources with Infinite Support

In general, interval limits ui can be chosen as

u0 = −∞, uK =∞, ui+1 − ui = ∆ for 1 ≤ i ≤ K − 1 (359)

Symmetric pdfs: Reconstruction symbols si with 0 ≤ i < K and interval
boundaries ui with 0 < i < K

s′i = (i− K − 1

2
) ·∆ ui =

(
i− K

2

)
·∆ (360)

Distortion D is split into
granular distortion DG

and overload distortion DO

D(∆) = DG(∆) +DO(∆)

Optimum ∆ for given rate R?

Distortion minimization by balancing granular and overload distortion

min
∆

D(∆) = min
∆

[DG(∆) +DO(∆)] (361)
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Quantization Scalar Quantization

Overload and Granular Distortion

Average distortion for PCM for sources with infinite support

D(∆) =

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2 · f(s) ds

=

∫ (−K
2 +1)∆

−∞
(s− s′0)2f(s)ds︸ ︷︷ ︸

overload distortion

+

K−2∑
i=1

∫ (i+1−K
2 )∆

(i−K
2 )∆

(s− s′i)2f(s) ds︸ ︷︷ ︸
granular distortion

+

∫ ∞
( K

2 −1)∆

(s− s′K−1)2f(s) ds︸ ︷︷ ︸
overload distortion

(362)

In general: Optimum step size ∆opt cannot be analytically calculated
=⇒ Numerical optimization
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Quantization Scalar Quantization

Optimum Step Size for PCM

Distortion D(∆) vs. step size ∆ for a Gaussian pdf with unit variance

Cyan: R = 2, Magenta: R = 3, Green: R = 4 bit/sample
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Quantization Scalar Quantization

Numerical Optimization Results for PCM Quantization
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Numerical minimization of distortion by varying ∆

Loss in SNR is large and increases towards higher rates

Improvement through pdf-optimized quantizers

=⇒ Make quantization step sizes ∆i variable?

=⇒ Modify placement of s′i inside a quantization interval?

=⇒ Use variable length codes?
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Quantization Scalar Quantization

Optimality for Decoding Mapping: Centroid Condition

Assume given decision thresholds and consider optimal reconstruction values
Distortion Di inside a quantization interval Ci

Di =

∫ ui+1

ui

d1(s, s′i) · f(s|s′i) ds = E{d1(S, s′i)|S∈ Ci} (363)

Probability that a source symbol falls inside quantization interval Ci

pi =

∫ ui+1

ui

f(s) ds (364)

Average distortion

D =

K−1∑
i=0

pi ·Di =

K−1∑
i=0

∫ ui+1

ui

d1(s, s′i) · f(s) ds (365)

Since pi does not depend on s′i, the optimality criterion is

s′∗i = arg min
s′∈R

E{d1(S, s′)|S∈ Ci} (366)

=⇒ General centroid condition
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Quantization Scalar Quantization

Centroid Condition for MSE Distortion

Given a random variable X, the value of y that minimizes E
{

(X − y)2
}

is

y = E{X} (367)

which can be shown by

E
{

(X − y)2
}

= E
{

(X − E{X}+ E{X} − y)2
}

= E
{

(X − E{X})2
}

+ (E{X} − y)2

≥ E
{

(X − E{X})2
}

(368)

Consequently, given an event A, the value y that minimizes

E
{

(X − y)2|X ∈ A
}

(369)

is
y = E{X|X ∈ A} (370)
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Quantization Scalar Quantization

Centroid Condition for MSE Distortion

General centroid condition

s′∗i = arg min
s′∈R

E{d1(S, s′)|S∈ Ci} (371)

MSE distortion
d1(x, y) = (x− y)2 (372)

The value of s′i that minimizes the centroid condition is

s′∗i = E{S|S∈ Ci} =

ui+1∫
ui

s · f(s|s′i) ds =

ui+1∫
ui

s · f(s)

pi
ds (373)

=⇒ Centroid condition for MSE distortion

s′i =
1

pi

ui+1∫
ui

s f(s) ds =

ui+1∫
ui

s f(s) ds

ui+1∫
ui

f(s) ds

(374)
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Quantization Scalar Quantization

Properties of Centroid Quantizers

Quantization does not change the mean

E{S} =
∑
i

∫ ui+1

ui

s f(s) ds =
∑
i

pi s
′
i = E

{
S′
}
= E{Q(S)} (375)

Mean of quantization error

E{e(S)} = E{S −Q(S)} = E{S} − E{Q(S)} = 0 (376)

Distortion D (2nd moment and variance of quantization error)

D = E
{
e(S)2

}
=
∑
i

∫ ui+1

ui

(s− s′i)2 f(s) ds

=
∑
i

(∫ ui+1

ui

s2 f(s) ds− 2s′i

∫ ui+1

ui

s f(s) ds+ s′2i

∫ ui+1

ui

f(s) ds

)
=

∫ ∞
−∞

s2 f(s) ds−
∑
i

(
2s′i · s′i · pi − s′2i · pi

)
= E

{
S2}− E{Q(S)2

}
(377)

=⇒ σ2
e(S) = σ2

S − σ2
Q(S) (378)
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Quantization Scalar Quantization

Properties of Centroid Quantizers

Correlation between quantizer input S and quantizer output Q(S)

E{S ·Q(S)} =
∑
i

∫ ui+1

ui

s s′i f(s) g(s
′
i|s) ds

=
∑
i

s′i

∫ ui+1

ui

s f(s) ds =
∑
i

s′2i pi = E
{
Q(S)2

}
(379)

Correlation between quantizer input S and quantization error e(S)

E{S · e(S)} = E{S (S −Q(S))} = E
{
S2}− E{S Q(S)}

= E
{
e(S)2

}
+ E

{
Q(S)2

}
− E

{
Q(S)2

}
= E

{
e(S)2

}
= D (380)

Correlation between quantizer output Q(S) and quantization error e(S)

E{Q(S) · e(S)} = E{Q(S) (S −Q(S))} = E{Q(S)S} − E
{
Q(S)2

}
= E

{
Q(S)2

}
− E

{
Q(S)2

}
= 0 (381)

=⇒ Quantizer output and quantization error are uncorrelated
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Quantization Scalar Quantization

Optimality for Encoding Mapping: Nearest Neighbor Condition

Assume fixed-length coding and given reconstruction levels s′i
Choose decision thresholds ui so that distortion D is minimized

D =

K−1∑
i=0

piDi =

K−1∑
i=0

∫ ui+1

ui

d1(s, s′i) · f(s) ds (382)

Each decision thresholds ui influences only the distortions Di−1 and Di of
the neighboring intervals Ci−1 and Ci, respectively

Distortion is minimized if the following condition is obeyed

d1(ui, s
′
i−1) = d1(ui, s

′
i) (383)

For MSE distortion, optimal decision thresholds u∗i are given by

u∗i =
s′i−1 + s′i

2
(384)
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Quantization Scalar Quantization

Lloyd Quantizer

Optimal scalar quantizer with fixed-length codes

Do not consider entropy coding of quantization indices

Minimize distortion for given number K of quantization intervals

Rate can be represented by
R = log2K (385)

Preferable to choose K as an integer power of 2

Necessary conditions for optimality

General centroid condition (for reconstruction levels s′i)

s′∗i = arg min
s′∈R

E{d1(S, s′) |S ∈ Ci} (386)

General nearest neighbor condition (for decision threshold ui)

d1(ui, s
′
i−1) = d1(ui, s

′
i) (387)
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Quantization Scalar Quantization

Lloyd Quantizer

Optimality conditions for MSE distortion

Centroid condition

s′i =

∫ ui+1

ui
s f(s) ds∫ ui+1

ui
f(s) ds

(388)

Nearest neighbor condition (for decision threshold ui)

ui =
s′i−1 + s′i

2
(389)

Design of Lloyd quantizers

In general, cannot be derived analytically

Iterative algorithm consisting of

Optimize decision thresholds ui given reconstruction levels s′i
Optimize reconstruction levels s′i given decision thresholds ui

Iterative design can be based on

Given probability density function (perhaps using numerical integration)
Sufficiently large training set for considered source
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Quantization Scalar Quantization

Lloyd Algorithm for a Training Set

Given is

a sufficiently large realization {sn} of considered source

the number K of reconstruction levels {s′i}

Iterative quantizer design
1 Choose an initial set of reconstruction levels {s′i}
2 Associate all samples of the training set {sn} with one of the quantization

intervals Ci according to

α(sn) = arg min
∀i

d1(sn, s
′
i) (nearest neighbor condition)

and update the decision thresholds {ui} accordingly
3 Update the reconstruction levels {s′i} according to

s′i = arg min
s′∈R

E{d1(S, s′) |α(S) = i} (centroid condition)

where the expectation value is taken over the training set
4 Repeat the previous two steps until convergence
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Quantization Scalar Quantization

Example: Lloyd Algorithm for a Gaussian Source

Gaussian distribution with zero mean and unit variance

f(s) =
1

σ
√

2π
e−s

2/(2σ2) (390)

Draw a sufficiently large number of samples (> 10000) from f(s)

Design Lloyd quantizer with rate R = 2 bit/symbol (K = 4)

Result of Lloyd algorithm

Decision thresholds ui

u1 = −0.98, u2 = 0, u3 = 0.98

Decoding symbols s′i

s′0 = −1.51, s′1 = −0.45

s′2 = 0.45, s′3 = 1.51

Minimum distortion:
D∗F = 0.12 = 9.3 dB

!5 !4 !3 !2 !1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

 s

 f(
 s)

 u1  u2  u3
 s’0  s’1  s’2  s’3
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Quantization Scalar Quantization

Convergence of Lloyd Algorithm for Gaussian Source Example

Initialization A:
s′i = −3.75 + 2.5 · i

0 1 2 3 4 5 6 7 8 9 10 11 12!5
!4
!3
!2
!1
0
1
2
3
4
5

 u3

 u1

 u2

 u4

 u0

!

!!

 s’0

 s’1

 s’2

 s’3

0 1 2 3 4 5 6 7 8 9 10 11 12!2
0
2
4
6
8

10
12
14
16
18

D

D0
D3

D1D2

!10 log10 D
!10 log10( Di N)

Initialization B:
s′3/0 = +/− 1.15, s′2/1 = +/− 0.32

0 1 2 3 4 5 6 7 8 9 10 11 12!5
!4
!3
!2
!1
0
1
2
3
4
5

 u3

 u1

 u2

 u4

 u0

!

!!

 s’0

 s’1
 s’2

 s’3

0 1 2 3 4 5 6 7 8 9 10 11 12!2
0
2
4
6
8

10
12
14
16
18

D
D0
D3

D1D2
!10 log10 D
!10 log10( Di N)

For both initializations, (D −D∗F )/D∗F < 1% after 6 iterations
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Quantization Scalar Quantization

Example: Lloyd Algorithm for a Laplacian Source

Laplacian distribution with zero mean and unit variance

f(s) =
1

σ
√

2
e−|s|

√
2/σ (391)

Draw a sufficiently large number of samples (> 10000) from f(s)

Design Lloyd quantizer with rate R = 2 bit/symbol (K = 4)

Result of Lloyd algorithm

Decision thresholds ui

u1 = −1.13, u2 = 0, u3 = 1.13

Decoding symbols s′i

s′0 = −1.83, s′1 = −0.42

s′2 = 0.42, s′3 = 1.83

Minimum distortion:
D∗F = 0.18 = 7.55 dB
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Quantization Scalar Quantization

Convergence of Lloyd Algorithm for Laplacian Source Example

Initialization A:
s′i = −3.75 + 2.5 · i
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Initialization B:
s′3/0 = +/−1.15, s′2/1 = +/−0.32

! " # $ % & ' ( ) * "! "" "#
!&

!%

!$

!#

!"

!

"

#

$

%

&

 u
$

 u
"

 u
#

 u
%

 u
!

!

!!

 s+
!

 s+
"

 s+
#

 s+
$

0 1 2 3 4 5 6 7 8 9 10 11 12!2
0
2
4
6
8

10
12
14
16

D
D0
D3

D1
D2

!10 log10 D

!10 log10( Di N)

For both initializations, (D −D∗F )/D∗F < 1% after 6 iterations
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Quantization Scalar Quantization

Entropy-Constrained Scalar Quantization (ECSQ)

Lloyd quantizer: Minimize distortion for given number K of intervals

Now: Consider quantizer design with variable-length coding of indices

Average rate (without exploiting dependencies between quantization indices)

R =

N−1∑
i=0

pi · `i ≥ H(S′) = −
K−1∑
i=0

pi log2 pi (392)

with

pi =

∫ ui+1

ui

f(s) ds (393)

=⇒ Consider entropy instead of the rate of an actual code

Average MSE distortion

D = E{d1(S, S′)} =

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2 · f(s) ds (394)
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Quantization Scalar Quantization

Joint Minimization of Rate and Distortion

We look for solutions of constrained minimization problems

minD subject to R ≤ RC (395)

or equivalently minR subject to D ≤ DC (396)

Instead of the constrained minimization, minimize a Lagrangian function

J = D + λ ·R = E{d1(S, S′)}+ λ · E{`(S′)} (397)

The chosen λ corresponds to a rate constraint RC (distortion constraint DC)

Minimization of J with respect to reconstruction levels s′i is the same as the
minimization of the distortion D with respect to the reconstruction levels s′i

=⇒ Centroid condition still optimal for reconstruction levels (decoder β(i))

MSE: s′∗i = E{S|s ∈ Ci} =

∫ ui+1

ui
s · f(s) ds∫ ui+1

ui
f(s) ds

(398)
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Quantization Scalar Quantization

Necessary Conditions for Optimality

Optimal quantizer design: Minimize Lagrange cost J for given λ

J = D + λ ·R = E{d1(S, S′)}+ λ · E{`(S′)} (399)

Optimal reconstruction levels only depend on decision thresholds ui

s′∗i = E{S|s ∈ Ci} =

ui+1∫
ui

s · f(s) ds

ui+1∫
ui

f(s) ds

(for MSE) (400)

Optimal codeword lengths also depends only on decision thresholds ui

`i = − log2 pi = − log2

 ui+1∫
ui

f(s) ds

 (401)

How to derive optimal decision thresholds?
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Quantization Scalar Quantization

Optimal Decision Thresholds

Want to minimize J given optimal decoder β and entropy coding γ

J = D + λ ·R

= =
∑
∀i

ui+1∫
ui

d1(s, s′i) f(s) ds+ λ
∑
∀i

`i

ui+1∫
ui

f(s) ds (402)

For given reconstruction levels s′i and codeword lengths `i:

=⇒ Each decision threshold ui only influences distortion of neighboring
intervals Ci−1 and Ci

Optimal threshold ui:
Each value s is assigned to the interval for which D + λR is minimized

α(s) = arg min
∀s′i

d1(s, s′i) + λ `i (403)
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Quantization Scalar Quantization

Optimal Decision Thresholds

Lagrangian function is minimized for encoding

α(s) = arg min
∀s′i

d1(s, s′i) + λ `i (404)

Optimal decision threshold ui fulfils condition

d1(ui, s
′
i−1) + λ · `i−1 = d1(ui, s

′
i) + λ · `i (405)

For MSE distortion, we have

(ui − s′i−1)2 + λ · `i−1 = (ui − s′i)2 + λ · `i (406)

yielding

u∗i =
s′i + s′i−1

2
+
λ

2
· `i − `i−1

s′i − s′i−1

(407)

The decision threshold is shifted from the middle between the reconstruction
values toward the reconstruction value with the longer codeword
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Quantization Scalar Quantization

Entropy-Constrained Lloyd Algorithm for a Training Set

Given is

a sufficiently large realization {sn} of considered source
a Lagrange parameter λ

Iterative quantizer design
1 Choose initial set of reconstruction levels {s′i} and codeword lengths {`i}
2 Associate all samples of the traing set {sn} with one of the quantization

intervals Ci according to

α(sn) = arg min
∀s′i

d1(sn, s
′
i) + λ `i (408)

and update the decision thresholds {ui} accordingly
3 Update the reconstruction levels {s′i} according to

s′i = arg min
s′∈R

E{d1(S, s′) | α(S) = i} (409)

4 Update the codeword lengths `i according to

`i = − log2 pi (410)

5 Repeat previous three steps until convergence
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Quantization Scalar Quantization

Number of Initial Intervals for EC Lloyd Algorithm
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N=8

N=9
N=10

N=11N=12N=13
N=14N=15N=16N=17N=18N=19

Entropy constraint in EC Lloyd algorithm causes shift of costs

If two level s′i and s′k are competing, the symbol with larger popularity has
higher chance of being chosen

Level which is not chosen further reduces its associated conditional probability

As a consequence, symbols get ”removed” and the EC Lloyd algorithm can
be initialized with more symbols than the final result
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Quantization Scalar Quantization

Entropy-Constrained Lloyd Algorithm for Gaussian Source

Consider Gaussian source with zero mean and unit variance

Design optimal entropy-constrained quantizer with rate R = 2 bit/symbol

Optimum average distortion: D∗F = 0.09 = 10.45 dB

Results for optimal decision thresholds ui and decoding symbols s′i are
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Quantization Scalar Quantization

Convergence EC Lloyd Algorithm for Gaussian Source

Initialization A:
s′i = −3 + 0.5 · i
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Initialization B:
s′i = −3 + 2 · i
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For initialization A, decoding bins get discarded

For initialization B, desired quantizer performance is not achieved

Heiko Schwarz Source Coding and Compression November 24, 2013 278 / 318



o

Quantization Scalar Quantization

Entropy-Constrained Lloyd Algorithm for Laplacian Source

Consider Laplacian source with zero mean and unit variance

Design optimal entropy-constrained quantizer with rate R = 2 bit/symbol

Optimum average distortion: D∗V = 0.07 = 11.46 dB

Results for optimal decision thresholds ui and decoding symbols s′i are
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Quantization Scalar Quantization

Convergence of EC Lloyd Algorithm for Laplacian Source

Initialization A:
s′i = −3 + 0.5 · i
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Initialization B:
s′i = −3 + 2 · i
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For initialization A, faster convergence of costs than thresholds

For initialization B, desired quantizer performance is not achieved
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Quantization Scalar Quantization

High-Rate Approximation for Scalar Quantizers

Assumption: Small sizes ∆i of quantization intervals [ui, ui+1)

Then: Marginal pdf f(s) nearly constant inside each interval

f(s) ≈ f(s′i) for s ∈ [ui, ui+1) (411)

Approximation

pi =

∫ ui+1

ui

f(s) ds ≈ (ui+1 − ui)f(s′i) = ∆i · f(s′i) (412)

Average distortion

D = E{d(S,Q(S))}

=

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2f(s) ds

≈
K−1∑
i=0

f(s′i)

∫ ui+1

ui

(s− s′i)2 ds (413)
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Quantization Scalar Quantization

High-Rate Approximation for Scalar Quantizers

Average distortion

D ≈
K−1∑
i=0

f(s′i)

∫ ui+1

ui

(s− s′i)2 ds (414)

=
1

3

K−1∑
i=0

f(s′i)
(
(ui+1 − s′i)3 − (ui − s′i)3

)
(415)

By differentiation with respect to s′i, we find that for minimum distortion,

(ui+1 − s′i)2 = (ui − s′i)2 =⇒ s′i =
1

2
(ui + ui+1) (416)

Average distortion at high rates

D ≈ 1

12

K−1∑
i=0

f(s′i) ∆3
i =

1

12

K−1∑
i=0

pi ∆2
i (417)

Average distortion at high rates for constant ∆ = ∆i

D ≈ ∆2

12
(418)
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Quantization Scalar Quantization

High-Rate Approximation for Scalar Quantizers with FLC

Using
∑K−1
i=0 K−1 = 1

D =
1

12

K−1∑
i=0

f(s′i)∆
3
i =

1

12

(K−1∑
i=0

f(s′i)∆
3
i

)1
3

·

(
K−1∑
i=0

1

K

)2
3

3

(419)

Using Hölders inequality

α+ β = 1 =⇒

(
b∑
i=a

xi

)α
·

(
b∑
i=a

yi

)β
≥

b∑
i=a

xαi · y
β
i (420)

with equality if and only if xi is proportional to yi, it follows

D ≥ 1

12

(
K−1∑
i=0

f(s′i)
1
3 ·∆i ·

(
1

K

)2
3

)3

=
1

12K2

(
K−1∑
i=0

3

√
f(s′i) ∆i

)3

(421)

Reason for α = 1/3: Obtain expression in which ∆i has no exponent
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Quantization Scalar Quantization

High-Rate Approximations for Scalar Quantizers with FLC

Inequality for average distortion

D ≥ 1

12K2

(
K−1∑
i=0

3

√
f(s′i) ∆i

)3

(422)

becomes equality if all terms f(s′i) ∆3
i are the same

Approximation asymptotically valid for small intervals ∆i

D =
1

12K2

(∫ ∞
−∞

3
√
f(s) ds

)3

(423)

With 1/K2 = 2− log2K
2

= 2−2R: Operational distortion rate function for
optimal scalar quantizers with fixed-length codes

DF (R) = σ2 · ε2
F · 2−2R with ε2

F =
1

12σ2

(∫ ∞
−∞

3
√
f(s) ds

)3

(424)

=⇒ Published by Panter and Dite in [Panter and Dite, 1951] and is also
referred to as the Panter and Dite formula
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Quantization Scalar Quantization

Efficiency of Optimum High-Rate Quantizers with FLCs

DF (R) for optimum high-rate scalar quantization with fixed-length codes

DF (R) = ε2
F · σ2 · 2−2R (425)

Uniform pdf:

ε2
F = 1 (0 dB)

Laplacian pdf:

ε2
F = 4.5 (6.53 dB)

Gaussian pdf:

ε2
F =

√
3π

2
≈ 2.721 (4.35 dB)
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Quantization Scalar Quantization

High-Rate Approximation for Quantizers with VLC

Use variable length coding for the quantizer indexes

Again, assume pmf pi of quantized output signal s′ as pi = f(s′i)∆i

The average rate is given as

R = H(S′) = −
K−1∑
i=0

pi log2 pi = −
K−1∑
i=0

f(s′i)∆i log2(f(s′i)∆i)

= −
K−1∑
i=0

f(s′i) log2(f(s′i)) ·∆i −
K−1∑
i=0

f(s′i)∆i log2 ∆i

≈ −
∫
f(s) log2 f(s) ds︸ ︷︷ ︸

differential entropy h(S)

−1

2

K−1∑
i=0

pi log2 ∆2
i

= h(S)− 1

2

K−1∑
i=0

pi log2 ∆2
i (426)
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Quantization Scalar Quantization

High-Rate Approximation for Quantizers with VLC

Jensen’s inequality for convex functions ϕ(xi) such as ϕ(xi) = − log2 xi

ϕ

(
K−1∑
i=0

ai xi

)
≤
K−1∑
i=0

ai ϕ(xi) for

K−1∑
i=0

ai = 1 (427)

with equality for constant xi

Jensen’s inequality and the high-rate distortion approximation

R = h(S)− 1

2

K−1∑
i=0

p(s′i) log2 ∆2
i ≥ h(S)− 1

2
log2

(
K−1∑
i=0

p(s′i)∆
2
i

)

= h(S)− 1

2
log2(12D) (428)

with equality if and only if all ∆i = ∆, i.e. for uniform quantization

=⇒ For MSE distortion and high rates, optimal quantizers with variable
length codes have uniform step sizes
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Quantization Scalar Quantization

Comparison of High-Rate Distortion-Rate Functions

Optimum high-rate scalar quantizers with variable-length codes

DV (R) =
1

12
· 22h(S) · 2−2R (429)

is factor πe/6 ≈ 1.42 or ≈ 1.53 dB from the Shannon Lower Bound (SLB)

DL(R) =
1

2πe
· 22h(S) · 2−2R (430)

Recall: Optimum high-rate scalar quantizers with fixed-length codes

DF (R) =
1

12

[∫ ∞
−∞

3
√
f(s) ds

]3

· 2−2R (431)

The DX(R) functions (X = L,F, V ) can be expressed in general form as

DX(R) = ε2
X · σ2 · 2−2R (432)

with ε2
X being a factor that depends on pdf (f(s)) of the source and

properties of the quantizer (fixed-length vs. variable length vs. SLB)
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Quantization Scalar Quantization

Comparison of High-Rate Distortion-Rate Functions

Operational Distortion-rate function at high rates is given as

DX(R) = ε2
X · σ2 · 2−2R (433)

Values of ε2
X for quantization method X

Method Shannon Lower Panter & Dite Gish & Pierce
Bound (SLB) (Lloyd Quant. & FLC) (ECSQ & VLC)

Uniform pdf 6
πe ≈ 0.7 1 1

(1.53 dB to SLB) (1.53 dB to SLB)

Laplacian pdf e
π ≈ 0.86 9

2 = 4.5 e2

6 ≈ 1.23

(7.1 dB to SLB) (1.53 dB to SLB)

Gaussian pdf 1
√

3π
2 ≈ 2.72 πe

6 ≈ 1.42

(4.34 dB to SLB) (1.53 dB to SLB)
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Quantization Scalar Quantization

Performance of Scalar Quantizers for Gaussian Sources

R [bit/symbol]

SNR [dB]

Entropy-constrained scalar quantizer is 1.53 dB from distortion rate curve

For sources with memory: Statistical dependencies cannot be exploited
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Quantization Vector Quantization

Can We Further Improve Quantization?

Scalar quantization: Special case of vector quantization (with N = 1)

Vector quantization with N > 1 allows a number of new options

• 

• 

• • • • • • • 
• • • • • • • • 

• • • • • • • 
• • • • • • • • • 
• • • • • • • • 
• • • • • • • 

• • • • • • • 
• 

• 
• 

Amplitude 1


A
m

pl
itu

de
 2



cell


pdf


Representative

vector 


Heiko Schwarz Source Coding and Compression November 24, 2013 291 / 318



o

Quantization Vector Quantization

Vector Quantization

Vector quantization:

Generalization of scalar quantization
Map vector of N > 1 samples to representative vectors

Many models and design techniques used in vector quantization are natural
generalizations of scalar quantization

Vector quantizer Q of dimension N and size K is a mapping from a point in
N -dimensional Euclidean space RN into a finite set C containing K code
vectors or code words

Q : RN → C (434)

Vector quantizer splits RN into K quantization cells Ci

Ci = {s ∈ RN : q(s) = s′} (435)

The cells form a partition of RN⋃
i

Ci = RN and Ci
⋂
Cj = ∅ for i 6= j (436)
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Quantization Vector Quantization

Measuring Vector Quantizer Performance

Average distortion for a N -dimensional vector quantizer

D = E{dN (S,S′)} =

∫
RN

dN (s, s′)f(s) ds (437)

Using the partitioning of RN into cells Ci and the codebook
C = {s′0, s′1, ...} for a given quantizer Q

D =

K−1∑
i=0

∫
Ci

dN (s, s′i)f(s) ds (438)

For MSE distortion

dN (s, s′i) =
1

N
‖s− s′i‖ =

1

N
(s− s′i)

T (s− s′i) =
1

N

N−1∑
n=0

(sn− s′i,n)2 (439)

Average rate (bit/scalar) for a N -dimensional vector quantizer of size K

R =
1

N
E{− log2 p(S

′
i)} = − 1

N

K−1∑
i=0

pi log2 pi (440)
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Quantization Vector Quantization

The Linde-Buzo-Gray (LBG) Algorithm

Given is

a sufficiently large realization {sn} of considered source

the number K of reconstruction vectors {s′i}

Iterative quantizer design (extension of Lloyd algorithm)

1 Choose an initial set of reconstruction vectors {s′i}
2 Associate all vectors of the training set {sn} with one of the quantization

cells Ci according to

α(sn) = arg min
∀i

dN (sn, s
′
i) (nearest neighbor condition)

and update the decision thresholds {ui} accordingly

3 Update the reconstruction vectors {s′i} according to

s′i = arg min
s′∈R

E{dN (S, s′) |α(S) = i} (centroid condition)

4 Repeat the previous two steps until convergence

Heiko Schwarz Source Coding and Compression November 24, 2013 294 / 318



o

Quantization Vector Quantization

LBG Algorithm Result for Gaussian IID

Result for dimension N = 2 and size K = 16 corresponding to R = 2 bit/sample

initialization after iteration 8 after iteration 49

Initialization:

s′i+4k = (−3.75+2.5i,−3.75+2.5k)T

After iteration 8: Same performance as
in scalar case: 9.3 dB

After iteration 49: Improvement to
9.67 dB
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0.37 dB
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Quantization Vector Quantization

LBG Algorithm Result for Gaussian IID

Result for dimension N = 2 and size K = 256 corresponding to R = 4 bit/sample

0 10 20 30 40 500
2
4
6
8

10
12
14
16
18
20
22
24

Iteration
SN

R
 [d

B
], 

H
 [b

it/
s]

1.31 dB

H=3.69 bit/s

Conjectured VQ performance for R=4 bit/s

Fixed!length SQ performance for R=4 bit/s

Random initialization

Gain around 0.9 dB for two-dimensional VQ compared to SQ with
fixed-length codes resulting in 20.64 dB (of conjectured 21.05 dB)
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Quantization Vector Quantization

LBG Algorithm Result for Laplacian IID

Result for dimension N = 2 and size K = 16 corresponding to R = 2 bit/sample

0 10 20 30 40 500
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Iteration
SN

R 
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1.32 dB

Initialization (equal to experiment with Gaussian iid):

s′i+4k = (−3.75 + 2.5i,−3.75 + 2.5k)T

Large gain (1.32 dB) for two-dimensional VQ compared to SQ with
fixed-length codes resulting in 8.87 dB
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Quantization Vector Quantization

LBG Algorithm Result for Laplacian IID

Result for dimension N = 2 and size K = 256 corresponding to R = 4 bit/sample
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H=3.44 bit/s

Conjectured VQ performance for R=4 bit/s

Fixed!length SQ performance for R=4 bit/s

Random initialization

Large gain (1.84 dB) for two-dimensional VQ compared to SQ with
fixed-length codes resulting in 19.4 dB (of conjectured 19.99 dB)
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Quantization Vector Quantization

The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects

Space filling advantage:

Z lattice is not most efficient sphere packing in N dimensions (N > 1)
Independent from source distribution or statistical dependencies
Maximum gain for N →∞: 1.53 dB

Shape advantage:

Exploit shape of source pdf
Can also be exploited using entropy-constrained scalar quantization

Memory advantage:

Exploit statistical dependencies of the source
Can also be exploited using predictive coding, transform coding,
block entropy coding or conditional entropy coding
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Quantization Vector Quantization

Space Filling Advantage

Consider uniform iid source with f(s) = 1/A for −A/2 ≤ s ≤ A/2 and A = 10

=⇒
50 iterations

of LBG algorithm

DU (R) for SQ of uniform distribution is given as DU (R) = A2

12 2−2R;
with A = 10 and R = 3.32 bit/scalar we have DU (R) = 19.98 dB

LBG algorithm converged towards 20.08 dB showing an approximate
hexagonal lattice in 2D
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Quantization Vector Quantization

Space-Filling Advantage: Densest Sphere Packings

Densest packings, highest kissing numbers, and approximate gain using VQ

Dim. Densest Name Highest Kissing Approximate
Packing Number Gain [dB]

1 Z – Integer lattice 2 0

2 A2 – Hexagonal lattice 6 0.17

3 A3 ' D3 – Cuboidal lattice 12 0.29

4 D4 24 0.39

5 D5 40 0.47

6 E6 72 0.54

7 E7 126 0.60

8 E8 – Gosset lattice 240 0.66

9 Λ9 – Laminated lattice 240 0.70

10 P10c – Non-lattice arrangement 336 0.74

12 K12 – Coxeter-Todd lattice 756 0.81

16 BW16 ' Λ16 – Barnes-Wall lattice 4320 0.91

24 Λ24 – Leech lattice 196560 1.04

100 1.35

∞ 1.53
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Quantization Vector Quantization

Chou-Lookabaugh-Gray Algorithm: ECVQ

Given is

a sufficiently large realization {sn} of considered sources

a Lagrange parameter λ

Iterative quantizer design (extension of EC Lloyd algorithm)
1 Choose initial set of reconstruction vectors {s′i} and codeword lengths {`i}
2 Associate all samples of the training set {sn} with one of the quantization

cells Ci according to

α(sn) = arg min
∀s′i

dN (sn, s
′
i) + λ · `i

3 Update the reconstruction vectors {s′i} according to

s′i = arg min
s′∈R

E{dN (S, s′) |α(S) = i}

4 Update the codeword lengths `i according to

`i = − log2 pi

5 Repeat previous three steps until convergence
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Quantization Vector Quantization

Shape Advantage: Results for Gaussian IID (N = 2, K = 16)
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0.26 dB

Result of CLG algorithm for Gaussian iid

Gain of ECVQ compared to ECSQ is 0.26 dB

Gain of VQ compared to SQ with fixed-length codes is 0.37 dB

Heiko Schwarz Source Coding and Compression November 24, 2013 303 / 318



o

Quantization Vector Quantization

Shape Advantage: Results for Laplace IID (N = 2, K = 16)
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R=2.04 bit/s

Result of CLG algorithm for Laplace iid

Gain of ECVQ compared to ECSQ is 0.20 dB

Gain of VQ compared to SQ with fixed-length codes is 1.32 dB
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Quantization Vector Quantization

Shape Advantage: Results for Gaussian IID (N = 2, K = 256)
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0.17 dB

H=4.04 bit/s

ECVQ performance for R=4.04 bit/s (conjectured)

ECSQ performance for R=4.04 bit/s

Result of CLG algorithm for Gaussian iid

Gain of ECVQ compared to ECSQ is 0.17 dB

Gain of VQ compared to SQ with fixed-length codes is 0.9 dB
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Quantization Vector Quantization

Shape Advantage: Results for Laplace IID (N = 2; K = 256)

Result of CLG algorithm for 2D Laplace i.i.d.

Gain of ECVQ compared to ECSQ is 0.17 dB

Gain of VQ compared to SQ with fixed-length codes is 1.84 dB

=⇒ Entropy coding of quantization indices only leaves the space-filling gain,
which is approximately 0.17 dB for N = 2
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Quantization Vector Quantization

Summary on Shape Advantage

When comparing ECSQ with ECVQ for iid sources, the gain due to K > 1
reduces to the space filling gain

VQ with fixed-length codes can also exploit the gain that ECSQ shows
compared to SQ with fixed-length codes
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o

Quantization Vector Quantization

Memory Advantage: Results for Gauss-Markov with ρ = 0.9

VQ results from LBG algorithm for Gauss-Markov source with correlation ρ = 0.9

⇐= R = 1 bit/scalar

R = 2 bit/scalar =⇒

⇐= R = 3 bit/scalar

R = 4 bit/scalar =⇒
LBG algorithm has been ex-
tended by re-inserting discarded
symbols s′i using random choices
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o

Quantization Vector Quantization

Memory Advantage: Results for Gauss-Markov with ρ = 0.9
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Gains are additive from space-filling, shape and memory effects

For high rates, conjectured VQ performance is approached
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o

Quantization Vector Quantization

Summary on Memory Advantage

Largest gain to be made if source contains statistical dependencies

Exploiting the memory advantage is one of the most relevant aspects of
source coding (shape advantage can be obtained using entropy coding)

Remainder of source coding course will consider this issue
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o

Quantization Vector Quantization

Vector Quantizer Advantage for a Gauss-Markov Source

Gauss-Markov source with correlation factor ρ = 0.9
Conjectured numbers are empirically verified for K = 2

Fixed-Length Coded SQ (K=1) 

(Panter-Dite Approximation)


ECSQ  using EC Lloyd Algorithm 

VQ, K=2 (e)


VQ, K=2 using LBG algorithm 

VQ, K=5 (e)


VQ, K=10 (e)


VQ, K=100 (e)


R(D)


SNR [dB]


R [bit/scalar]
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o

Quantization Vector Quantization

Vector Quantization with Structural Constraints

Vector quantizers can asymptotically achieve rate-distortion curve for N →∞

Complexity requirements: Storage and computation

Delay

Impose structural constraints can reduce complexity

Tree-Structured VQ

Transform VQ

Multistage VQ

Shape-Gain VQ

Lattice Codebook VQ

Predictive VQ

Predictive VQ can be seen as a generalization of very popular techniques:
Motion compensation in video coding and various techniques in speech coding
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o

Quantization Chapter Summary

Chapter Summary

Scalar quantization

Lloyd quantizer: Minimum distortion for given number of representative levels

Variable length coding: Additional gains by entropy-constrained quantization

Optimal scalar quantizer for high rates: Uniform quantizer

Vector quantization

Vector quantizers can achieve rate-distortion curve forN →∞
Space filling gain: Only exploited by vector quantizers (1.53 dB for N →∞)

Shape gain: Can also be exploited by entropy coding of quantization indices

Memory gain: Can be exploited by predictive coding, transform coding, or
entropy coding using joint or conditional probability mass functions

Vector quantization can achive rate-distortion bound. – Are we done?

=⇒ No! Complexity of vector quantizers is the issue

=⇒ Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met
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o

Quantization Exercises (Set E)

Exercise 15

Consider a symmetric scalar quantizer with 3 intervals and a quantizer input with a
zero-mean Laplace pdf,

q(x) =


−b : x < −a
0 : |x| ≤ a
b : x > a

f(x) =
1

2m
e−
|x|
m

(a) Derive the optimal reconstruction value b as a function of the decision threshold a
for MSE distortion.

Express the resulting distortion as function of a and the variance σ2=2m2.

(b) Determine the decision threshold a in a way that a Lloyd quantizer for MSE
distortion is obtained.

Determine the distortion and rate for the Lloyd quantizer by assuming fixed-length
coding (R = log2N) and compare the obtained R-D point with the Shannon lower
bound.

(c) Can the derived optimal quantizer for fixed-length coding be improved by adding
entropy coding (without changing the decision thresholds and reconstruction levels)?
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Quantization Exercises (Set E)

Exercise 16

Given is a Centroidal quantizer (not necessarily a Lloyd quantizer) for MSE
distortion and a source X. The quantizer has 5 reconstruction levels
{−3,−1, 0, 1, 3} which are chosen with probabilities {0.05, 0.1, 0.4, 0.3, 0.15} and
achieves an MSE of 1.05.

(a) Determine the mean µ and variance σ2 of the source X.

(b) With q(X) being the quantizer output and e(X) = X − q(X) being the
quantization error, determine the correlations E{X q(X)}, E{X e(X)}, and
E{q(X) e(X)}.
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Quantization Exercises (Set E)

Exercise 17

Consider a discrete Markov process X = {Xn} with the symbol alphabet
AX = {0, 2, 4, 6} and the conditional pmf

pXn|Xn−1
(xn|xn−1) =

{
a : xn = xn−1
1
3 (1− a) : xn 6= xn−1

,

for xn, xn−1 ∈ AX . The parameter a, with 0 < a < 1, is a variable that specifies
the probability that the current symbol is equal to the previous symbol. For
a = 1/4, our source X would be i.i.d.
Given is a quantizer of size 2 with the reconstruction levels s′0 = 1 and s′1 = 5 and
the decision threshold u1 = 3.

(a) Assume optimal entropy coding using the marginal probabilities of the
quantization indices and determine the rate-distortion point of the quantizer.

(b) Can the overall quantizer performance be improved by applying conditional
entropy coding (e.g., using arithmetic coding with conditional probabilities)?
How does it depend on the parameter a?
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Quantization Exercises (Set E)

Exercise 18

Calculate the gain of optimal 2-dimensional vector quantization relative to optimal
scalar quantization for high rates on the example of a uniform pdf.

Hint:
For high rates, border effects can be neglected. It can be assumed that the signal
space for which the pdf is non-zero is completely filled with regular quantization
cells.
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o

Quantization Exercises (Set E)

Exercise 19

Consider scalar quantization of a Laplacian source at high rates:

f(x) =
λ

2
· e−λ |x| with σ2

S =
2

λ2

In a given system, the used quantizer is a Lloyd quantizer with fixed-length
entropy coding (the number of quantization intervals represents a power of 2).
How many bits per sample can be saved if the quantizer is replaced by an
entropy-constrained quantizer with optimal entropy coding?

Note: The operation points of the quantizers can be accurately described by high
rate approximations.
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