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o

Predictive Coding Introduction

Predictive Coding – Introduction

The better the future of a random process is predicted from the past and the
more redundancy the signal contains, the less new information is contributed
by each successive observation of the process

Predictive coding idea:
1 Predict a sample using an estimate which is a function of past samples
2 Quantize residual between signal and its prediction
3 Add quantizer residual and prediction to obtain reconstructed sample
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Problems:

How to obtain the predictor Ŝn?

How to combine predictor and quantizer?
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Predictive Coding Introduction

Prediction

Statistical estimation procedure:

Value of random variable Sn of random process {Sn} is estimated using
values of other random variables of the random process

Predictor
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Select: Set of observed random variables Bn
=⇒ Typical example: N random variables that directly precede Sn

Bn = {Sn−1, Sn−2, · · · , Sn−N} (441)

Predictor for Sn: Deterministic function of observation set Bn

Ŝn = An(Bn) (442)

Prediction error

Un = Sn − Ŝn = Sn −An(Bn) (443)
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Predictive Coding Introduction

Prediction Performance

MSE distortion using ui = si − ŝi and s′i = u′i + ŝi

dN (s, s′) =
1

N

N−1∑
i=0

(si − s′i)2 =
1

N

N−1∑
i=0

(ui + ŝi − u′i − ŝi)2 = dN (u,u′) (444)

=⇒ Operational rate-distortion function of a predictive coding is equal to
op. r-d function of (scalar) quantization of the prediction residuals

Operational distortion-rate function: D(R) = σ2
U · g(R)

σ2
U : variance of the prediction residual

g(R): depends only on the type of the distribution of the residuals

=⇒ Assume stationary processes: An(·) becomes A(·)
=⇒ Neglect the dependency on the distribution type

=⇒ Define: Predictor A(Bn) given an observation set Bn is optimal
if it minimizes variance σ2

U

Heiko Schwarz Source Coding and Compression December 1, 2013 323 / 368



o

Predictive Coding Optimal Prediction

Optimal Prediction

Optimization criterion typically used in literature:

ε2U = E
{
U2
n

}
= E

{(
Sn − Ŝn

)2}
= E

{(
Sn −A(Bn)

)2}
(445)

Minimization of second moment

ε2U = E
{

(Un − µU + µU )2
}

= E
{

(Un − µU )2
}

+ 2E{(Un − µU )µU}+ E
{
µ2
U

}
= σ2

U + µ2
U + 2µU (E{Un} − µU )

= σ2
U + µ2

U (446)

implies minimization of variance σ2
U and mean µU

Solution: Conditional mean (see proof in [Wiegand and Schwarz])

Ŝ∗n = A∗(Bn) = E{Sn | Bn} (447)

=⇒ General case requires storage of large tables
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Predictive Coding Optimal Prediction

Optimal Prediction for Autoregressive Processes

Autoregressive process of order m (AR(m) process)

Sn = Zn + µS +

m∑
i=1

ai · (Sn−i − µS)

= Zn + µS · (1− aTmem) + aTmS
(m)
n−1 (448)

where

{Zn} is a zero-mean iid process
µS is the mean of the AR(m) process
am = (a1, · · · , am)T is a constant parameter vector
em = (1, · · · , 1)T is an m-dimensional unit vector

Prediction of Sn given the vector Sn−1 = (Sn−1, · · · , Sn−N ) with N ≥ m

E{Sn |Sn−1} = E
{
Zn + µS(1− aTNeN ) + aTN Sn−1 |Sn−1

}
= µS(1− aTNeN ) + aTN Sn−1 (449)

where aN = (a1, · · · , am, 0, · · · , 0)T
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Predictive Coding Linear and Affine Prediction

Affine Prediction

Suitable structural constraint: Affine predictor

Ŝn = A(Sn−k) = h0 + hTNSn−k (450)

where hN = (h1, · · · , hN )T is a constant vector and h0 a constant offset

Variance σ2
U of prediction residual only depends on hN

σ2
U (h0,hN ) = E

{(
Un−E{Un}

)2}
= E

{(
Sn−h0−hTNSn−k − E

{
Sn−h0−hTNSn−k

})2}
= E

{(
Sn−E{Sn} − hTN

(
Sn−k−E{Sn−k}

))2}
(451)

Mean squared prediction error

ε2U (h0,hN ) = σ2
U (hN ) + µ2

U (h0,hN ) = σ2
U (hN ) + E

{
Sn − h0 − hT

N Sn−k

}2

= σ2
U (hN ) +

(
µS(1− hT

NeN )− h0

)2
(452)

Minimize mean squared prediction error by setting

h∗0 = µS (1− hTN eN ) (453)
Heiko Schwarz Source Coding and Compression December 1, 2013 326 / 368



o

Predictive Coding Linear and Affine Prediction

Linear Prediction for Zero-Mean Processes
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The function used for prediction is linear, of the form

Ŝn = h1 · Sn−1 + h2 · Sn−2 + · · ·+ hN · Sn−N = hTNSn−1 (454)

Mean squared prediction error (same as variance for zero mean)

σ2
U (hN ) = E

{
(Sn − Ŝn)2

}
= E

{
(Sn − hTNSn−1)(Sn − STn−1hN )

}
= E

{
S2
n

}
− 2E

{
hTNSn−1Sn

}
+ E

{
hTNSn−1S

T
n−1hN

}
= E

{
S2
n

}
− 2hTNE{SnSn−1}+ hTNE

{
Sn−1S

T
n−1

}
hN (455)
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Predictive Coding Linear and Affine Prediction

Autocovariance Matrix and Autocovariance Vector

Variance σ2
S = E

{
S2
n

}
Autocovariance vector (for zero mean: Autocorrelation vector)

ck = E{SnSn−k} = σ2
S ·



ρk
...
ρi
...

ρN + k − 1

 with ρi = E{Sn · Sn−i} /σ2
S

(456)

Autocovariance matrix (for zero mean: Autocorrelation matrix)

CN = E
{
Sn−1S

T
n−1

}
= σ2

S ·


1 ρ1 ρ2 · · · ρN−1

ρ1 1 ρ1 · · · ρN−2

ρ2 ρ1 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 (457)
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Predictive Coding Linear and Affine Prediction

Optimal Linear Prediction

Prediction error variance

σ2
U (hN ) = σ2

S − 2hTNck + hTNCN hN (458)

Minimization of σ2
U (hN ) yields a system of linear equations

CN · hN = ck (459)

When CN is non-singular

h∗N = C−1
N · ck (460)

Minimum of σ2
U (hN ) is given as (with (C−1

N ck)T = cTkC
−1
N )

σ2
U (h∗N ) = σ2

S − 2 (h∗N )T ck + (h∗N )TCN h
∗
N

= σ2
S − 2

(
cTkC

−1
N

)
ck +

(
cTkC

−1
N )CN (C−1

N ck
)

= σ2
S − 2 cTkC

−1
N ck + cTkC

−1
N ck

= σ2
S − cTkC

−1
N ck = σ2

S − cTk h
∗
N (461)

=⇒ Optimal prediction: Signal variance σ2
S is reduced by cTkC

−1
N ck = cTk h

∗
N
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Predictive Coding Linear and Affine Prediction

Verification of Optimality

The optimality of the solution can be verified by inserting hN = h∗N + δN into

σ2
U (hN ) = σ2

S − 2hTNck + hTNCN hN (462)

yielding

σ2
U (hN ) = σ2

S − 2(h∗N + δN )T ck + (h∗N + δN )TCN (h∗N + δN )

= σ2
S − 2 (h∗N )T ck − 2 δTNck +

(h∗N )TCN h
∗
N + (h∗N )TCN δN + δTNCN h

∗
N + δTNCN δN

= σ2
U (h∗N )− 2δTNck + 2δTNCN h

∗
N + δTNCNδN

= σ2
U (h∗N ) + δTNCN δN (463)

The additional term is always non-negative

δTNCN δN ≥ 0 (464)

It is equal to 0 if and only if hN = h∗N

=⇒ h∗N is the optimal choice for the prediction parameters
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Predictive Coding Linear and Affine Prediction

The Orthogonality Principle

Important property for optimal affine predictors

E{Un Sn−k} = E
{(
Sn − h0 − hTNSn−k

)
Sn−k

}
= E{Sn Sn−k} − h0E{Sn−k} − E

{
Sn−kS

T
n−k

}
hN

= ck + µ2
S eN − h0 µS eN − (CN + µ2

S eN e
T
N ) hN

= ck −CNhN + µS eN
(
µS (1− hTN eN )− h0

)
(465)

Inserting the optimal solutions

h∗N = C−1
N · ck and h∗0 = µS (1− hTN eN ) (466)

yields

E{Un Sn−k} = 0 (467)

=⇒ For optimal affine prediction, the correlation between the observation vector
and the prediction residual is zero
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Predictive Coding Linear and Affine Prediction

Geometric Interpretation of Orthogonality Principle

For optimal affine prediction, the correlation between the prediction residual
Un and the observation vector Sn−k is zero

E{Un Sn−k} = 0 (468)

For optimum affine filter design, prediction error should be orthogonal to
input signal
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U0
*

Approximate a vector S0 by a linear
combination of S1 and S2

Best approximation Ŝ
∗
0 is given by

projection of S0 onto the plane
spanned by S1 and S2

Error vector U∗0 has minimum
length and is orthogonal to the
projection
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Predictive Coding Linear and Affine Prediction

One-Step Prediction

Random variable Sn is predicted using the N directly preceding random
variables Sn−1 = (Sn−1, · · · , Sn−N )T

Using φk = E
{(
Sn − E{Sn}

)(
Sn+k − E{Sn+k}

)}
, the normal equations

are given as 
φ0 φ1 · · · φN−1

φ1 φ0 · · · φN−2

...
...

. . .
...

φN−1 φN−2 · · · φ0



hN
1

hN
2

...
hN
N

 =


φ1

φ2

...
φN

 (469)

where hNk represent elements of h∗N = (hN1 , · · · , hNN )T

Changing the equation to
φ1 φ0 φ1 · · · φN−1

φ2 φ1 φ0 · · · φN−2

...
...

...
. . .

...
φN φN−1 φN−2 · · · φ0




1
−hN

1

−hN
2

...
−hN

N

 =


0
0
...
0

 (470)
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Predictive Coding Linear and Affine Prediction

One-Step Prediction

Including the prediction error variance for optimal linear prediction using
the N preceding samples

σ2
N = σ2

S − cT1C
−1
N c1 = σ2

S − cT1 h
∗
N

= φ0 − hN1 φ1 − hN2 φ2 − · · · − hNNφN (471)

yields and additional row in the matrix
φ0 φ1 φ2 · · · φN

φ1 φ0 φ1 · · · φN−1

φ2 φ1 φ0 · · · φN−2

...
...

...
. . .

...
φN φN−1 φN−2 · · · φ0


︸ ︷︷ ︸

CN+1


1
−hN

1

−hN
2

...
−hN

N


︸ ︷︷ ︸
aN

=


σ2
N

0
0
...
0

 (472)

The resulting equation is called augmented normal equation
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Predictive Coding Linear and Affine Prediction

One-Step Prediction

Multiplying both sides of the augmented normal equation with aTN yields

σ2
N = aTN CN+1 aN (473)

Combing the equations for 0 to N preceding samples into one matrix
equation yields

CN+1 ·



1 0 · · · 0 0

−hN
1 1

. . . 0 0

−hN
2 −hN−1

1

. . . 0 0
...

...
. . . 1 0

−hN
N −hN−1

N−1 · · · −h1
1 1


=



σ2
N X · · · X X

0 σ2
N−1

. . . X X

0 0
. . . X X

...
...

. . . σ2
1 X

0 0 · · · 0 σ2
0


Taking the determinant of both sides of the equation gives

|CN+1| = σ2
N · σ2

N−1 · . . . · σ2
0 (474)

Prediction error variance σ2
N for optimal linear prediction using the N

preceding samples

σ2
N =

|CN+1|
|CN |

(475)
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Predictive Coding Linear and Affine Prediction

One-Step Prediction for Autoregressive Processes

Recall: AR(m) process with mean µS and am = (a1, · · · , am)T

Sn = Zn + µS(1− aTmem) + aTmS
(m)
n−1 (476)

Prediction using N preceding samples in hN with N ≥ m:
Define aN = (a1, · · · , am, 0, · · · , 0)T

Prediction error

Un = Sn − hTNSn−1 = Zn + µS(1− aTNeN ) + (aN − hN )TSn−1 (477)

Subtracting the mean E{Un} = µS(1− aTNeN ) + (aN − hN )T E{Sn−1}

Un − E{Un} = Zn + (aN − hN )T
(
Sn−1 − E{Sn−1}

)
(478)

Optimal prediction: covariances between Un and Sn−1 must be equal to 0

0 = E
{(
Un − E{Un}

)(
Sn−k − E{Sn−k}

)}
= E

{
Zn
(
Sn−k − E{Sn−k}

)}
+CN (aN − hN ) (479)

yields

h∗N = aN (480)
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Predictive Coding Linear and Affine Prediction

One-Step Prediction in Gauss-Markov Processes

Gauss-Markov process is a particular AR(1) process

Sn = Zn + µS(1− ρ) + ρ · Sn−1, (481)

for which the iid process {Zn} has a Gaussian distribution

Auto-covariance matrix and its inverse

C2 = σ2
S

(
1 ρ
ρ 1

)
C−1

2 =
1

σ2
S(1− ρ2)

(
1 −ρ
−ρ 1

)
(482)

Auto-covariance vector

c1 = σ2
S

(
ρ
ρ2

)
(483)

Optimum predictor h∗2 = C−1
2 c1

h∗2 =
1

1− ρ2

(
1 −ρ
−ρ 1

)(
ρ
ρ2

)
=

1

1− ρ2

(
ρ− ρ3

−ρ2 + ρ2

)
=

(
ρ
0

)
First element of h∗N is equal to ρ, all other elements are equal to 0
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Predictive Coding Linear and Affine Prediction

One-Step Prediction in Gauss-Markov Processes

Minimum prediction residual

σ2
U =

|C2|
|C1|

=
σ4
S − σ4

S ρ
2

σ2
S

= σ2
S (1− ρ2) (484)

Prediction residual for filter h1

Un = Sn − h1Sn−1

Average squared error

σ2
U (h1) = E

{
U2
n

}
= σ2

S(1 + h2
1 − 2ρh1)

Note: Setting derivative to zero

∂σ2
U (h1)

∂h1
= σ2

S(2h1 − 2ρ)
!
= 0

also yields the result h1 = ρ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

!

σ2
U (Φ−1φ)

σ2
U (h1), h1 = 0.5
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Predictive Coding Linear and Affine Prediction

Prediction Gain

Prediction gain using ΦN = CN/σ
2
S and φ1 = c1/σ

2
S

GP =
E
{
S2
n

}
E{U2

n}
=
σ2
S

σ2
U

=
σ2
S

σ2
S − cT1 C

−1
N c1

=
1

1− φT1 Φ−1
N φ1

, (485)

Prediction gain for optimal prediction in first-order Gauss-Markov process

GP (h∗) =
1

1− ρ2
(486)

Prediction gain for filter h1

GP (h1) =
σ2
S

σ2
S(1 + h2

1 − 2ρh1)

=
1

1 + h2
1 − 2ρh1

At high bit rates, 10 log10GP :
SNR improvement achieved by
predictive coding 0 0.2 0.4 0.6 0.8 1!5

0

5

10

15

20

!

10 log10GP (h∗)

10 log10GP (h1), h1 = 0.5
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Predictive Coding Linear and Affine Prediction

Optimum Linear One-Step Prediction for K = 2

The normalized auto-correlation matrix and its inverse follow as

Φ2 =

(
1 ρ1

ρ1 1

)
Φ−1

2 =
1

1− ρ2
1

(
1 −ρ1

−ρ1 1

)
(487)

With normalized correlation vector

φ1 =

(
ρ1

ρ2

)
(488)

we obtain the optimum predictor

h∗2 = Φ−1
2 φ1 =

1

1− ρ2
1

(
1 −ρ1

−ρ1 1

)(
ρ1

ρ2

)
=

1

1− ρ2
1

(
ρ1 − ρ1ρ2

−ρ2
1 + ρ2

)
=

1

1− ρ2
1

(
ρ1(1− ρ2)
ρ2 − ρ2

1

)
(489)

For AR(1) sources, where we have ρ2 = ρ2
1, second coefficient does not

improve prediction gain

General: For AR(m) sources, only m coefficients are unequal to zero
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Predictive Coding Linear and Affine Prediction

Prediction in Images: Intra-Picture Prediction

Random variables are samples within that image

Derivations on linear prediction for zero-mean random variables
(subtract µS or roughly 127 from 8-bit picture)

Pictures are typically scanned line-by-line
from upper left corner to lower right corner

1-d horizontal prediction:

Ŝ0 = h1 · S1

1-d vertical prediction:

Ŝ0 = h2 · S2

2-d prediction:

Ŝ0 =

3∑
i=1

hiSi

€ 

S2

€ 

h2

€ 

S1

€ 

S0

€ 

S3

€ 

h3

+


€ 

ˆ S 0

€ 

h1

€ 

U0

+

-
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Predictive Coding Linear and Affine Prediction

Prediction Example: Test Pattern

σ2
S = 4925.81

(s− 127)

horizontal predictor
h1 = 0.953
h2 = 0
h3 = 0
σ2
U (h) = 456.17
GP = 10.33 dB

vertical predictor
h1 = 0
h2 = 0.932
h3 = 0
σ2
U (h) = 646.67
GP = 8.82 dB

2-d predictor
h1 = 0.911
h2 = 0.871
h3 = −0.788
σ2
U (h) = 109.90
GP = 16.51 dB
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Predictive Coding Linear and Affine Prediction

Prediction Example: Picture “Lena”

256× 256 center
cropped picture
σ2
S = 2746.43

(s− 127)

horizontal predictor
h1 = 0.962
h2 = 0
h3 = 0
σ2
U (h) = 212.36
GP = 11.12 dB

vertical predictor
h1 = 0
h2 = 0.977
h3 = 0
σ2
U (h) = 123.61
GP = 13.47 dB

2-d predictor
h1 = 0.623
h2 = 0.835
h3 = −0.48
σ2
U (h) = 80.35
GP = 15.34 dB
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Predictive Coding Linear and Affine Prediction

Prediction Example: PMFs for Picture Lena

0 63 127 195
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

s

p(s)

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

u

p(u)

Pmfs p(s) and p(u) change significantly due to prediction operation

Entropy changes significantly
(rounding prediction signal towards integer: E

{
bUn + 0.5c2

}
= 80.47)

H(S) = 7.44 bit/sample H(U) = 4.97 bit/sample (490)

Linear prediction can be used for lossless coding: JPEG-LS
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Predictive Coding Linear and Affine Prediction

Asymptotic Prediction Gain

Consider upper bound for prediction gain: N →∞
One-step prediction of a random variable Sn given the countably infinite set
of preceding random variables {Sn−1, Sn−2, · · · } and {h0, h1, · · · }

Un = Sn − h0 −
∞∑
i=1

hi Sn−i, (491)

Orthogonality criterion: Un is uncorrelated with all Sn−k for k > 0

Furthermore, Un−k for k > 0 is fully determined by a linear combination of
past input values Sn−k−i for i ≥ 0

Hence, Un is uncorrelated with Un−k for k > 0

φUU (k) = σ2
U,∞ · δ(k) ⇐⇒ ΦUU (ω) = σ2

U,∞ (492)

where σ2
U,∞ is the asymptotic one-step prediction error variance for N →∞
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Asymptotic Prediction Error Variance

For one-step prediction we showed

|CN | = σ2
N−1 · σ2

N−2 · σ2
N−3 · · ·σ2

0 (493)

which yields

1

N
ln |CN | = ln |CN |

1
N =

1

N

N−1∑
i=0

lnσ2
i (494)

If a sequence of numbers α0, α1, α2, · · · approaches a limit α∞,
the average value approaches the same limit,

lim
N→∞

1

N

N−1∑
i=0

αi = α∞ (495)

Hence, we can write

lim
N→∞

ln |CN |
1
N = lim

N→∞

1

N

N−1∑
i=0

lnσ2
i = lnσ2

∞ (496)

yielding

σ2
∞ = exp

(
lim
N→∞

ln |CN |
1
N

)
= lim
N→∞

|CN |
1
N (497)
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Asymptotic Prediction Error Variance

Asymptotic One-Step Prediction Error Variance

σ2
U,∞ = lim

N→∞
|CN |

1
N (498)

Determinant of N×N matrix: Product of its eigenvalues ξ
(N)
i

lim
N→∞

|CN |
1
N = lim

N→∞

(
N−1∏
i=0

ξ
(N)
i

)1
N

= 2

(
lim
N→∞

N−1∑
i=0

1
N log2 ξ

(N)
i

)
(499)

Apply Grenander and Szegö’s theorem

lim
N→∞

1

N

N−1∑
i=0

G
(
ξ

(N)
i

)
=

1

2π

∫ π

−π
G (Φ(ω)) dω (500)

Expression using power spectral density

σ2
U,∞ = lim

N→∞
|CN |

1
N = 2

1
2π

∫ π
−π log2 ΦSS(ω) dω (501)
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Asymptotic Prediction Gain

Prediction gain G∞P

G∞P =
σ2
S

σ2
U,∞

=
1

2π

∫ π
−π Φ(ω) dω

2
1
2π

∫ π
−π log2 Φ(ω) dω

(502)

Result for first-order Gauss-Markov source (can also be computed differently)
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0
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10 log10G

∞
P (ρ) 10.11 dB

7.21 dB

1.25 dB

ρ

← Arithmetic mean

← Geometric mean
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Predictive Coding Predictive Coding: DPCM

Differential Pulse Code Modulation (DPCM)

Combining prediction with quantization requires simultaneous reconstruction
of predictor at encoder and decoder
=⇒ Use quantized samples for prediction

Q
 +
+


€ 

ˆ S n

€ 

Sn

€ 

′ S n

€ 

Un

€ 

′ U n
-


P


€ 

ˆ S n

Re-drawing yields block-diagram with typical DPCM structure
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+
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€ 
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€ 

′ S n€ 

Un

€ 

′ U n
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€ 

ˆ S n
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DPCM Codec

Redrawing with encoder mapping α, lossless coding γ, and decoder
mapping β yields DPCM encoder
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DPCM encoder contains DPCM decoder except for γ−1
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DPCM and Quantization

Prediction Ŝn for a sample Sn is generated by linear filtering of reconstructed
samples S′n from the past

Ŝn =

K∑
i=1

hi S
′
n−i =

K∑
i=1

hi (Sn−i +Qn−i) = h
T · (Sn−1 +Qn−1) (503)

with Qn = S′n − Sn being the quantization error signal

Prediction error variance (for zero-mean input) is given by

σ2
U = E

{
U2

n

}
= E

{
(Sn − Ŝn)

2
}
= E

{
(Sn − hTSn−1 − hTQn−1)

2
}

= E
{
S2
n

}
+ hTE

{
Sn−1S

T
n−1

}
h+ hTE

{
Qn−1Q

T
n−1

}
h (504)

−2hTE{SnSn−1} − 2hTE
{
SnQn−1

}
+ 2hTE

{
Sn−1Q

T
n−1

}
h

Defining Φ = E
{
Sn−1S

T
n−1

}
/σ2

S and φ = E{SnSn−1} /σ2
S we get

σ2
U = σ2

S

(
1 + hTΦ h− 2hTφ

)
(505)

+hTE
{
Qn−1Q

T
n−1

}
h− 2hTE

{
SnQn−1

}
+ 2hTE

{
Sn−1Q

T
n−1

}
h
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DPCM for a Gauss-Markov Source

Calculate R(D) for zero-mean Gauss-Markov process

Sn = Zn + ρ · Sn−1 (506)

Consider a one-tap linear prediction filter h = [h]

Normalized auto-correlation matrix Φ = [1] and cross-correlation φ = [ρ]

Prediction error variance

σ2
U = σ2

S

(
1 + h2 − 2 h ρ

)
+ h2E

{
Q2
n−1

}
−2hE{SnQn−1}+ 2h2E{Sn−1Qn−1} (507)

Using Sn = Zn + ρ · Sn−1, the second row in above equation becomes

−2hE{SnQn−1}+ 2h2E{Sn−1Qn−1}
= −2hE{ZnQn−1} − 2hρE{Sn−1Qn−1}+ 2h2E{Sn−1Qn−1}
= −2hE{ZnQn−1}+ 2h(h− ρ)E{Sn−1Qn−1} (508)

With setting h = ρ, we have

E{ZnQn−1} = 0 2h(h− ρ)E{Sn−1Qn−1} = 0 (509)
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DPCM for a Gauss-Markov Source

For h = ρ, expression for prediction error variance simplifies to

σ2
U = σ2

S

(
1− ρ2

)
+ ρ2E

{
Q2
n−1

}
(510)

Assume: Prediction error for Gaussian source has also Gaussian distribution

Model expression for quantization error D = E
{
Q2
n−1

}
by an operational

distortion rate function
D(R) = σ2

U · g(R) (511)

Expression for prediction error variance becomes dependent on rate

σ2
U = σ2

S ·
1− ρ2

1− g(R) ρ2
(512)

Operational distortion-rate function for DPCM of Gauss-Markov

D(R) = σ2
U · g(R) = σ2

S ·
1− ρ2

1− g(R) ρ2
· g(R) (513)
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Computation of DPCM Distortion-Rate Function

Operational distortion-rate function for DPCM and ECSQ for a
Gauss-Markov source

D(R) = σ2
U · g(R) = σ2

S ·
1− ρ2

1− g(R) ρ2
· g(R) (514)

Algorithm for designing ECSQ inside DPCM loop
1 Initialization with a small value of λ, set s′n = sn, ∀n and h = ρ
2 Create signal un using s′n and DCPM
3 Design ECSQ (α, β, γ) using signal un and the current value of λ by

minimizing D + λR
4 Conduct DPCM encoding/decoding using ECSQ (α, β, γ)
5 Measure σ2

U (R) as well as rate R and distortion D
6 Increase λ and start again with step 2

Algorithm shows problems at low bit rates: Instabilities
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Comparison of Theoretical and Experimental Results

0 1 2 3 4
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space-filling gain: 1.53 dB

distortion-rate
function D(R)

EC-Lloyd and DPCM

G
∞
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=
7.2

1 dB

D(R) =
σ2
U (R)g(R)

EC-Lloyd (no prediction)

D(R) = σ2
S · g(R) bit rate [bit/sample]

SNR [dB]

For high rates and Gauss-Markov sources, shape and memory gain achievable

Space-filling gain can only be achieved using vector quantization

Theoretical model provides a useful description
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Comparison of Theoretical and Experimental Results

Prediction error variance σ2
U depends on bit rate

Theoretical model provides a useful description
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Adaptive Differential Pulse Code Modulation (ADPCM)

For quasi-stationary sources like speech, fixed predictor is not well suited

ADPCM: Adapt the predictor based on the recent signal characteristics

Forward adaptation: Send new predictor values (requires additional bit rate)
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Forward-Adaptive Prediction: Motion Compensation

Since predictor values are sent, extend prediction to vectors/blocks

Use statistical dependencies between two pictures

Prediction signal obtained by searching a region in a previously decoded
picture that best matches the block to be coded

Let s[x, y] represent intensity at location (x, y)

Let s′[x, y] represent intensity in a previously decoded picture at (x, y)

J = min
(dx,dy)

∑
x,y

(s[x, y]− s′[x− dx, y − dy])2 + λ ·R(dx, dy) (515)

Predicted signal is specified through motion vector (dx, dy)

R(dx, dy) represents the number of bits required for coding the motion vector

Prediction error u[x, y] is quantized (often using transform coding)

Bit rate is sum of motion vector and prediction residual bit rate
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Backward Adaptive DPCM

Backward adaptation: Use predictor computed from recently decoded signal

No additional bit rate
Error resilience issues
Accuracy of predictor
Decoder complexity

α	



+	



+	



€ 

Sn

€ 

ʹ′ S n

€ 

Un

€ 

ʹ′ U n

-	



P	



€ 

ˆ S n

β	



€ 

In

+	



γ	

 γ -1	



€ 

Bn

β	



€ 

ʹ′ S nP	



€ 

ʹ′ U n€ 

In

€ 

BnChannel	



APB DPCM Encoder	

 APB DPCM Decoder	



€ 

ˆ S n

APB	

 APB	



Heiko Schwarz Source Coding and Compression December 1, 2013 359 / 368



o

Predictive Coding Predictive Coding: DPCM

Transmission Errors in DPCM

When transmission error occurs, DPCM causes error propagation

Example: Motion compensation in video coding

Try to conceal image parts that are in error

Code lost image parts without referencing concealed image parts helps but
reduces coding efficiency

Concealed image part

Intra block

Use ”clean” reference picture for motion compensation

Concealed image part
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Chapter Summary

Prediction

Estimate random variable from already observed random variables

Optimal predictor: Conditional mean

Linear and affine prediction

Simple and efficient structure

Optimal predictor given by Wiener-Hopf equation

AR(m) processes: Optimal predictor has m coefficients

Optimal prediction error is orthogonal to input signal

Non-matched predictor can increase signal variance

Predictive quantization: DPCM

Combination of affine prediction and ECSQ is simple and efficient

Can exploit linear dependencies between samples

Forward and backward adaptation

Transmission errors cause error propagation
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Exercise 20

Given is a stationary random process S = {Sn}.
We consider affine prediction of a random variable Sn given the N preceding
random variables Sn−1 = [Sn−1 Sn−2 · · · Sn−N ]T .

Derive all formulas (as given below) as function of the mean µs, the variance σ2
S ,

the N -th order autocovariance matrix CN and the autocovariance vector
c1 = E{(Sn − µS)(Sn−1 − µSeN )}, where eN is a N -dimensional vector with all
entries equal to 1.

(a) Derive the affine predictor that minimizes the mean squared prediction error.

(b) Derive expressions for the mean and the variance of the resulting prediction
error as well as for the mean squared error.

(c) Derive the affine predictor and the resulting mean, variance and mean squared
error for the special case N = 1, menaing that a random variable Sn is
predicted using the random variable Sn−1. The correlation coefficient
between successive random variables is ρ.
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Exercise 21

In image and video coding, a sample Sn is often predicted by directly using a
previous sample Sn−1, i.e., by Ŝn = Sn−1.

Consider a zero-mean stationary process S = {Sn} with the first-order correlation
factor ρ.

(a) For what correlation factors ρ do we observe a prediction gain (the mean
squared prediction error is smaller than the second moment of the input)?

(b) For what correlation factors is the loss versus optimal linear prediction smaller
than 0.1 dB?
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Exercise 22 - Part I

Consider prediction in images. Assume that an image can be considered as a
realization of a stationary 2-d process with mean µS and variance σ2

S .
We want to linearily predict a current sample based on up to three (already
coded) neigbouring samples: the sample left of the current sample, the sample
above the current sample, and the sample to the top-left of the current sample.
The correlation factor between two horizontally adjacent samples is ρH , the
correlation factor between two vertically adjacent samples is ρV , and the
correlation factor between two diagonally adjacent samples is ρD (same in both
directions).
The goal is to design linear predictors that minimize the mean squared prediction
error. The mean µS is subtracted before doing the prediction.

(a) Assume that ρH > ρV .
Compare optimal linear prediction using only the horizontally adjacent sample
and optimal linear prediction using both the horizontally and the vertically
adjacent sample.
Under which cicumstances is the prediction using both samples better than
the prediction using only the horizontally adjacent sample?

Heiko Schwarz Source Coding and Compression December 1, 2013 364 / 368



o

Predictive Coding Exercises (Set F)

Exercise 22 - Part II

(b) Consider the special case ρH = ρV = ρ and ρD = ρ2.
Derive the prediction gain g = σ2

S/ε
2 for the optimal vertical predictors using

the sample to the left
the sample to the left and the sample above
the sample to the left, the sample above, and the sample to the top-left

What are the prediction gains in dB for ρ = 0.95?
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Exercise 23 – Part I

Given is a stationary AR(2) process

Sn = Zn + α1 · Sn−1 + α2 · Sn−2

where {Zn} represents zero-mean white noise.
The AR parameters are α1 = 0.7 and α2 = 0.2.

(a) Determine the correlation factors ρ1 and ρ2, where ρ1 is the correlation factor
between adjacent samples Sn and Sn−1, and ρ2 is the correlation factor
between samples Sn and Sn−2 that are two sampling intervals apart.

(b) Derive the optimal linear predictor (minimizing the MSE) using the 2 previous
samples.
Determine the prediction gain in dB.

(c) Derive the optimal linear predictor (minimizing the MSE) using only the
directly preceeding sample.
What is the prediction gain in dB?.
What is the loss relative to an optimal prediction using the last two samples?
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Exercise 23 – Part II

(d) Can the linear predictor using the directly preceeding sample, given by

Un = Sn − ρ1 · Sn−1.

be improved by adding a second prediction stage

Vn = Un − h · Un−1?

What is the optimal linear predictor for the second prediction stage?
What is the prediction gain achieved by the second prediction stage?
How big is the loss versus optimal linear prediction using the last two samples?
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Exercise 24

Consider a zero-mean Gauss-Markov process with the correlation factor ρ = 0.9.
The Gauss-Markov source is coded using DPCM at high rates. The quantizer is
an entropy-contrained Lloyd quantizer with optimal entropy coding.

(a) Neglect the quantization and derive the optimal linear predictor (minimizing
the MSE) using the previous sample.
Determine the prediction gain.

(b) Use the predictor derived in (a) inside the DPCM loop.
Assume that the prediction error has a Gaussian distribution.
What is the approximate coding gain compared to ECSQ without prediction
at the rates R1 = 1 bit per sample, R2 = 2 bit per sample, R3 = 3 bit per
sample, R4 = 4 bit per sample, and R5 = 8 bit per sample?
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