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Transform Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Rate-Distortion Theory
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Structure of Transform Coding Systems
Orthogonal Block Transforms
Bit Allocation for Transform Coefficients
Karhunen Loéve Transform (KLT)
Signal Independent Transforms (Hadamard, FFT, DCT)

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Transform Coding Introduction

Transform Coding – Introduction

Another concept for partially exploiting the memory gain

Used in virtually all lossy image and video coding applications

Samples of source s are grouped into vectors s of adjacent samples

Transform coding consists of the following steps
1 Linear analysis transform A, converting source vectors s into transform

coefficient vectors u = As
2 Scalar quantization of the transform coefficients u 7→ u′

3 Linear synthesis transform B, converting quantized transform coefficient
vectors u′ into decoded source vectors s′ = Bu′
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2D Transform:

Rotation by ϕ = 45◦
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[
sinϕ cosϕ
cosϕ − sinϕ

]
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Transform Coding Introduction

Structure of Transform Coding Systems

BA s′s

u0

u1

uN−1

u′0

u′1

u′N−1

Q0

Q1

QN−1

analysis transform synthesis transformquantizers

Synthesis transform is typically inverse of analysis transform

Separate scalar quantizer Qn for each transform coefficient un
Vector quantization of all bands or some of them is also possible, but

Transforms are designed to have a decorrelating effect (memory gain)
Shape gain can be obtained by ECSQ
Space-filling gain is left as a possible additional gain for VQ

Combination of decorrelating transformation, scalar quantization and
entropy coding is highly efficient – in terms of rate-distortion performance
and complexity
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Transform Coding Introduction

Motivation of Transform Coding

Exploitation of statistical dependencies

Transform are typically designed in a way that, for typical input signals, the
signal energy is concentrated in a few transform coefficients

Coding of a few coefficients and many zero-valued coefficients can be very
efficient (e.g., using arithmetic coding, run-length coding)

Scalar quantization is more effective in transform domain

Efficient trade-off between coding efficiency & complexity

Vector Quantization: Searching through codebook for best matching vector

Combination of transform and scalar quantization typically results in a
substantial reduction in computational complexity

Suitable for quantization using perceptual criteria

In image & video coding, quantization in transform domain typically leads to
an improvement in subjective quality

In speech & audio coding, frequency bands might be used to simulate
processing of human ear

Reduce perceptually irrelevant content
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Transform Coding Introduction

Transform Encoder and Decoder
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Transform Coding Orthogonal Block Transforms

Linear Block Transforms

Linear Block Transform

Each component of the N -dimensional output vector represents a linear
combination of the N components of the N -dimensional input vector

Can be written as matrix multiplication

Analysis transform
u = A · s (516)

Synthesis transform
s′ = B · u′ (517)

Vector interpretation: s′ is represented as a linear combination of column
vectors of B

s′ =

N−1∑
n=0

u′n · bn = u′0 · b0 + u′1 · b1 + · · ·+ u′N−1 · bN−1 (518)

Heiko Schwarz Source Coding and Compression December 7, 2013 375 / 420



o

Transform Coding Orthogonal Block Transforms

Linear Block Transforms

Perfect Reconstruction Property

Consider case that no quantization is applied (u′ = u)

Optimal synthesis transform:
B = A−1 (519)

Reconstructed samples are equal to source samples

s′ = B u = B A s = A−1A s = s (520)

Optimal Synthesis Transform (in presence of quantization)

Optimality: Minimum MSE distortion among all synthesis transforms

B = A−1 is optimal if

A is invertible and produces independent transform coefficients
the component quantizers are centroidal quantizers

If above conditions are not fulfilled, a synthesis transform B 6= A−1 may
reduce the distortion
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Transform Coding Orthogonal Block Transforms

Orthogonal Block Transforms

Orthonormal Basis

An analysis transform A forms an orthonormal basis if

basis vectors (matrix rows) are orthogonal to each other
basis vectors have to length 1

The corresponding transform is called an orthogonal transform

The transform matrices are called unitary matrices

Unitary matrices with real entries are called orthogonal matrix

Inverse of unitary matrices: Conjugate transpose

A−1 = A† (for orthogonal matrices: A−1 = AT) (521)

Why are orthogonal transforms desirable?

MSE distortion can be minimized by independent scalar quantization of the
transform coefficients

Orthogonality of the basis vectors sufficient: Vector norms can be taken into
account in quantizer design
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Transform Coding Orthogonal Block Transforms

Properties of Orthogonal Block Transforms

Transform coding with orthogonal transform and perfect reconstruction
B = A−1 = A† preserves MSE distortion

dN (s, s′) =
1

N
(s− s′)† (s− s′)

=
1

N

(
A−1 u−Bu′)† (A−1 u−Bu′)

=
1

N

(
A† u−A† u′)† (A† u−A† u′)

=
1

N
(u− u′)† AA−1 (u− u′)

=
1

N
(u− u′)† (u− u′)

= dN (u,u′) (522)

Scalar quantization that minimizes MSE in transform domain also minimizes
MSE in original signal space

For the special case of orthogonal matrices: (· · · )† = (· · · )T
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Transform Coding Orthogonal Block Transforms

Properties of Orthogonal Block Transforms

Covariance matrix of transform coefficients

CUU = E
{

(U − E{U})(U − E{U})T
}

= E
{
A (S − E{S})(S − E{S})T AT

}
= A CSS A−1 (523)

Since the trace of a matrix is similarity-invariant,

tr(X) = tr(P X P−1), (524)

and the trace of an autocovariance matrix is the sum of the variances of the
vector components, we have

1

N

N−1∑
i=0

σ2
i = σ2

S . (525)

The arithmetic mean of the variances of the transform coefficients is
equal to the variances of the source
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Transform Coding Orthogonal Block Transforms

Geometrical Interpretation of Orthogonal Transforms

Inverse 2-d transform matrix (= transpose of forward transform matrix)

B =
[
b0 b1

]
=

1√
2

[
1 1
1 −1

]
= AT

Vector interpretation for 2-d example

s = u0 · b0 + u1 · b1[
s0

s1

]
= u0 ·

1√
2

[
1
1

]
+ u1 ·

1√
2

[
1
−1

]
[

4
3

]
= 3.5 ·

[
1
1

]
+ 0.5 ·

[
1
−1

]
yielding transform coefficients

u0 =
√

2 · 3.5 u1 =
√

2 · 0.5

s0

s1

s

b0

b1

u0 · b0

u1 · b1

An orthogonal transform is a rotation from the signal coordinate system into
the coordinate system of the basis functions
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Transform Coding Orthogonal Block Transforms

Transform Example for N = 2

Adjacent samples of Gauss-Markov source with different correlation factors ρ
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Transform Coding Orthogonal Block Transforms

Example for Waveforms (Gauss-Markov Source with ρ = 0.95)

Top: signal s[k]

Middle:
transform coefficient u0[k/2]
also called dc coefficient

Bottom:
transform coefficient u1[k/2]
also called ac coefficient

Number of transform
coefficients u0 is half the
number of samples s

Number of transform
coefficients u1 is half the
number of samples s

0 10 20 30 40 50
−4

−2

0

2

4

0 5 10 15 20 25
−4

−2

0

2

4

0 5 10 15 20 25
−4

−2

0

2

4

s[k]

u0[k/2]

u1[k/2]

k

k/2

k/2

Heiko Schwarz Source Coding and Compression December 7, 2013 382 / 420



o

Transform Coding Bit Allocation for Transform Coefficients

Scalar Quantization in Transform Domain

Consider Transform Coding with Orthogonal Transforms

direct coding transform coding transform coding

quantization cells quantization cells quantization cells

in transform domain in signal space

Quantization cells are
hyper-rectangles as in scalar quantization
but rotated and aligned with the transform basis vectors

Number of quantization cells with appreciable probabilities is reduced
=⇒ indicates improved coding efficiency for correlated sources
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Transform Coding Bit Allocation for Transform Coefficients

Bit Allocation for Transform Coefficients

Problem: Distribute bit rate R among the N transform coefficients such that
the resulting distortion D is minimized

min D(R) =
1

N

N∑
i=1

Di(Ri) subject to
1

N

N∑
i=1

Ri ≤ R (526)

with Di(Ri) being the oper. distortion-rate functions of the scalar quantizers

Approach: Minimize Lagrangian cost function: J = D + λR

∂

∂Ri

(
N∑
i=1

Di(Ri) + λ

N∑
i=1

Ri

)
=
∂Di(Ri)

∂Ri
+ λ

!
= 0 (527)

Solution: Pareto condition

∂Di(Ri)

∂Ri
= −λ = const (528)

Move bits from coefficients with small distortion reduction per bit to
coefficients with larger distortion reduction per bit
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Transform Coding Bit Allocation for Transform Coefficients

Bit Allocation for Transform Coefficients

Operational distortion-rate function of scalar quantizers can be written as

Di(Ri) = σ2
i · gi(Ri) (529)

Justified to assume that gi(Ri)
is a continuous strictly convex function and
has a continuous strictly increasing derivative g′i(Ri) with g′i(∞) = 0

Pareto condition becomes

−σ2
i · g′i(Ri) = λ (530)

If λ ≥ −σ2
i g
′
i(0), the quantizer for ui cannot be operated at the given slope

=⇒ Set the corresponding component rate to Ri = 0

Bit allocation rule

Ri =

{
0 : −σ2

i g
′
i(0) ≤ λ

ηi

(
− λ
σ2
i

)
: −σ2

i g
′
i(0) > λ

(531)

where ηi(·) denotes the inverse of the derivative g′i(·)
Similar to reverse water-filling for Gaussian random variables
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Transform Coding Bit Allocation for Transform Coefficients

Approximation for Gaussian Sources

Transform coefficients have also a Gaussian distribution

Experimentally found approximation for entropy-constrained scalar
quantization for Gaussian sources (a ≈ 0.952)

g(R) =
πe

6a
ln(a · 2−2R + 1) (532)

Use parameter

θ = λ
3 (a+ 1)

πe ln 2
with 0 ≤ θ ≤ σ2

max (533)

Bit allocation rule

Ri(θ) =

{
0 : θ ≥ σ2

i
1
2 log2

(
σ2
i

θ (a+ 1)− a
)

: θ < σ2
i

(534)

Resulting component distortions

Di(θ) =

{
σ2
i : θ ≥ σ2

i

− ε
2 ln 2
a · σ2

i · log2

(
1− θ

σ2
i

a
a+1

)
: θ < σ2

i
(535)
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Transform Coding Bit Allocation for Transform Coefficients

High-Rate Approximation

Assumption: High-rate approximation valid for all component quantizers

High-rate approximation for distortion-rate function of component quantizers

Di(Ri) = ε2
i · σ2

i · 2−2Ri (536)

where ε2
i depends on transform coefficient distribution and quantizer

Pareto condition

∂

∂Ri
Di(Ri) = −2 ln 2 ε2

i σ
2
i 2−2Ri = −2 ln 2Di(Ri) = −λ = const (537)

states that all quantizers are operated at the same distortion

Bit allocation rule

Ri(D) =
1

2
log2

(
ε2
i σ

2
i

D

)
(538)

Overall operational rate-distorion function

R(D) =
1

N

N−1∑
i=0

Ri(D) =
1

2N

N−1∑
i=0

log2

(
σ2
i ε

2
i

D

)
(539)
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Transform Coding Bit Allocation for Transform Coefficients

High-Rate Approximation

Overall operational rate-distorion function

R(D) =
1

2N

N−1∑
i=0

log2

(
σ2
i ε

2
i

D

)
=

1

2
log2

(
ε̃2 σ̃2

D

)
(540)

with geometric means

σ̃2 =

(
N−1∏
i=0

σ2
i

)1
N

and ε̃2 =

(
N−1∏
i=0

ε2
i

)1
N

(541)

Overall distortion-rate function

D(R) = ε̃2 · σ̃2 · 2−2R (542)

For Gaussian sources (transform coefficients are also Gaussian) and
entropy-constrained scalar quantizers, we have ε2

i = ε2 = πe
6 , yielding

DG(R) =
πe

6
· σ̃2 · 2−2R (543)
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Transform Coding Bit Allocation for Transform Coefficients

Transform Coding Gain at High Rates

Transform coding gain is the ratio of the distortion for scalar quantization
and the distortion for transform coding

GT =
ε2
S · σ2

S · 2−2R

ε̃2 · σ̃2 · 2−2R
=
ε2
S · σ2

S

ε̃2 · σ̃2
(544)

with

σ2
S : variance of the input signal

ε2
S : factor of high-rate approximation for direct scalar quantization

High-rate transform coding gain for Gaussian sources

GT =
σ2
S

σ̃2
=

1
N

∑N−1
i=0 σ2

i

N

√∏N−1
i=0 σ2

i

(545)

Ratio of arithmetic and geometric mean of the transform coefficient variances

The high-rate transform coding gain for Gaussian sources is maximized if the
geometric mean is minimized (=⇒ Karhunen Loève Transform)
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Transform Coding Bit Allocation for Transform Coefficients

Example: Orthogonal Transform with N = 2

Input vector and transform matrix

s =

[
s0

s1

]
and A =

1√
2

[
1 1
1 −1

]
(546)

Transformation

u =

[
u0

u1

]
= A · s =

1√
2

[
1 1
1 −1

] [
s0

s1

]
(547)

Coefficients

u0 =
1√
2

(s0 + s1), u0 =
1√
2

(s0 − s1) (548)

Inverse transformation

A−1 = AT = A =
1√
2

[
1 1
1 −1

]
(549)
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Transform Coding Bit Allocation for Transform Coefficients

Example: Orthogonal Transform with N = 2

Variance of transform coefficients

σ2
0 = E

{
U2

0

}
= E

{
1

2
(S0 + S1)2

}
=

1

2

(
E
{
S2

0

}
+ E

{
S2

1

}
+ 2E{S0S1}

)
=

1

2

(
σ2
S + σ2

S + 2σ2
Sρ
)

= σ2
S(1 + ρ) (550)

σ2
1 = E

{
U2

1

}
= σ2

S(1− ρ) (551)

Cross-correlation of transform coefficients

E{U0U1} =
1

2
E
{

(S0 + S1) · (S0 − S1)
}

=
1

2
E
{(
S2

0 − S2
1

)}
= σ2

S − σ2
S = 0 (552)

Transform coding gain for Gaussian (assuming optimal bit allocation)

GT =
σ2
S√

σ2
0 + σ2

1

=
1√

1− ρ2
(553)
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Transform Coding Bit Allocation for Transform Coefficients

Example: Analysis of Transform Coding for N = 2

Rate-distortion cost before transform

J (0) = 2(D + λR) (for 2 samples)

Rate-distortion cost after transform

J (1) = (D0 +D1) + λ(R0 +R1) (for both transform coefficients)

Gain in r-d cost due to transform at same rate (R0 +R1 = R)

∆J = J (0) − J (1) = 2D −D0 −D1 (554)

For Gaussian sources, input and output of transform have Gaussian pdf

With operational distortion-rate function for an entropy-constrained scalar
quantizer at high rates (D = ε2 · σ2 · 2−2R with ε2 = πe/6), we have

∆J = ε2σ2
S

(
2−2R+1 − (1 + ρ)2−2R0 − (1− ρ)2−2R1

)
(555)

By eliminating R1 using R1 = 2R−R0, we get

∆J = ε2σ2
S

(
2−2R+1 − (1 + ρ)2−2R0 − (1− ρ)2−2(2R−R0)

)
(556)
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Transform Coding Bit Allocation for Transform Coefficients

Example: Analysis of Transform Coding for N = 2

Gain in rate-distortion cost due to transform

∆J = ε2σ2
S

(
2−2R+1 − (1 + ρ)2−2R0 − (1− ρ)2−2(2R−R0)

)
(557)

To maximize gain, we set

∂

∂R0
∆J = 2 ln 2 · (1 + ρ)2−2R0 − 2 ln 2 · (1− ρ)2−4R+2R0

!
= 0 (558)

yielding the bit allocation rule

R0 = R+
1

2
log2

√
1 + ρ

1− ρ
(559)

Same expression is obtained by using the previously derived high rate bit
allocation rule

Ri =
1

2
log2

(
ε2 σ2

i

D

)
(560)

Operational high-rate distortion-rate function (Gaussian, ECSQ, N = 2)

D(R) =
πe

6
·
√

1− ρ2 · σ2
S · 2−2R (561)
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Transform Coding Bit Allocation for Transform Coefficients

General Bit Allocation for Transform Coefficients

For Gaussian sources, the following points need to be considered:

High-rate approximations are not valid for low bit rates; better
approximations should be used for low rates

For low rates, Pareto conditions cannot be fulfilled for all transform
coefficients, since the component rates Ri must not be less then 0

Solution:

Use generalized approximation of Di(Ri) for components quantizers
Set components rates Ri to zero for all transform coefficients, for which
the Pareto condition ∂

∂Ri
D(Ri) = −λ cannot be fullfilled for Ri ≥ 0

Distribute rate among remaining coefficients

For non-Gaussian sources, the following needs to be considered in addition

The transform coefficients have different (non-Gaussian) distributions
(except for large transform sizes)

Using the same quantizer design for all transform coefficients with
Di(Ri) = σ2

i g(Ri) is suboptimal
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Transform Coding Karhunen Loève Transform

Karhunen Loève Transform (KLT)

Karhunen Loève Transform

Orthogonal transform that decorrelates the input vectors
Transform matrix depends on the source

Autocorrelation matrix of input vectors s

RSS = E
{
SST

}
(562)

Autocorrelation matrix of transform coefficient vectors u

RUU = E
{
UUT

}
= E

{
(AS)(AS)T

}
= A · E

{
SST

}
·AT

= ARSSA
T (563)

By multiplying with A−1 = AT from the front, we get

RSS ·AT = AT ·RUU (564)

To get uncorrelated transform coefficients, we need to obtain a diagonal
autocorrelation matrix RUU for the transform coefficients
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Transform Coding Karhunen Loève Transform

Karhunen Loève Transform (KLT)

Expression for autocorrelation matrices

RSS ·AT = AT ·RUU (565)

RUU is a diagonal matrix if the eigenvector equation

RSS · bi = ξi · bi (566)

is fulfilled for all basis vectors bi (column vectors of AT, row vectors of A)

The transform matrix A decorrelates the input vectors if its rows are equal to
the unit-norm eigenvectors vi of RSS

AKLT =
[
v0 v1 · · · vN−1

]T
(567)

The resulting autocorrelation matrix RUU is a diagonal matrix with the
eigenvalues of RSS on its main diagonal

RUU =


ξ0 0 · · · 0
0 ξ1 · · · 0
...

...
. . .

...
0 0 · · · ξN−1

 (568)
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Transform Coding Karhunen Loève Transform

Optimality of KLT for Gaussian Sources

Transform coding with orthogonal N×N transform matrix A and B = AT

Scalar quantization using scaled quantizers

D(R,Ak) =

N−1∑
i=0

σ2
i (Ak) · g(Ri) (569)

with σ2
i (Ak) being variance of i-th transform coefficient and Ak being the

transform matrix

Consider an arbitrary orthogonal transform matrix A0 and an arbitrary bit
allocation given by the vector r = [R0, · · · , RN−1]T with

∑N−1
i=0 Ri = R

Starting with arbitrary orthogonal matrix A0, apply iterative algorithm that
generates a series of orthonormal transform matrices {Ak}, k = 1, 2, ...

Iteration Ak+1 = JkAk consists of Jacobi rotation and re-ordering
=⇒ Transform matrix approaches a KLT matrix

Can show that for all Ak: D(R,Ak+1) ≤ D(R,Ak+1)
=⇒ KLT is optimal transform for Gaussian sources (minimizes MSE)
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Transform Coding Karhunen Loève Transform

Asymp. High-Rate Performance of KLT for Gaussian Sources

Transform coefficient variances σ2
i are equal to the eigenvalues ξi of RSS

High-rate approximation for Gaussian source and optimal ECSQ

D(R) =
πe

6
· σ̃2 · 2−2R =

πe

6
· ξ̃ · 2−2R

=
πe

6
· 2 1

N

∑N−1
i=0 log2 ξi · 2−2R (570)

For N →∞, we can apply the theorem of Szegö and Grenander for infinite
Toeplitz matrices: If all eigenvalues ξi of an infinite autocorrelation matrix
are finite and G(ξi) is any continuous function over all eigenvalues,

lim
N→∞

1

N

N−1∑
i=0

G(ξi) =
1

2π

∫ π

−π
G(Φ(ω))dω (571)

Resulting distortion-rate function for KLT of infinite size for high rates

D∞KLT(R) =
πe

6
· 2

1
2π

∫ π
−π log2 ΦSS(ω)·dω · 2−2R (572)
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Transform Coding Karhunen Loève Transform

Asymp. High-Rate Performance of KLT for Gaussian Sources

Asymptotic distortion-rate function for KLT of infinite size for high rates

D∞KLT(R) =
πe

6
· 2

1
2π

∫ π
−π log2 ΦSS(ω)·dω · 2−2R (573)

Information distortion-rate function (fundamental bound) is by a factor
ε2 = πe/6 smaller

D(R) = 2
1
2π

∫ π
−π log2 ΦSS(ω)·dω · 2−2R (574)

Asymptotic transform gain (N →∞) at high rates

G∞T =
ε2σ2

S2−2R

D∞KLT(R)
=

1
2π

∫ π
−π ΦSS(ω)dω

2
1
2π

∫ π
−π log2 ΦSS(ω)dω

(575)

Asymptotic transform gain (N →∞) at high rates is identical to the
asymptotic prediction gain at high rates

Heiko Schwarz Source Coding and Compression December 7, 2013 399 / 420



o

Transform Coding Karhunen Loève Transform

High-Rate KLT Transform Gain for Gauss-Markov Sources

Operational distortion-rate function for KLT of size N , ECSQ, and optimum
bit allocation for Gauss-Markov sources with correlation factor ρ

DN (R) =
πe

6
· σ2

S · (1− ρ2)1−1/N · 2−2R (576)

G∞T = 7.21 dB

transform size N

10 log10
DN (R)
D1(R) [dB]

ρ = 0.9
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Transform Coding Karhunen Loève Transform

Operat. Distortion-Rate Functions for Gauss-Markov

Distortion-rate curves for coding a first-order Gauss-Markov source with
correlation factor ρ = 0.9 and different transform sizes N
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Transform Coding Karhunen Loève Transform

KLT Basis Functions for Gauss-Markov Sources and Size N = 8
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Transform Coding Signal Independent Transforms

Walsh-Hadamard Transform

Very simple orthogonal transform (only additions & final scaling)

For transform sizes N that are positive integer power of 2

AN =
1√
2

[
AN/2 AN/2
AN/2 −AN/2

]
with A1 = [1]. (577)

Transform matrix for N = 8

A8 =
1

2
√
2
·



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


(578)

Piecewise-constant basis vectors

Image & video coding: Produces subjectively disturbing artifacts when
combined with strong quantization
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Transform Coding Signal Independent Transforms

Discrete Fourier Transform (DFT)

Discrete version of the Fourier transform

Forward Transform

u[k] =
1√
N

N−1∑
n=0

s[n] · e−j 2πkn
N (579)

Inverse Transform

s[n] =
1√
N

N−1∑
k=0

u[k] · ej 2πkn
N (580)

DFT is an orthonormal transform (specified by a unitary transform matrix)

Produces complex transform coefficients

For real inputs, it obeys the symmetry u[k] = u∗[N − k], so that N real
samples are mapped onto N real values

FFT is a fast algorithm for DFT computation, uses sparse matrix factorization

Implies periodic signal extension: Differences between left and right signal
boundary reduces rate of convergence of Fourier series

Strong quantization =⇒ Significant high-frequent artifacts
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Transform Coding Signal Independent Transforms

Discrete Fourier Transform vs. Discrete Cosine Transform

(a) Input time-domain signal

(b) Time-domain replica in case of DFT

(c) Time-domain replica in case of DCT-II
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Transform Coding Signal Independent Transforms

Derivation of DCT Type II

Reduce quantization errors of DFT by introducing mirror symmetry and
applying a DFT of approximately double size

Signal with mirror symmetry

s∗[n] =

{
s[n− 1/2] : 0 ≤ n < N
s[2N − n− 3/2] : N ≤ n < 2N

(581)

Transform coefficients (orthonormal: divide u∗[0] by
√

2)

u∗[k] =
1√
2N

2N−1∑
i=0

s∗[i]e−j 2πkn
2N

=
1√
2N

N−1∑
n=0

s[n− 1/2]
(
e−j π

N
kn + e−j π

N
k(2N−n−1)

)
=

1√
2N

N−1∑
n=0

s[n]
(
e−j π

N
k(n+ 1

2 ) + ej
π
N

k(n+ 1
2 )
)

=

√
2

N

N−1∑
n=0

s[n] cos

(
π

N
k

(
n+

1

2

))
(582)
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Transform Coding Signal Independent Transforms

Discrete Cosine Transform (DCT)

Implicit periodicity of DFT leads to loss in coding efficiency

This can be reduced by introducing mirror symmetry at the boundaries and
applying a DFT of approximately double size

Due to mirror symmetry, imaginary sine terms get eliminated and only cosine
terms remain

Most common DCT is the so-called DCT-II (mirror symmetry with sample
repetitions at both sides: n = − 1

2 )

DCT and IDCT Type-II are given by

u[k] = αk

N−1∑
n=0

s[n] · cos

[
k ·
(
n+

1

2

)
· π
N

]
(583)

s[n] =

N−1∑
k=0

αk · u[k] · cos

[
k ·
(
n+

1

2

)
· π
N

]
(584)

where α0 =
√

1
N and αn =

√
2
N for n 6= 0
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Transform Coding Signal Independent Transforms

Comparison of DCT and KLT

Correlation matrix of a first-order Markov processes can be written as

RSS = σ2
S ·


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 (585)

DCT is a good approximation of the eigenvectors of RSS

DCT basis vectors approach the basis functions of the KLT
for first-order Markov processes with ρ→ 1

DCT does not depend on input signal

Fast algorithms for computing forward and inverse transform

Justification for wide usage of DCT (or integer approximations thereof)
in image and video coding:
JPEG, H.261, H.262/MPEG-2, H.263, MPEG-4, H.264/AVC, H.265/HEVC
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KLT Convergence Towards DCT for ρ→ 1
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Transform Coding Signal Independent Transforms

Two-dimensional Transforms

2-D linear transform:
Input image is represented as a linear combination of basis images

An orthonormal transform is separable and symmetric, if the transform of a
signal block s of size N ×N can be expressed as,

u = A · s ·AT (586)

where A is the transformation matrix and u is the matrix of transform
coefficients, both of size N ×N .

The inverse transform is
s = AT · s ·A (587)

Great practical importance:
Transform requires 2 matrix multiplications of size N ×N instead one
multiplication of a vector of size 1×N2 with a matrix of size N2 ×N2

Reduction of the complexity from O(N4) to O(N3)
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Transform Coding Signal Independent Transforms

2-dimensional DCT Example
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column-wise DCT

1-d DCT is applied to each column of an image block

Notice the energy concentration in the first row (DC coefficients)
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Transform Coding Signal Independent Transforms

2-dimensional DCT Example
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final result

For convenience, column-wise DCT result is repeated on left side

1-d DCT is applied to each row of the intermediate result

Notice the energy concentration in the first coefficient
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Transform Coding Signal Independent Transforms

Entropy Coding of Transform Coefficients

AC coefficients are very likely equal to zero (for moderate quantization)

For 2-d, ordering of the transform coefficients by zig-zag (or similar) scan

Example for zig-zag scanning in case of a 2-d transform

185  3  1  1 -3  2 -1  0 

  1  1 -1  0 -1  0  0  1 

  0  0  1  0 -1  0  0  0 

  1  1  0 -1  0  0  0 -1 

  0  0  1  0  0  0 -1  0 

  0  0  0  0  0  0  0  0 

  0  0  0  0  0  0  0  0 

  0  0  0  0  0  0  0  0

Huffman code for events {number of leading zeros, coefficient value} or
events {end-of-block, number of leading zeros, coefficient value}

Arithmetic coding: For example, use probabilities that particular coefficient is
unequal to zero when quantizing with a particular step size
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Transform Coding Chapter Summary

Chapter Summary

Orthogonal block transform

Orthogonal transform: Rotation of coordinate system in signal space

Purpose of transform: Decorrelation, energy concentration
=⇒ Align quantization cells with primary axis of joint pdf

KLT achieves optimum decorrelation, but is signal dependent

DCT shows reduced blocking artifacts compared to DFT

For Gauss-Markov and ρ→∞: DCT approaches KLT

Bit allocation and transform coding gain

For Gaussian sources: Bit allocation proportional to logarithm of variances

For high rates: Optimum bit allocation yields equal component distortion

Larger transform size increases gain for Gauss-Markov source

Application of transform coding

Widely used in image and video coding:
DCT (or approximation) + quantization + (zig-zag) scan + entropy coding
=⇒ JPEG, H.262/MPEG-2, H.263, MPEG-4, H.264/AVC, H.265/HEVC
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Transform Coding Exercises (Set F)

Exercise 25

Consider a zero-mean Gauss-Markov process with variance σ2
S and correlation

coefficient ρ. The source is coded using a transform coding system consisting of a
N -dimensional KLT, optimal bit allocation and optimal entropy-constrained scalar
quantizers with optimal entropy coding.

Show that the high-rate approximation of the operational distortion-rate function
is given by

D(R) =
π e

6
· σ2

S · (1− ρ2)
N−1
N · 2−2R
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Transform Coding Exercises (Set F)

Exercise 26

In the video coding standard ITU-T Rec. H.264 the following forward transform is
used (more accurately, only the inverse transform is specified in the standard, but
the given transform is used in most actual encoder implementation),

A =


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1


How large is the high-rate transform coding gain (in dB) for a zero-mean
Gauss-Markov process with the correlation factor ρ = 0.9?

By what amount (in dB) can the high-rate transform coding gain be increased if
the transform is replaced by a KLT?

NOTE: The basis functions of the given transform are orthogonal to each other,
but they don’t have the same norm.
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Transform Coding Exercises (Set F)

Exercise 27 – Part 1/2

Given is a zero-mean Gaussian process with the autocovariance matrix for N = 4

CSS = σ2
S


1.00 0.95 0.92 0.88
0.95 1.00 0.95 0.92
0.92 0.95 1.00 0.95
0.88 0.92 0.95 1.00


Consider transform coding with the Hadamard transform given by

A =
1

4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


The scalar quantizers for the transform coeff. have 5 operation points given by

Ri = 0 =⇒ Di = σ2
i

Ri = 1 =⇒ Di = 0.32σ2
i

Ri = 2 =⇒ Di = 0.09σ2
i

Ri = 3 =⇒ Di = 0.02σ2
i

Ri = 4 =⇒ Di = 0.01σ2
i
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Transform Coding Exercises (Set F)

Exercise 27 – Part 2/2

For each transform coefficients, any of the 5 operation points can be chosen.

Derive the optimal bit allocation (i.e., the component rates Ri for i = 0, 1, 2, 3)
for the overall rate of R = 1 bit per sample.

What distortion D and SNR is achieved for this rate?

How big is the transform coding gain? Is it larger than, smaller than, or equal to
the transform coding gain for high rates (the above given operation points are
good approximations for optimal entropy-constrained quantizers for Gaussian
sources and can be considered as valid for the comparison)?
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Transform Coding Exercises (Set F)

Exercise 28

Consider transform coding with an orthogonal transform of a zero-mean Gaussian
source with variance σ2

S . The used scalar quantizers have the operational
distortion rate function

Di(Ri) = σ2
i g(Ri)

where g(R) is some not further specified function.

We don’t use an optimal bit allocation, but assign the same rate to all transform
coefficients.

Does the transform coding still provide a gain in comparison to simple scalar
quantization with the given quantizer, assuming that the Gaussian source is not
iid?
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Transform Coding Exercises (Set F)

Exercise 29

Consider a zero-mean Gauss-Markov process with variance σ2
S = 1 and correlation

coefficient ρ = 0.9. As transform a KLT of size 3 is used, the resulting transform
coefficient variances are

σ2
0 = 2.7407, σ2

1 = 0.1900, σ2
2 = 0.0693

Consider high-rate quantization with optimal entropy-constrained scalar
quantizers.

Derive the high-rate operational distortion rate function. What is the optimal
high-rate bit allocation scheme for a given overall rate R?

Determine the component rates, the overall distortion and the SNR for a given
overall bit rate R of 4 bit per sample.

Determine the high-rate transform coding gain.
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