
Final WS 13/14   COMM901 

Final Exam  © German University in Cairo – Berlin Campus 1 / 18 

 

 

German University in Cairo - GUC 

Faculty of Information Engineering & Technology - IET 

Department of Communication Engineering 

Dr.-Ing. Heiko Schwarz 

 

COMM901 – Source Coding and Compression 

Winter Semester 2013/2014 

 

Final Exam 
 

Bar Code 

 

 

Instructions: Read Carefully Before Proceeding. 

1- Non-programmable calculators are allowed 

2- Write your solutions in the space provided 

3- The exam consists of 4 questions and 1 bonus question 

4- This exam booklet contains 18 pages including this page 

5- Total time allowed for this exam is (180) minutes 

6- When you are told that time is up, stop working on the test 

Good Luck! 

 

 

Question 1 2 3 4 Bonus ∑ 

Possible Marks 25 25 25 25 5 100 + 5 

Final Marks       

 

  



Final WS 13/14   COMM901 

Final Exam  © German University in Cairo – Berlin Campus 2 / 18 

 

Question 1:  Lossless Coding (25 Marks) 

A company produces scanners for black-and-white documents.  The scanners scan each page of a document in 

raster-scan order (from the top-left to the bottom-right corner) and represent it as a 3000×2000 matrix of 

samples. Each sample has either the value 0 (for “black”) or the value 1 (for “white”). 

With the current system, the samples are directly written to a file, so that each page of a document is 

represented by 750 000 byte (6 000 000 bit). For a new generation of scanners, the company wants to reduce the 

memory usage. Therefore, the engineers investigate improved lossless coding algorithms. They analyzed the 

statistical dependencies for a large number of documents. The analysis yielded the following results: 

 On average, 20% of the samples are black; 

 If the previous sample 𝑆𝑛−1 in scanning order is black,  

then in 60% of the cases the current sample 𝑆𝑛 is also black. 

 

(a) State the marginal probability density function 𝑝(𝑎) = 𝑃(𝑆𝑛 = a) and write the probability masses directly 

into the following table. Assume that the number of analysed documents is so large that the measured 

statistics represent an accurate estimation of the statistical properties of the source.   [1 Mark] 

Solution: 

𝑎 𝑝(𝑎) = 𝑃(𝑆𝑛 = 𝑎)  

0 (black) 0.2  

1 (white) 0.8 [1] 

 

 

 

  

The probability mass 𝑝(0) = 0.2 is given.  For the probability mass 𝑝(1), we have 

𝑝(1) = 1 − 𝑝(0) = 1 − 0.2 = 0.8. 
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(b) Determine the conditional pdfs 𝑝(𝑎|0) = 𝑃(𝑆𝑛 = 𝑎 | 𝑆𝑛−1 = 0) and 𝑝(𝑎|1) = 𝑃(𝑆𝑛 = 𝑎 | 𝑆𝑛−1 = 1) and 

write the corresponding probability masses directly into the following table. Again, assume that the number 

of analysed documents is so large that the measured statistics represent an accurate estimation of the 

statistical properties of the source.  [3 Marks] 

Solution: 

𝑎 𝑝(𝑎|0) = 𝑃(𝑆𝑛 = 𝑎 | 𝑆𝑛−1 = 0) 𝑝(𝑎|1) = 𝑃(𝑆𝑛 = 𝑎 | 𝑆𝑛−1 = 1)  

0 (black) 0.6 0.1  

1 (white) 0.4 0.9 [3] 

 

 

(c) Assume that the source is stationary and derive the joint pmf 𝑝(𝑎, 𝑏) = 𝑃(𝑆𝑛 = 𝑎,  𝑆𝑛+1 = 𝑏).  Write the 

probability masses into the following table.    [2 Marks] 

Solution: 

𝑎, 𝑏 𝑝(𝑎, 𝑏) = 𝑃(𝑆𝑛 = 𝑎,  𝑆𝑛+1 = 𝑏)  

0, 0 0.2 ⋅ 0.6 = 0.12  

0, 1 0.2 ⋅ 0.4 = 0.08  

1, 0 0.8 ⋅ 0.1 = 0.08  

1, 1 0.8 ⋅ 0.9 = 0.72 [2] 

 

 

 

The probability mass 𝑝(0|0) = 0.6 is given.  For the probability mass 𝑝(1|0), we have 

𝑝(1|0) = 1 − 𝑝(0|0) = 1 − 0.6 = 0.4. 

The probability mass 𝑝(0|1) can be determined as follows: 

𝑝(0) = 𝑝(0|0) ⋅ 𝑝(0) + 𝑝(0|1) ⋅ 𝑝(1) 

𝑝(0|1) = 𝑝(0) ⋅
1 − 𝑝(0|0)

𝑝(1)
= 0.2 ⋅

1 − 0.6

0.8
=

0.4

4
= 0.1. 

Finally, the probability mass 𝑝(1|1) is then given by 𝑝(1|1) = 1 − 𝑝(0|1) = 1 − 0.1 = 0.9. 

The joint probability masses are given by 

𝑝(𝑎, 𝑏) = 𝑝(𝑎) ⋅ 𝑝(𝑏|𝑎). 



Final WS 13/14   COMM901 

Final Exam  © German University in Cairo – Berlin Campus 4 / 18 

 

(d) One of the engineers suggested to use a block Huffman code, where a codeword is assigned to a group of 

two successive samples.  Derive such a block Huffman code based on the joint pdf 𝑝(𝑎, 𝑏), which you 

derived above.  Insert the codewords into the following table.  [3 Marks] 

Solution: 

𝑎, 𝑏 𝑝(𝑎, 𝑏) codewords  

0, 0 0.12                    01  

0, 1 0.08                    000  

1, 0 0.08                    001  

1, 1 0.72                    1 [3] 

 

 

 

 

(e) How many bytes are required, on average, for representing a page of a scanned document using the 

developed block Huffman code?     [5 Marks] 

Solution: 

 

The average codeword length per symbol is given by 

ℓ̅ =
1

2
⋅ ∑ 𝑝(𝑎, 𝑏) ⋅ ℓ(𝑎, 𝑏)

𝑎,𝑏

     [𝟏] 

=
1

2
⋅ (1 ⋅ 0.72 + 2 ⋅ 0.12 + 3 ⋅ (0.08 + 0.08))    [𝟏] 

=
1

2
⋅ (0.72 + 0.24 + 0.48) =

1

2
⋅ 1.44 = 0.72  bit per symbol    [𝟏] 

Since a document page consists of 3000 × 2000 samples, we require 

�̅� = 3000 ⋅ 2000 ⋅ ℓ̅    [𝟏] 

= 3000 ⋅ 2000 ⋅ 0.72 = 4 320 000   bit 

= 540 000   byte    [𝟏] 

for representing a document page on average. 
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(f) Another engineer suggested to apply arithmetic coding using the marginal symbol probabilities 𝑝(𝑎).  

Estimate the number of bytes that are on average required for representing a document page using marginal 

arithmetic coding.  Assume that the precision of the arithmetic coding is so high that the impact of using 

fixed-precision arithmetic can be ignored.   [4 Marks] 

Solution: 

 

 

 

 

 

 

 

 

If we code very long messages (which is the case, since a document page consists of 6 million samples) 

and ignore the impact of fixed-precision arithmetic, the average codeword length per symbol for marginal 

arithmetic coding is approximately equal to the marginal entropy of the source. Hence, we have 

ℓ̅ ≈ 𝐻(𝑆𝑛)    [𝟏] 

= −𝑝(0) ⋅ log2 𝑝(0) − 𝑝(1) ⋅ log2 𝑝(1)   [𝟏] 

= −0.2 ⋅ log2 0.2 − 0.8 ⋅ log2 0.8 

≈ 0.7219280949  bit per symbol    [𝟏] 

Since a document page consists of 3000 × 2000 samples, we require 

�̅� = 3000 ⋅ 2000 ⋅ ℓ̅ 

≈ 3000 ⋅ 2000 ⋅ 0.7219280949 

≈ 4 331 569   bit 

= 541 446   byte     [𝟏] 

for representing a document page on average. 



Final WS 13/14   COMM901 

Final Exam  © German University in Cairo – Berlin Campus 6 / 18 

 

(g) Disappointed by the results of block Huffman coding and marginal arithmetic coding, the engineers 

analyzed the efficiency of conditional arithmetic coding, i.e., arithmetic coding in which the conditional 

symbol probabilities 𝑝(𝑎|𝑏) = 𝑃(𝑆𝑛 = 𝑎|𝑆𝑛−1 = 𝑏) are used.  Estimate the number of bytes that are on 

average required for representing a document page using such a conditional arithmetic coding.  Again, 

assume that the precision of the arithmetic coding is so high that the impact of using fixed-precision 

arithmetic can be ignored.  [7 Marks] 

Solution: 

 

  

If we code very long messages (which is the case, since a document page consists of 6 million samples) 

and ignore the impact of fixed-precision arithmetic, the average codeword length per symbol for 

conditional arithmetic coding is approximately equal to the conditional entropy 𝐻(𝑆𝑛|𝑆𝑛−1) of the source. 

For the conditional entropy 𝐻(𝑆𝑛|𝑆𝑛−1 = 0), we have 

𝐻(𝑆𝑛|𝑆𝑛−1 = 0) = −𝑝(0|0) ⋅ log2 𝑝(0|0) − 𝑝(1|0) ⋅ 𝑙𝑜𝑔2 𝑝(1|0)    [𝟏] 

= −0.6 ⋅ log2 0.6 − 0.4 ⋅ log2 0.4 

≈ 0.97095059  bit per symbol    [𝟏] 

Similarly, for the conditional entropy 𝐻(𝑆𝑛|𝑆𝑛−1 = 1), we have 

𝐻(𝑆𝑛|𝑆𝑛−1 = 1) = −𝑝(0|1) ⋅ log2 𝑝(0|1) − 𝑝(1|1) ⋅ log2 𝑝(1|1) 

= −0.1 ⋅ log2 0.1 − 0.9 ⋅ log2 0.9 

≈ 0.46899559  bit per symbol    [𝟏] 

Hence, the average codeword length per symbol is given by 

ℓ̅ ≈ 𝐻(𝑆𝑛|𝑆𝑛−1)    [𝟏] 

= 𝑝(0) ⋅ 𝐻(𝑆𝑛|𝑆𝑛−1 = 0) + 𝑝(1) ⋅ 𝐻(𝑆𝑛|𝑆𝑛−1 = 1)   [𝟏] 

≈ 0.1 ⋅ 0.97095059 + 0.9 ⋅ 0.46899559 

= 0.51919109    bit per symbol    [𝟏] 

Since a document page consists of 3000 × 2000 samples, we require 

�̅� = 3000 ⋅ 2000 ⋅ ℓ̅ ≈ 3000 ⋅ 2000 ⋅ 0.51919109 

≈ 3 115 147   bit 

= 389 393   byte     [𝟏] 

for representing a document page on average. 
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Question 2:  Quantization (25 Marks) 

Consider an iid process {𝑆𝑛}. The random variables 𝑆𝑛 have the exponential probability density function 

𝑓𝑆(𝑠) = {
𝑒−𝑠 : 𝑠 ≥ 0

0 : 𝑠 < 0
 

We consider a scalar quantizer with two quantization intervals.  The decision boundary between the two 

quantization intervals is denoted by 𝑢1 (with 0 < 𝑢1 < ∞).  The reconstruction level for the first quantization 

interval is denoted by 𝑠0
′  (with 0 < 𝑠0

′ < 𝑢1).  The reconstruction level for the second quantization interval is 

denoted by 𝑠1
′  (with 𝑢1 < 𝑠1

′ < ∞). 

(a) Determine the decision threshold 𝑢1 in a way that the probability mass function for the resulting 

quantization indexes is uniform (i.e., both quantization indexes have the same probability).    [5 Marks] 

Hint: ∫ 𝑒−𝑥 d𝑥 = −𝑒−𝑥 

 

Solution: 

 

 

For obtaining a uniform pmf for the quantization indexes, we require 

𝑝0 =
1

2
    [𝟏] 

∫ 𝑓𝑆(𝑠)  d𝑠
𝑢1

∞

=
1

2
    [𝟏] 

∫ 𝑒−𝑠
𝑢1

0

 d𝑠 = 𝑒0 − 𝑒−𝑢1 = 1 − 𝑒−𝑢1 =
1

2
    [𝟏] 

yielding 

1 − 𝑒−𝑢1 =
1

2
 

𝑒−𝑢1 =
1

2
    [𝟏] 

𝑢1 = − ln
1

2
 

𝑢1 = ln 2 ≈ 0.693147    [𝟏] 

The decision threshold 𝑢1 that yields a uniform pmf for the quantization indexes is 𝑢1 = ln 2. 
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(b) Derive the reconstruction levels 𝑠0
′  and 𝑠1

′  that minimize the MSE distortion for the above derived decision 

threshold 𝑢1.   [9 Marks] 

Hints: ∫ 𝑒−𝑥 d𝑥 = −𝑒−𝑥 

∫ 𝑥 𝑒−𝑥  d𝑥 =  −𝑒−𝑥(1 + 𝑥)                                                  lim
𝑥→∞

𝑒−𝑥(1 + 𝑥) = 0 

 

Solution: 

 

The optimal reconstruction level 𝑠0
′  is given by 

𝑠0
′ =

∫ 𝑠 ⋅ 𝑓𝑆(𝑠)  d𝑠
𝑢1

−∞

∫ 𝑓𝑆(𝑠)  d𝑠
𝑢1

−∞

    [𝟏] 

=
∫ 𝑠 ⋅ 𝑒−𝑠  d𝑠

𝑢1

0

∫ 𝑒−𝑠  d𝑠
𝑢1

0

    [𝟏] 

=
𝑒0(1 + 0) − 𝑒−𝑢1(1 + 𝑢1)

𝑒0 − 𝑒−𝑢1
    [𝟏] 

=
1 − 𝑒− ln 2(1 + ln 2)

1 − 𝑒− ln 2
=

1 −
1
2

(1 + ln 2)

1 −
1
2

= 2 ⋅ (1 −
1

2
−

1

2
ln 2)     [1] 

= 1 − ln 2 ≈ 0.306853    [𝟏] 

Similarly, the optimal reconstruction level 𝑠1′ is given by 

𝑠1
′ =

∫ 𝑠 ⋅ 𝑓𝑆(𝑠)  d𝑠
∞

𝑢1

∫ 𝑓𝑆(𝑠)  d𝑠
∞

𝑢1

    [𝟏] 

=
∫ 𝑠 ⋅ 𝑒−𝑠  d𝑠

∞

𝑢1

∫ 𝑒−𝑠  d𝑠
∞

𝑢1

    [𝟏] 

=
𝑒−𝑢1(1 + 𝑢1) − 0

𝑒−𝑢1 − 0
     [𝟏] 

= 1 + 𝑢1 

= 1 + ln 2 ≈ 1.693147   [𝟏] 

For the decision threshold 𝑢1 = ln 2, the optimal reconstruction levels (for minimizing the MSE distortion) 

are given by 𝑠0
′ = 1 − ln 2 and 𝑠1

′ = 1 + ln 2. 
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(c) Assume we want to determine the reconstruction levels 𝑠0′ and 𝑠1
′  and the decision threshold 𝑢1 in a way 

that the MSE distortion for the quantizer is minimized (i.e., we want to develop a Lloyd quantizer).  What 

conditions would have to be fulfilled by the reconstruction levels and the decision threshold?   [2 Marks] 

Solution: 

 

 

 

(d) Does the developed quantizer (i.e., the quantizer given by the determined reconstruction levels 𝑠0
′  and 𝑠1

′  

and the determined decision threshold 𝑢1) represent a Lloyd quantizer for the MSE distortion measure?  

Explain your statement.   [2 Marks] 

Solution: 

 

 

 

 

 

The following two conditions have to be fulfilled: 

 Centroid condition: The reconstruction levels 𝑠𝑘
′  have to be selected in a way that the distortion 

inside the corresponding quantization interval is minimized. The optimal reconstruction level 𝑠𝑘
′  for 

the 𝑘-th quantization interval is given by 

𝑠𝑘
′ =

∫ 𝑠 ⋅ 𝑓𝑆(𝑠)  d𝑠
𝑢𝑘+1

𝑢𝑘

∫ 𝑓𝑆(𝑠) d𝑠
𝑢𝑘+1

𝑢𝑘

    [𝟏] 

 Nearest neighbour condition: The decision thresholds have to be selected in a way that they lie in 

the centre between the neighbouring reconstruction levels: 

𝑢𝑘 =
𝑠𝑘−1

′ + 𝑠𝑘
′

2
    [𝟏] 

The centroid condition is fulfilled, since we used it for deriving the reconstruction levels 𝑠0′ and 𝑠1′. 

The nearest neighbour conditions is not fulfilled, since we have 

𝑠0
′ + 𝑠1

′

2
=

1 − ln 2 + 1 + ln 2

2
= 1 ≠ 𝑢1 = ln 2    [𝟏] 

Hence, the developed quantizer does not represent a Lloyd quantizer.    [1] 
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(e) The best scalar quantizers are so-called entropy-constrained quantizers, which can be designed by 

minimizing a Lagrange function of distortion 𝐷 and rate 𝑅 (estimated by the entropy).  For high bit rates, 

the operational distortion rate function of entropy-constrained quantizers is given by 

𝐷(𝑅) =
1

12
⋅ 22ℎ(𝑆) ⋅ 2−2𝑅 

Derive the high-rate distortion rate function for entropy-constrained scalar quantizers for the given iid 

process with the given exponential pdf.  Simplify the resulting expression as much as possible.  [7 Marks] 

Hints: 
∫ 𝑥 𝑒−𝑥  d𝑥 =  −𝑒−𝑥(1 + 𝑥)                    lim

𝑥→∞
𝑒−𝑥(1 + 𝑥) = 0                         

1

ln 2
= log2 𝑒 

 

Solution: 

 

  

We first calculate the differential entropy, which is given by 

ℎ(𝑆) = − ∫ 𝑓(𝑠) ⋅ log2 𝑓(𝑠)
∞

−∞

  d𝑠    [𝟏] 

= − ∫ 𝑒−𝑠 ⋅ log2 𝑒−𝑠    d𝑠
∞

0

    [𝟏] 

=
1

ln 2
∫ 𝑠 ⋅ 𝑒−𝑠   d𝑠

∞

0

    [𝟏] 

=
1

ln 2
⋅ (𝑒0(1 + 0) − 0) =

1

ln 2
     [𝟏] 

= log2 𝑒    [𝟏] 

Inserting the obtained expression into the formulation of the operational distortion-rate function yields 

𝐷(𝑅) =
1

12
⋅ 22ℎ(𝑆) ⋅ 2−2𝑅 

=
1

12
⋅ 22 log2 𝑒 ⋅ 2−2𝑅    [𝟏] 

=
1

12
⋅ (2log2 𝑒)

2
⋅ 2−2𝑅 

=
𝑒2

12
⋅ 2−2𝑅    [𝟏] 
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Question 3:  Predictive Coding (25 Marks) 

We want to predict the samples of a gray-level picture.  Therefore, a current sample 𝑆𝑋 is predicted by a linear 

combination of the sample 𝑆𝐻 to the left and the sample 𝑆𝑉 above the current sample.  We consider the class of 

linear predictors that are described by a single prediction coefficient ℎ and are given by 

�̂�𝑋 = ℎ ⋅ (𝑆𝐻 + 𝑆𝑉) 

The gray-level pictures are realizations of a zero-mean stationary random process with the variance 𝜎𝑆
2.  The 

correlation coefficient between two horizontally or two vertically adjacent samples is 𝜚𝐻 = 𝜚𝑉 = 0.95.  The 

correlation coefficient between two diagonally adjacent samples is 𝜚𝐷 = 0.92. 

 

(a) Determine the variance 𝜎𝑈
2 = 𝐸{𝑈2} of the prediction error signal 𝑈 = 𝑆𝑋 − �̂�𝑋?  Note that the mean of the 

input signal and the mean of the prediction error signal are both equal to zero. Formulate the prediction 

error variance 𝜎𝑈
2 as function of the signal variance 𝜎𝑆

2 and the prediction coefficient ℎ.  [10 Marks] 

Solution: 

 

The prediction error variance is given by 

𝜎𝑈
2 = 𝐸{𝑈2} = 𝐸 {(𝑆𝑋 − �̂�𝑋)

2
}    [𝟏] 

= 𝐸{(𝑆𝑋 − ℎ ⋅ 𝑆𝐻 − ℎ ⋅ 𝑆𝑉)2}    [𝟏] 

= 𝐸{𝑆𝑋
2 − ℎ𝑆𝑋𝑆𝐻 − ℎ𝑆𝑋𝑆𝑉 − ℎ𝑆𝑋𝑆𝐻 + ℎ2𝑆𝐻

2 + ℎ2 𝑆𝐻𝑆𝑉 − ℎ 𝑆𝑋𝑆𝑉 + ℎ2 𝑆𝐻𝑆𝑉 + ℎ2𝑆𝑉
2} 

= 𝐸{𝑆𝑋
2 − 2ℎ 𝑆𝑋𝑆𝐻 − 2ℎ 𝑆𝑋𝑆𝑉 + 2ℎ2 𝑆𝐻𝑆𝑉 + ℎ2𝑆𝐻

2 + ℎ2𝑆𝑉
2}    [𝟏] 

= 𝐸{𝑆𝑋
2} − 2ℎ (𝐸{𝑆𝑋𝑆𝐻} +  𝐸{𝑆𝑋𝑆𝑉}) + ℎ2 (2 𝐸{𝑆𝐻𝑆𝑉} + 𝐸{𝑆𝐻

2} + 𝐸{𝑆𝑉
2})   [𝟏] 

= 𝜎𝑆
2 − 2ℎ (𝜚𝐻 ⋅ 𝜎𝑆

2 +  𝜚𝑉 ⋅ 𝜎𝑆
2) + ℎ2(2 𝜚𝐷 ⋅ 𝜎𝑆

2 + 𝜎𝑆
2 + 𝜎𝑆

2)    [𝟒] 

= 𝜎𝑆
2 ⋅ (1 − 2ℎ (𝜚𝐻 +  𝜚𝑉) + ℎ2 (2 𝜚𝐷 + 2)) 

= 𝜎𝑆
2 ⋅ (1 − 2ℎ ⋅ (0.95 + 0.95) + ℎ2 ⋅ (2 ⋅ 0.92 + 2))    [𝟏] 

= 𝜎𝑆
2 ⋅ (1 − 3.8 ⋅ ℎ + 3.84 ⋅ ℎ2)     [𝟏] 



Final WS 13/14   COMM901 

Final Exam  © German University in Cairo – Berlin Campus 12 / 18 

 

(b) Consider the simple predictor given by ℎ = 0.5, where the current sample is predicted by the average of the 

sample to the left and the sample above the current sample.  Calculate the variance 𝜎𝑈
2 = 𝐸{𝑈2} of the 

prediction error signal 𝑈 = 𝑆𝑋 − �̂�𝑋 for this simple predictor?  Represent the prediction error variance 𝜎𝑈
2 

as function of the signal variance 𝜎𝑆
2.  [2 Marks] 

Solution: 

 

(c) The quality of a predictor is typically expressed using the prediction gain.  The prediction gain in dB is 

defined by 

𝐺𝑃 = 10 ⋅ log10

𝜎𝑆
2

𝜎𝑈
2 

Calculate the prediction gain (in dB) for the simple predictor given by ℎ = 0.5.  State the result with a 

precision of 4 digits after the decimal point.   [2 Marks] 

Solution: 

 

For ℎ = 0.5, the prediction error variance is given by 

𝜎𝑈
2 = 𝜎𝑆

2 ⋅ (1 − 3.8 ⋅ ℎ + 3.84 ⋅ ℎ2) 

= 𝜎𝑆
2 ⋅ (1 −

3.8

2
+

3.84

4
)    [𝟏] 

= 𝜎𝑆
2 ⋅ (1 − 1.9 + 0.96) 

= 0.06 ⋅ 𝜎𝑆
2     [𝟏] 

The prediction gain for the predictor with ℎ = 0.5 is given by 

𝐺𝑃 = 10 ⋅ log10

𝜎𝑆
2

𝜎𝑈
2 = 10 ⋅ log10

𝜎𝑆
2

0.06 ⋅ 𝜎𝑆
2 = −10 ⋅ log10 0.06   [𝟏] 

= 12.2185  dB    [𝟏] 
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(d) Derive the optimal predictor �̂�𝑋 = ℎ ⋅ (𝑆𝐻 + 𝑆𝑉).  Determine the prediction coefficient ℎ that minimizes the 

prediction error variance 𝜎𝑈
2 = 𝐸 {(𝑆𝑥 − �̂�𝑋)

2
}.  State the result with a precision of at least 8 digits after the 

decimal point.   [5 Marks] 

Solution: 

 

(e) Calculate the prediction error variance 𝜎𝑈
2 = 𝐸{𝑈2} for the derived optimal predictor. State the result as 

function of the signal variance 𝜎𝑆
2 and use a precision of 8 digits after the decimal point for the parameters 

the resulting function.  [2 Marks] 

Solution: 

 

For minimizing the prediction error variance, we can set the first derivative of the prediction error variance 

with respect to the prediction coefficient ℎ equal to zero, yielding 

𝜕

𝜕ℎ
𝜎𝑈

2 = 0    [𝟏] 

𝜕

𝜕ℎ
(𝜎𝑆

2 ⋅ (1 − 3.8 ⋅ ℎ + 3.84 ⋅ ℎ2)) = 0    [𝟏] 

𝜎𝑆
2 ⋅ (0 − 3.8 + 3.84 ⋅ 2 ⋅ ℎ) = 0    [𝟏] 

−3.8 + 7.68 ⋅ ℎ = 0    [𝟏] 

ℎ =
3.8

7.68
=

95

192
 

ℎ ≈ 0.49479167   [𝟏] 

The optimal prediction coefficient is ℎ ≈ 0.49479167. 

For the optimal predictor, the prediction error variance is given by 

𝜎𝑈
2 = 𝜎𝑆

2 ⋅ (1 − 3.8 ⋅ ℎ + 3.84 ⋅ ℎ2) 

= 𝜎𝑆
2 ⋅ (1 − 3.8 ⋅

95

192
+ 3.84 ⋅  

952

1922
)    [𝟏] 

= 0.05989583 ⋅ 𝜎𝑆
2     [𝟏] 
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(f) By what amount (in dB) is the prediction gain (for the optimal predictor) increased relative to the prediction 

gain of the simple predictor with ℎ = 0.5?  State the result in dB, with a precision of 4 digits after the 

decimal point.  

Why are in image coding application often simple predictors (average of two neighboring samples is used 

as prediction for a current sample) are used, instead of optimal predictors.   [4 Marks] 

Solution: 

 

 

  

The difference of the prediction gains is given by 

Δ𝐺𝑃 = 10 ⋅ log10

𝜎𝑆
2

𝜎𝑈,𝑜𝑝𝑡
2 − 10 ⋅ log10

𝜎𝑆
2

𝜎𝑈,ℎ=0.5
2     [𝟏] 

= 10 ⋅ log10

𝜎𝑈,ℎ=0.5
2

𝜎𝑈,𝑜𝑝𝑡
2  

= 10 ⋅ log10

0.06 ⋅ 𝜎𝑆
2

0.05989583 ⋅ 𝜎𝑆
2    [𝟏] 

= 10 ⋅ log10

0.06

0.05989583
 

= 0.0075  dB    [𝟏] 

The optimal predictor increases the prediction gain relative to the simple predictor by 0.0075 dB. 

 

The reasons why typically simple predictors are used in image coding application include: 

 The simple predictor is easier to implement; 

 The simple predictor is not signal dependent; 

 For large correlation coefficients, as typically found in natural images, the prediction gains of the 

simple and optimal predictor are nearly the same.    [1] 
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Question 4:  Transform Coding (25 Marks) 

We consider transform coding of a zero-mean stationary Gauss-Markov process with the variance 𝜎𝑆
2 and the 

correlation coefficient 𝜚, with 0 < 𝜚 < 1.  The input signal is partitioned into vectors 𝒔𝒌 = (𝑠2𝑘, 𝑠2𝑘+1)T, which 

consist of two successive signal samples 𝑠2𝑘 and 𝑠2𝑘+1.  The transform is given by 

𝒖𝒌 = [
𝑢𝑘,0

𝑢𝑘,1
] =

1

2
⋅ [ 1 √3

√3 −1
] ⋅ [

𝑠2𝑘

𝑠2𝑘+1
] = 𝑨 ⋅ 𝒔𝒌 

Each vector 𝒔𝒌 of two input samples is mapped to a vector 𝒖𝒌 of two transform coefficients.  The transform is 

orthogonal (the basis vectors of 𝑨 are orthogonal to each other and have a unit norm).  As distortion measure, 

we use the mean squared error (MSE).  We consider high-rate coding, for which the operational distortion-rate 

function of the used entropy-constrained scalar quantizers (for Gaussian random variables) is given by 

𝐷𝑖(𝑅𝑖) =
𝜋𝑒

6
⋅ 𝜎𝑖

2 ⋅ 2−2𝑅 

where 𝜎𝑖
2 represents the variance of the corresponding transform coefficients (with 𝑖 being equal to 0 or 1).  For 

reconstructing the signal samples, the reconstructed transform coefficients are transformed using the inverse 

transform matrix 𝑨−1 = 𝑨T. 

(a) Let 𝑈𝑘,0 and 𝑈𝑘,1 represent the random variables for the transform coefficients 𝑢𝑘,0 and 𝑢𝑘,1, respectively. 

Determine the covariance 𝜎01
2 = 𝐸{𝑈𝑘,0𝑈𝑘,1} between the transform coefficients 𝑈𝑘,0 and 𝑈𝑘,1. State the 

result as function of the signal variance 𝜎𝑆
2 and the correlation coefficient 𝜚.  [7 Marks] 

Solution: 

 

For the covariance, we have 

𝜎01
2 = 𝐸{𝑈𝑘,0𝑈𝑘,1} 

= 𝐸 {(
1

2
⋅ 𝑆2𝑘 +

√3

2
⋅ 𝑆2𝑘+1) (

√3

2
⋅ 𝑆2𝑘 −

1

2
⋅ 𝑆2𝑘+1)}   [𝟐] 

= 𝐸 {
√3

4
⋅ 𝑆2𝑘

2 + (
3

4
−

1

4
) ⋅ 𝑆2𝑘 ⋅ 𝑆2𝑘+1 −

√3

4
⋅ 𝑆2𝑘+1

2 } 

=
√3

4
⋅ 𝐸{𝑆2𝑘

2 } +
1

2
⋅ 𝐸{𝑆2𝑘𝑆2𝑘+1} −

√3

4
⋅ 𝐸{𝑆2𝑘+1

2 }    [𝟏] 

=
√3

4
⋅ 𝜎𝑆

2 +
1

2
⋅ 𝜚 ⋅ 𝜎𝑆

2 −
√3

4
⋅ 𝜎𝑆

2   [𝟑] 

= 𝜎𝑆
2 ⋅

𝜚

2
   [𝟏] 
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(b) Does the transform represent a Karhunen Loéve transform (KLT) for the considered source?  Explain your 

statement.   [2 Marks] 

Solution: 

 

(c) Determine the transform coefficient variances 𝜎0
2 = 𝐸{𝑈𝑘,0

2 } and 𝜎1
2 = 𝐸{𝑈𝑘,1

2 }, where 𝑈𝑘,0 and 𝑈𝑘,1 

represent the random variables for the transform coefficients 𝑢𝑘,0 and 𝑢𝑘,1, respectively. State the variances 

𝜎0
2 and 𝜎1

2 as function of the signal variance 𝜎𝑆
2 and the correlation coefficient 𝜚.  [10 Marks] 

Solution: 

 

The transform does not represent a KLT, since the transform coefficients are correlated.   [2] 

This has been shown in the previous sub-question: 𝐸{𝑈𝑘,0𝑈𝑘,1} = 𝜎𝑆
2 ⋅

𝜚

2
> 0     for    𝜚 > 0 

For the first transform coefficient, we have 

𝜎0
2 = 𝐸{𝑈𝑘,0

2 } = 𝐸 {(
1

2
⋅ 𝑆2𝑘 +

√3

2
⋅ 𝑆2𝑘+1)

2

}   [𝟏] 

= 𝐸 {
1

4
⋅ 𝑆2𝑘

2 + 2 ⋅
√3

4
⋅ 𝑆2𝑘 ⋅ 𝑆2𝑘+1 +

3

4
⋅ 𝑆2𝑘+1

2 } 

=
1

4
⋅ 𝐸{𝑆2𝑘

2 } +
√3

2
⋅ 𝐸{𝑆2𝑘𝑆2𝑘+1} +

3

4
⋅ 𝐸{𝑆2𝑘+1

2 }     [𝟏] 

=
1

4
⋅ 𝜎𝑆

2 +
√3

2
⋅ 𝜚 ⋅ 𝜎𝑆

2 +
3

4
⋅ 𝜎𝑆

2   [𝟐] 

= 𝜎𝑆
2 ⋅ (1 +

√3

2
⋅ 𝜚)   [𝟏] 

Similarly, for the second transform coefficient, we obtain 

𝜎1
2 = 𝐸{𝑈𝑘,1

2 } = 𝐸 {(
√3

2
⋅ 𝑆2𝑘 −

1

2
⋅ 𝑆2𝑘+1)

2

}   [𝟏] 

= 𝐸 {
3

4
⋅ 𝑆2𝑘

2 − 2 ⋅
√3

4
⋅ 𝑆2𝑘 ⋅ 𝑆2𝑘+1 +

1

4
⋅ 𝑆2𝑘+1

2 } 

=
3

4
⋅ 𝐸{𝑆2𝑘

2 } −
√3

2
⋅ 𝐸{𝑆2𝑘𝑆2𝑘+1} +

1

4
⋅ 𝐸{𝑆2𝑘+1

2 }    [𝟏] 

=
3

4
⋅ 𝜎𝑆

2 −
√3

2
⋅ 𝜚 ⋅ 𝜎𝑆

2 +
1

4
⋅ 𝜎𝑆

2   [𝟐] 

= 𝜎𝑆
2 ⋅ (1 −

√3

2
⋅ 𝜚)   [𝟏] 
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(d) Calculate the geometric mean �̃�2  of the transform coefficient variances 𝜎0
2 and 𝜎1

2.  Formulate the 

geometric mean �̃�2 as function of the signal variance 𝜎𝑆
2 and the correlation coefficient 𝜚.   [2 Marks] 

Solution: 

 

(e) How large is the transform coding gain (in dB) for high rates and optimal bit allocation? Formulate the 

transform coding gain as function of the correlation coefficient 𝜚.  

Calculate the transform coding gain (in dB) for a correlation coefficient 𝜚 =
√3

2
.  [4 Marks] 

Solution: 

 

  

The geometric mean �̃�2  of the transform coefficient variances 𝜎0
2 and 𝜎1

2 is given by 

�̃�2 = √𝜎0
2 ⋅ 𝜎1

2    [𝟏] 

=  𝜎𝑆
2 ⋅ √(1 +

√3

2
) (1 −

√3

2
) = 𝜎𝑆

2 ⋅ √1 −
3

4
𝜚2    [𝟏] 

The high-rate transform coding gain for Gaussian random variables with optimum bit allocation is given by 

𝐺𝑇 = 10 ⋅ log10

𝐷𝑆𝑄(𝑅)

𝐷𝑇𝐶(𝑅)
= 10 ⋅ log10

𝜋𝑒
6 ⋅ 𝜎𝑆

2 ⋅ 2−2𝑅

𝜋𝑒
6 ⋅ �̃�𝑆 ⋅ 2−2𝑅

= 10 ⋅ log10

𝜎𝑆
2

�̃�2
    [𝟐] 

By inserting the derived formula for the geometric mean of the transform coefficient variances, we obtain 

𝐺𝑇 = 10 ⋅ log10

1

√1 −
3
4 𝜚2

= − 5 ⋅ log10 (1 −
3

4
𝜚2) = −5 ⋅ log10

4 − 3𝜚2

4
   [𝟏] 

 

For the special case 𝜚 =
√3

4
, we have 

𝐺𝑇 = −5 ⋅ log10

4 − 3 ⋅
3
4

4
 

= −5 ⋅ log10

16 − 9

16
= −5 ⋅ log10

7

16
 

= 1.7951   dB    [𝟏] 
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Bonus Question:  Miscellaneous Topics (5 Bonus Marks) 

Determine for the following statements whether they are correct or wrong. An explanation is not required. 

Simply write “correct” or “wrong” below the statements.  [1 Mark for each statement] 

(a) Let 𝑆 be a discrete random variable that is defined on an alphabet of 𝑀 values. The entropy 𝐻(𝑆) always 

obeys the condition 

𝐻(𝑆) ≤ log2 𝑀 

Solution: 

 

(b) At high rates, the Shannon lower bound for the MSE distortion measure is always 1.53 dB worse than the 

corresponding information distortion-rate function at the same rate. 

Solution: 

 

(c) Vector quantization improves the performance relative to scalar quantization only for sources with 

memory.  For iid sources, the best scalar quantizer has the same efficiency as the best vector quantizer. 

Solution: 

 

(d) For AR(m) processes (autoregressive processes of order 𝑚), the linear predictor that minimizes the 

prediction error variances has exactly 𝑚 non-zero prediction coefficients. 

Solution: 

 

(e) Consider transform coding with orthogonal transforms. At high rates, the optimal bit allocation among the 

transform coefficients is obtained if all components have the same distortion. 

Solution: 

 

The statement is correct.   [1] 

The statement is wrong. At high rates the Shannon lower bound approaches the information distortion rate 

function.  [1] 

The statement is wrong. Vector quantization can always improve the performance (space filling gain).  [1] 

The statement is correct.  [1] 

The statement is correct.  [1] 


