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Note:

e The quiz contains 4 questions (each of which has 10 points)
e Only the best 3 questions are counted (maximum grade is 30)
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Question 1: Mutual Information [10 points]

Given is a stationary Markov process S = {S,} with the binary symbol alphabet A = {x, y}.
The conditional symbol probabilities p(s,|s,—1) = P(Sn = Sp|Sn—1 = Sp—1) are given in the left
table below. Due to the symmetry of the transition probabilities, the marginal probability mass
function is uniform; the corresponding marginal symbol probabilities p(s,) = P(S,, = s,) are
given in the right table below.

Sn P(SplSn-1 = %) | P(SplSn-1=Y) Sn p(sp)
X 3/4 1/4 X 1/2
y 1/4 3/4 y 1/2

Determine the mutual information 1(S,,; S,+1) between two successive random variables S,, and
Sn+1 Of the given stationary Markov source.

The mutual information 1(S,,; S,+1) between two successive samples is given by

1(S; Sn+1) = H(Sn41) — H(Sn411Sn) (2]
The marginal entropy H(S,.1) is given by

H(S )—H(S)——Z () -log, p(s) = =2 - =+ logy= =1 [2]
n+1) — n) — pLs; gzp ) — 2 g22_

Vi
For the conditional entropies H(S,,4+1|S, = z), with z being x or y, we obtain

3 3 1 1
H(SualS = 2) = = ) p(sil2) - loga p(silz) = —7 - loga g — 5082 5
Vi

_3 3l 3+1—2 3l 3~0.8113 |2

Then, the conditional entropy H(S,41|S,) is given by

HSnialS) = ) p(@) - H(SnalS = @) = H(SnaalSn = - ) p(ap)

3
= H(Sp41lSp=2) =2 7 log, 3 = 0.8113 [2]

Using the derived expression for the marginal entropy H (S,,) and the conditional entropy
H(S,+1]5,), we obtain for the mutual information

3 3
I(Sn;Sn41) =1 =247 logy3 = 7 -logy 3 —1~0.1887 [2]

The mutual information between two successive random variables is 0.1887 bit per sample.



Question 2: Properties of Rate-Distortion Functions [10 points]

Given are 5 random processes with independent and identically distributed random variables:
e The random process 4 is continuous and has a Laplace distribution.
e The random process B is continuous and has a Gaussian distribution.
e The random process C is discrete, has the alphabet {x, y} and the pmf p(x) = p(y) = 1/2.

e The random process D is discrete, has the 8-symbol alphabet A, = {a,b,c,d,e, f, g, h}
and a uniform pmf on that alphabet (i.e., all symbols have the same probability).

e The random process E is discrete, has the infinite symbol alphabet Az = {0,1,2,3,:-}
and the geometric pmf p(k) = (1/2)%*1, with k € Ag.

The following diagrams show sketches of the (information) distortion-rate function for four of

the five given random processes. As distortion measure the mean squared error (MSE) is used.

In the diagrams, the distortion D is represented as signal-to-noise ratio (SNR), given by

0.2
SNR - 10 . 10g10 E

where o2 represents the variance of the random variables.
Assign to each of the diagrams the correct random process (4, B, C, D, or E).

SNR , SNR
[dB] SNR(3) = |, [dB]
! Gaussian B [2]
Uniform D [3] ! 18,1 - mm s :
3 RIBit] 3 RIBit]
SNR SNR

[dB] [dB] SNR(2) = 0 |
Laplace A4 [2] !
i1: 1, T :

Geometric E [3]

3 R[Bit] 2 R [Bit]



Question 3: Usage of Rate-Distortion Functions [10 points]

A student of the German University of Cairo developed a lossy coding algorithm for arbitrary
sources. His professor tested the algorithm for a long realization of a stationary Gauss-Markov
process and measured a bit rate of R = 2 bit per sample and a signal-to-noise ratio of 20 dB.

Given this result, determine the possible values (or intervals) for the correlation coefficient o of
the tested Gauss-Markov process.

Hints: For bit rates greater than 1 bit per sample, the information distortion-rate function for
stationary Gauss-Markov processes and MSE distortion is given by

D(R) = (1-¢?) - 0% 277"

The signal-to-noise ratio (SNR) is defined by
2

SNR =10 logwm

The distortion-rate function D (R) specifies the minimum distortion that can be achieved by cod-
ing a source at a rate R. Hence, with SNR () being the SNR associated with the distortion-rate
function and SNRy being the SNR of the actual coding result, we have

2
o
SNRy < SNRp(z) = 10 - logwm = —10-log;o((1 — 0?) - 272R)  [4]

By inserting the given values for R and SNRy, we obtain

20 < —10 - logyo((1 — 0%) - 27%)

2
-2 > logyg <(11—60)>
E >1— QZ
100 ~
0?>0.84 [3]

This resulting quadratic inequality has the solutions |o| > +/0.84, which is equivalent to
0=>vV0.84~=09165 and p<-v0.84=—-0.9165

Since a correlation coefficient is always inside the closed interval [—1; 1], it follows that, based
on the coding results, the correlation coefficient g lies inside one of the following intervals:

—1<p<+v084 or +V084<p<1 [3]
Or in other words, the absolute value of g is bounded by v0.84 < |o| < 1.



Question 4: Shannon Lower Bound [10 points]

Given is a continuous-amplitude random process X = {X,} with independent and identically
distributed random variables X,,. As illustrated in the figure below, the random variables X,
have a uniform probability density function in an interval [—a; a].

h

fx(0) 1

>

—a a X

Determine the Shannon lower bound as function of the variance ¢2. The Shannon lower bound
should be formulated as distortion-rate function D; (R) with the MSE as distortion measure.

Hint:  For MSE distortion, the Shannon lower bound as distortion-rate function is given by

1 _
D, (R) = e . 22h(X) . p-2R

Let b be the value of the pdf inside the interval [—a; a]. Since the integral is equal to 1, we have

_1
" 2a

jj;fx(x) dx=b- J_C;dx =2ab=1 = [2]

Since we consider an iid process, the differential entropy rate is equal to the differential entropy:

_ a a1 1
R(X) = h(X) = — j £ () - logs fi(x) dx = — f — - log, — dx

__2a 2a

log,(2a) [ log,(2a)
= . dx = ————.
2a _ 2a

a

(a = (=) =logy(2a) [3]

Hence, we obtain for the Shannon lower bound
2 2
DL(R) = i . ZZ-H(X) .272R _ L . 2210g2(2a) .272R _ 41 .272R _ Zi . 2—2R [2]
2me 21e 2me e

Since we want to formulate the Shannon lower bound as function of the variance o2, we calcu-
late the variance o2. Note that the mean is u = 0.

a a 3 3 2
02=Lax2-fx(x) dx=%f_ax2 dx=%-<%—<—%>>=% [2]

Hence, we have a? = 302, which yields the Shannon lower bound

6
D,(R) = E'Uz -272R 1]



