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o

Introduction Motivation for Source Coding

Motivation for Source Coding

Source coding or compression is required for efficient transmission or
storage, leading to one or both of the following benefits:

Transmit more data given throughput (channel capacity or storage space)
Use less throughput given data

Typically, source coding or compression are considered enabling technologies,
i.e., technologies that enable an application

Examples for source coding applications:

gzip, compress, winzip, ...
Mobile voice, audio, and video transmission
Internet voice, audio, and video transmission
Digital television
MP3 and portable video players (iPod, ...)
Digital Versatile Discs (DVDs) and Blu-Ray Discs
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Introduction Motivation for Source Coding

Practical Source Coding Problems

File compression (text file, office document, program code, ...)
Example: Example 80 MByte down to 20 MByte (20%)

Audio compression
Stereo with sampling frequency of 44.1 kHz
Each sample being represented with 16 bits

=⇒ Raw data rate: 44.1×16×2 = 1.41 Mbit/s
=⇒ Typical data rate after compression: 64 kbit/s (4.5%)

Image compression
Original picture size: 3000×2000 samples (6 MegaPixel)
3 color components (red, green, blue) and 1 byte (8 bit) per sample

=⇒ Raw file size: 3000×2000×3 = 18 MByte
=⇒ Typical compressed file size: 1 MByte (5.6%)

Video compression
Picture size of 1920×1080 pixels and frame rate of 50 Hz
Each sample being digitized with 8 bit
3 color components (red, green, blue)

=⇒ Raw data rate: 1920×1080×8×50×3 = 2.49 Gbit/s
=⇒ Typical compressed data rate: 12 Mbit/s (0.5%)
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Introduction Motivation for Source Coding

Source Coding in Practice

Source coding often enables applications:

Digital television (DVB-T)
Internet video streaming (YouTube)

Source coding makes applications economically feasible
Distribution of digital images
High definition television (HDTV) over IPTV

Many applications use source coding techniques

Software is often distributed in compressed form
Audio data are typically compressed (MP3, AAC)

Mobile audio players (IPod,...) and mobile phones
Audio download (ITunes) and streaming services (Internet radio)

Digital images are typically compressed (JPEG)
Compression is often done in camera
Picture found on web sites are compressed

Digital video data are typically compressed (MPEG-2, H.264/AVC)
Output of video cameras, optical discs
Video streaming (Youtube, Internet TV)

About 70% of the bits in the Internet are compressed video data
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Introduction Analog-to-Digital Conversion

Pulse-Code Modulation

Analog-to-Digital Conversion: Pulse-Code Modulation

Pulse-code modulation (PCM) is based on following principles

Sampling (obeying Shannon-Nyquist sampling theorem)
Quantizing sample values

Sampling theorem asserts that a time-continuous signal s(t) that contains
only frequencies less than Ω Hz, can be recovered from a sequence of its
sample values using

s(t) =

∞∑
n=−∞

s(tn)ψ(t− tn) (1)

where s(tn) is value of nth sampling instant tn = n
2Ω and ψ(·) is given as

ψ(t) =
sin(2πΩt)

2πΩt
(2)

The signal values s(tn) can be quantized allowing only an approximate
reconstruction of s(t)
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Introduction Analog-to-Digital Conversion

Analog-to-Digital Conversion: Overview

Analog-to-digital and digital-to-analog conversion

Source
 A/D Converter
 D/A Converter
 Sink


Source and analog-to-digital converter

Source
 Lowpass

Filter


Sampler

δT(t)


Holding

Element
 Quantizer


s(t)
 s(nT)
 s’(nT)


Analog-to-digital converter turns analog signal into a discrete signal

Analog signal: Continuous-time and continuous-amplitude signal
Discrete signal: Discrete-time and discrete-amplitude signal
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Introduction Analog-to-Digital Conversion

Analog-to-Digital Conversion

Source
 Lowpass

Filter


Sampler

δT(t)


Holding

Element
 Quantizer


s(t)
 s(nT)
 s’(nT)


Sample and hold operator turns continuous-time into discrete-time signal

Low-pass filter ensures that signal is band-limited

Quantizer turns continuous-amplitude signal into discrete-amplitude signal

A simple method is to quantize signal s(nT ) by mapping it to K = 2k

possible amplitude values
A simple quantization rule is

s′(nT ) = bs(nT )× 2k + 0.5c/2k (3)

We use the notation for the discrete signal s[n] as an abbreviation for s′(nT )
with T being the sampling interval

Digital values s[n] are in practice numbers that are stored in a computer
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Introduction Analog-to-Digital Conversion

Why Analog-to-Digital Conversion?

Required for processing data with a computer

All compression methods discussed here are computer programs:

Encoder: Mapping of s[n] into a bit stream b
Decoder: Mapping of the bit stream b into the discrete decoded signal s′[n]

Although we will also discuss compression of analog signals in theory, in
practice all algorithms will assume discrete versions of these analog signals
that are very close approximation of these analog signals
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Introduction Analog-to-Digital Conversion

One-Dimensional Signal Example

Speech and audio signals are typically one-dimensional temporal signals

Discrete signal below is temporally sampled and its amplitude is represented
using k = 3 bits, i.e., K = 8 different values

Note: Reconstruction value of −0.75 is not present in example, allowing us
to represent this signal with K = 8 instead of K = 9 reconstruction values
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Introduction Analog-to-Digital Conversion

Two-Dimensional Signal Example

Pictures are two-dimensional spatial signals

Videos are three-dimensional spatio-temporal signals

Below sampling of picture Lena with different spatial sampling rates

8× 8, 16× 16, 32× 32, and 128× 128 samples (from left to right)
Each sample is represented with n = 8 bits
Each square represents average of luminance values it covers
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Introduction Analog-to-Digital Conversion

Two-Dimensional Signal Example

Below quantization of picture Lena with different bits/sample

k = 1, 2, 4, and 8 bits/sample (from left to right)
The spatial sampling rate is fixed to 128×128
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Introduction Analog-to-Digital Conversion

Three-Dimensional Signal Examples

Below, format, sampling rate and sampling method for different video signals
yield corresponding PCM data rates

Picture format Luma signal Chroma signal Sampling Frames/s Data rate

Common Intermediate 352× 288 2× 176× 144 progressive 25
Format (CIF) (352× 240) (2× 176× 120) 8 bit (30)

ITU-R BT.601 Format 720× 576 2× 360× 576 interlaced 25
(“Standard Television”) (720× 480) (2× 360× 480) 8 bit (30)

ITU-R BT.709: 720p 1280× 720 2× 640× 720 progressive 50
(“High Definition TV”) 8 bit (60)

ITU-R BT.709: 1080i 1920× 1080 2× 960× 1080 interlaced 25
(“Full HDTV”) 8 bit (30)

ITU-R BT.2020: UHD-1 3840× 2160 2× 1920× 1080 progressive 50
(“Ultra HDTV 4k”) 10 bit (60)

ITU-R BT.2020: UHD-2 7680× 4320 2× 3840× 2160 progressive 50
(“Ultra HDTV 8k”) 12 bit (60)
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Introduction Communication Problem

Basic Communication Problem

The basic communication problem may be posed as

Conveying source data with highest fidelity possible
within an available bit rate

or, equivalently, as

Conveying source data using lowest bit rate possible
while maintaining a specified reproduction fidelity

In either case, a fundamental trade-off is made between bit rate and fidelity

The ability of a source coding system to make this trade-off well is called its
coding efficiency or rate-distortion performance, and the coding system
itself is referred to as a source codec

Source codec: a system comprising a source coder and a source decoder
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Introduction Communication Problem

Example: JPEG (1:10 Compression)
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Introduction Communication Problem

Example: JPEG (1:50 Compression)
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Introduction Communication Problem

Example: H.265/HEVC (1:50 Compression)
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Introduction Communication Problem

Geometrical Interpretation

Raw data 

 1:10 

 1:50 

 1:250  (typical for video) 
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Introduction Communication Problem
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Introduction Communication Problem

Practical Communication Problem

Source codecs are primarily characterized in terms of:

Throughput of the channel, a characteristic influenced by

transmission channel bit rate and

amount of protocol and error-correction coding overhead incurred by
transmission system

Distortion of the decoded signal, which is primarily induced by

source encoder and

by channel errors introduced in path to source decoder

The following additional constraints must also be considered

Delay (start-up latency and end-to-end delay) include

processing delay, buffering,
structural delays of source and channel codecs, and
speed at which data are conveyed through transmission channel

Complexity (computation, memory capacity, memory access) of

source codec,
protocol stacks, and network
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Introduction Communication Problem

Formulation of the Practical Communication Problem

The practical source coding design problem is posed as follows:

Given a maximum allowed delay and a maximum
allowed complexity, achieve an optimal trade-off
between bit rate and distortion for the transmission
problem in the targeted applications.

Here, we will concentrate on source codec only

Delay is only evaluated for source codec

Complexity is also only assessed for the algorithm used in source codec
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Introduction Communication Problem

Scope of This Course
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Introduction Communication Problem

Transmission Channels and Optical Storage Media

Fixed transmission lines:

ISDN line: 64 kbit/s
ADSL: 6 Mbit/s
VDSL: 25 Mbit/s or 50 Mbit/s

Mobile networks:

GSM: 15 kbit/s
EDGE: 474 kbit/s (max)
HSDPA: 7.2 Mbit/s (peak)
LTE: 300 Mbit/s (peak)

Broadcast channels

DVB-T: 13 Mbit/s (16QAM)
DVB-S: 38 Mbit/s (QPSK)
DVB-C: 38 Mbit/s (64QAM)

Optical storage media

Compact Disc (CD): 650 MByte with 1.41 Mbit/s (12 cm)
Digital Versatile Dics (DVD): 4.7 GByte with 10.5 Mbit/s (DVD-5-SS-SL)
Blu-Ray Disc (BRD): 50 GByte with 36 Mbit/s (12 cm, DS-DL)
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Introduction Communication Problem

Types of Compression

Lossless coding:

Uses redundancy reduction as the only principle and is therefore reversible

Also referred to as noiseless or invertible coding or data compaction

Well known use for this type of compression for data is Lempel-Ziv coding
(gzip) and for picture and video signals JPEG-LS is well known

Lossy coding:

Uses redundancy reduction and irrelevancy reduction and is therefore not
reversible

It is the primary coding type in compression for speech, audio, picture, and
video signals

The practically relevant bit rate reduction that is achievable through lossy
compression is typically more than an order of magnitude larger than with
lossless compression

Well known examples are for audio coding are the MPEG-1 Layer 3 (mp3), for
still picture coding JPEG, and for video coding H.264/AVC
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Introduction Distortion/Quality Measures

Distortion Measures

The use of lossy compression requires the ability to measure distortion

Often, the distortion that a human perceives in coded content is a very
difficult quantity to measure, as the characteristics of human perception are
complex

Perceptual models are far more advanced for speech and audio codecs than
for picture or video codecs

In speech and audio coding,

Perceptual models are heavily used to guide encoding decisions
Listening tests are used to determine subjective quality of coding results

In picture and video coding,

Perceptual models have limited use to guide encoding decisions (mainly
focusing on properties of the human visual system)
Viewing tests are used to determine subjective quality of coding results

This lecture: Use of objective distortion measures such as MSE and SNR
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Introduction Distortion/Quality Measures

Mean Squared Error (MSE)

Speech and audio: (N : duration in samples)

u[n] = s′[n]− s[n] (4)

MSE =
1

N

N−1∑
n=0

u2[n] (5)

Pictures: (X: picture height, Y : picture width):

u[x, y] = s′[x, y]− s[x, y] (6)

MSE =
1

X · Y
X−1∑
x=0

Y−1∑
y=0

u2[x, y] (7)

Videos: (N : number of pictures, MSEn: MSE of picture n):

MSE =
1

N

N−1∑
n=0

MSEn (8)
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Introduction Distortion/Quality Measures

Signal-to-Noise Ratio

Speech:

SNR = 10 · log10

(
σ2

σ2
u

)
(9)

with σ2 =
1

N

N−1∑
n=0

(s[n]− µs)2 and µs =
1

N

N−1∑
n=0

s[n] (10)

σ2
u =

1

N

N−1∑
n=0

(u[n]− µu)2 and µu =
1

N

N−1∑
n=0

u[n] (11)

Pictures: (k: bit depth of samples)

PSNR = 10 · log10

(
(2k − 1)2

MSE

)
(12)

Videos: (N : number of pictures, PSNRn: PSNR of picture n)

PSNR =
1

N

N−1∑
n=0

PSNRn (13)
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Introduction Organization

Organization

Lecture: Tuesday 10:30-12:00 & 12:15-13:45
Room 1.16

Lecturer: Dr.-Ing. Heiko Schwarz

Head, Image & Video Coding Group
Image Processing Department
Fraunhofer Heinrich Hertz Institute

heiko.schwarz@hhi.fraumhofer.de
http://iphome.hhi.de/schwarz

Course weights: Quizzes: 20%
Project: 20%
Midterm exam: 25%
Final exam: 35%

Copies of slides and solutions of exercises can be downloaded at:

http://iphome.hhi.de/schwarz/GUC-SourceCoding.htm
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Probability, Random Variables and Random Processes

Probability, Random Variables

and Random Processes
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Probability, Random Variables and Random Processes

Outline
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Probability, Random Variables and Random Processes Probability

Probability

Probability theory:
Branch of mathematics for description and modelling of random events

Modern probability theory – the axiomatic definition of probability –
introduced by Kolmogorov
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Probability, Random Variables and Random Processes Probability

Definition of Probability

Experiment with an uncertain outcome: Random experiment

Union of all possible outcomes ζ of the random experiment:
Certain event or sample space O of the random experiment

Event: Subset A ⊆ O
Probability: Measure P (A) assigned to A satisfying the following three
axioms

1 Probabilities are non-negative real numbers: P (A) ≥ 0, ∀A ⊆ O
2 Probability of the certain event: P (O) = 1

3 If {Ai : i = 0, 1, · · · } is a countable set of events
such that Ai ∩ Aj = ∅ for i 6= j, then

P

(⋃
i

Ai
)

=
∑
i

P (Ai) (14)
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Probability, Random Variables and Random Processes Probability

Independence and Conditional Probability

Two events Ai and Aj are independent if

P (Ai ∩ Aj) = P (Ai)P (Aj) (15)

The conditional probability of an event Ai given another event Aj ,
with P (Aj) > 0 is

P (Ai|Aj) =
P (Ai ∩ Aj)
P (Aj)

(16)

Direct consequence: Bayes’ theorem

P (Ai|Aj) = P (Aj |Ai)
P (Ai)
P (Aj)

with P (Ai), P (Aj) > 0 (17)

Definitions (15) and (16) also imply that,
if Ai and Aj are independent and P (Aj) > 0, then

P (Ai | Aj) = P (Ai) (18)
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Probability, Random Variables and Random Processes Random Variables

Random Variables

Random variable S:

Function of the sample space O that assigns a real value S(ζ) to each
outcome ζ∈ O of a random experiment

Define: Cumulative distribution function (cdf) of a random variable S:

FS(s) = P (S≤ s) = P ( {ζ : S(ζ)≤ s} ) (19)

Properties of cdfs:

FS(s) is non-decreasing

FS(−∞) = 0

FS(∞) = 1
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Probability, Random Variables and Random Processes Random Variables

Joint Cumulative Distribution Function

Joint cdf or joint distribution of two random variables X and Y

FXY (x, y) = P (X ≤ x, Y ≤ y) (20)

N -dimensional random vector S = (S0, · · · , SN−1)T:

Vector of random variables S0, S1, · · · , SN−1

N-dimensional cdf, joint cdf, or joint distribution:

FS(s) = P (S≤ s) = P (S0≤ s0, · · · , SN−1≤ sN−1) (21)

with S = (S0, · · · , SN−1)T being a random vector

Joint cdf of two random vectors X and Y

FXY (x,y) = P (X≤ x,Y ≤ y) (22)
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Probability, Random Variables and Random Processes Random Variables

Conditional Cumulative Distribution Function

Conditional cdf of random variable S given event B with P (B) > 0

FS|B(s | B) = P (S≤ s | B) =
P ({S≤ s} ∩ B)

P (B)
(23)

Conditional cdf of a random variable X given another random variable Y

FX|Y (x|y) =
FXY (x, y)

FY (y)
=
P (X≤ x, Y ≤ y)

P (Y ≤ y)
(24)

Conditional cdf of a random vector X given another random vector Y

FX|Y (x|y) =
FXY (x,y)

FY (y)
(25)
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Probability, Random Variables and Random Processes Random Variables

Continuous Random Variables

A random variables S is called a continuous random variable,
if and only if its cdf FS(s) is a continuous function

Define: Probability density function (pdf) for continuous random variables

fS(s) =
dFS(s)

ds
⇐⇒ FS(s) =

∫ s

−∞
fS(t) dt (26)

Properties of pdfs:

fS(s) ≥ 0, ∀s∫∞
−∞ fS(t) dt = 1
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Probability, Random Variables and Random Processes Random Variables

Examples for Pdfs

Uniform pdf:

fS(s) =

{
1/A : −A/2 ≤ s ≤ A/2
0 : otherwise

, A > 0 (27)

Laplacian pdf:

fS(s) =
1

σS
√

2
e−|s−µS |

√
2/σS , σS > 0 (28)

Gaussian pdf:

fS(s) =
1

σS
√

2π
e−(s−µS)2/(2σ2

S ), σS > 0 (29)
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Probability, Random Variables and Random Processes Random Variables

Generalized Gaussian Distribution

fS(s) =
β

2αΓ(1/β)
· e−(|x−µ|/α)β Γ(z) =

∫ ∞
0

e−t tz−1 dt (30)
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Probability, Random Variables and Random Processes Random Variables

Joint and Conditional Pdfs

N-dimensional pdf, joint pdf, or joint density

fS(s) =
∂NFS(s)

∂s0 · · · ∂sN−1
(31)

Conditional pdf or conditional density fS|B(s|B)
of a random variable S given an event B

fS|B(s|B) =
d FS|B(s|B)

d s
(32)

Conditional density of a random variable X given another random variable Y

fX|Y (x|y) =
fXY (x, y)

fY (y)
(33)

Conditional density of a random vector X given another random vector Y

fX|Y (x|y) =
fXY (x,y)

fY (y)
(34)
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Probability, Random Variables and Random Processes Random Variables

Discrete Random Variables

A random variable S is called a discrete random variable,
if and only if its cdf FS(s) represents a staircase function

Discrete random variable S takes values of countable set A = {a0, a1, . . .}

Define: Probability mass function (pmf) for discrete random variables:

pS(a) = P (S = a) = P ( {ζ : S(ζ)= a} ) (35)

Cdf of discrete random variable

FS(s) =
∑
a≤s

p(a) (36)

Pdf can be constructed using the Dirac delta function δ

fS(s) =
∑
a∈A

δ(s− a) pS(a) (37)

Heiko Schwarz Source Coding and Compression December 7, 2013 44 / 661



o

Probability, Random Variables and Random Processes Random Variables

Examples for Pmfs

Binary pmf:

A = {a0, a1} pS(a0) = p, pS(a1) = 1− p (38)

Uniform pmf:

A = {a0, a1, · · ·, aM−1} pS(ai) = 1/M ∀ ai ∈ A (39)

Geometric pmf:

A = {a0, a1, · · · } pS(ai) = (1− p) pi ∀ ai ∈ A (40)
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Probability, Random Variables and Random Processes Random Variables

Joint and Conditional Pmfs

N-dimensional pmf or joint pmf for a random vector S = (S0, · · · , SN−1)T

pS(a) = P (S= a) = P (S0 = a0, · · · , SN−1 = aN−1) (41)

Joint pmf of two random vectors X and Y : pXY (ax,ay)

Conditional pmf pS|B(a | B) of a random variable S given an event B,
with P (B) > 0

pS|B(a | B) = P (S = a | B) (42)

Conditional pmf of a random variable X given another random variable Y

pX|Y (ax|ay) =
pXY (ax, ay)

pY (ay)
(43)

Conditional pmf of a random vector X given another random vector Y

pX|Y (ax|ay) =
pXY (ax,ay)

pY (ay)
(44)
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Probability, Random Variables and Random Processes Random Variables

Example for a Joint Pmf

For example, samples in picture and video signals typically show strong
statistical dependencies

Below: Histogram of two horizontally adjacent sampels for the picture ’Lena’

Relative

frequency 


of 
occurence


Amplitude of

adjacent pixel


Amplitude of

current pixel 
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Probability, Random Variables and Random Processes Random Variables

Expectation

Expectation value or expected value
of a continuous random variable S

E{g(S)} =

∫ ∞
−∞

g(s) fS(s) ds (45)

of a discrete random variable S

E{g(S)} =
∑
a∈A

g(a) pS(a) (46)

Important expectation values are mean µS and variance σ2
S

µS = E{S} and σ2
S = E

{
(S − µs)2

}
(47)

Expectation value of a function g(S) of a set of N random variables
S = {S0, · · · , SN−1}

E{g(S)} =

∫
RN

g(s) fS(s) ds (48)
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Probability, Random Variables and Random Processes Random Variables

Conditional Expectation

Conditional expectation value of function g(S) given an event B,
with P (B) > 0

E{g(S) | B} =

∫ ∞
−∞

g(s) fS|B(s | B) ds (49)

Conditional expectation value of function g(X) given a particular value y for
another random variable Y

E{g(X) | y} = E{g(X) |Y =y} =

∫ ∞
−∞

g(x) fX|Y (x, y) dx (50)

Note: E{g(X) | y} is a deterministic function of y

Conditional expectation value of function g(X) given a random variable Y ,

E{g(X) |Y } =

∫ ∞
−∞

g(x) fX|Y (x, Y ) dx, (51)

is another random variable
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Probability, Random Variables and Random Processes Random Variables

Iterative Expectation Rule

Expectation value E{Z} of a random variable Z = E{g(X)|Y }

E{E{g(X)|Y }} =

∫ ∞
−∞

E{g(X)|y} fY (y) dy

=

∫ ∞
−∞

(∫ ∞
−∞

g(x) fX|Y (x, y) dx

)
fY (y) dy

=

∫ ∞
−∞

g(x)

(∫ ∞
−∞

fX|Y (x, y) fY (y) dy

)
dx

=

∫ ∞
−∞

g(x) fX(x) dx

= E{g(X)} (52)

=⇒ E{E{g(X)|Y }} does not depend on the statistical properties
of the random variable Y , but only on those of X
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Probability, Random Variables and Random Processes Random Processes

Random Processes

Series of random experiments at time instants tn, with n = 0, 1, 2, . . .
Outcome of experiment: Random variable Sn = S(tn)
Discrete-time random process: Series of random variables S = {Sn}
Statistical properties of discrete-time random process S: N -th order joint cdf

FSk(s) = P (S
(N)
k ≤ s) = P (Sk ≤ s0, · · · , Sk+N−1 ≤ sN−1) (53)

Continuous random process

fSk(s) =
∂N

∂s0 · · · ∂sN−1
FSk(s) (54)

Discrete random process

FSk(s) =
∑
a∈AN

pSk(a) (55)

AN product space of the alphabets An and

pSk(a) = P (Sk = a0, · · · , Sk+N−1 = aN−1) (56)
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Probability, Random Variables and Random Processes Random Processes

Autocovariance and Autocorrelation Matrix

N -th order autocovariance matrix

CN (tk) = E

{(
S

(N)
k − µN (tk)

) (
S

(N)
k − µN (tk)

)T
}

(57)

N -th order autocorrelation matrix

RN (tk) = E

{(
S

(N)
k

) (
S

(N)
k

)T
}

(58)

Note the following relationship

CN (tk) = E

{(
S

(N)
k − µN (tk)

) (
S

(N)
k − µN (tk)

)T
}

= E

{(
S

(N)
k

) (
S

(N)
k

)T
}
− E

{
S

(N)
k

}
µN (tk)T

−µN (tk)E
{
S

(N)
k

}T

+ µN (tk)µN (tk)T

= RN (tk)− µN (tk)µN (tk)T (59)
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Probability, Random Variables and Random Processes Random Processes

Stationary Random Process

Stationary random process:
Statistical properties are invariant to a shift in time

=⇒ FSk(s), fSk(s) and pSk(a) are independent of tk
and are denoted by FS(s), fS(s) and pS(a), respectively

=⇒ µN (tk), CN (tk) and RN (tk) are independent of tk
and are denoted by µN , CN and RN , respectively

N -th order autocovariance matrix

CN = E
{

(S(N)− µN )(S(N)− µN )T
}

(60)

is a symmetric Toeplitz matrix

CN = σ2
S


1 ρ1 ρ2 · · · ρN−1

ρ1 1 ρ1 · · · ρN−2

ρ2 ρ1 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 (61)

with

ρk =
1

σ2
S

E
{

(S` − µS) (S`+k − µS)
}

(62)
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Probability, Random Variables and Random Processes Random Processes

Memoryless and IID Random Processes

Memoryless random process:
Random process S = {Sn} for which the random variables Sn are
independent

Independent and identical distributed (iid) random process:
Stationary and memoryless random process

N -th order cdf FS(s), pdf fS(s), and pmf pS(a) for iid processes,
with s = (s0, · · · , sN−1)T and a = (a0, · · · , aN−1)T

FS(s) =

N−1∏
k=0

FS(sk) (63)

fS(s) =

N−1∏
k=0

fS(sk) (64)

pS(a) =

N−1∏
k=0

pS(ak) (65)

FS(s), fS(s), and pS(a) are the marginal cdf, pdf, and pmf, respectively
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Probability, Random Variables and Random Processes Random Processes

Markov Processes

Markov process: Future outcomes do not depend on past outcomes,
but only on the present outcome,

P (Sn≤sn |Sn−1 =sn−1, · · · ) = P (Sn≤sn |Sn−1 =sn−1) (66)

Discrete Markov processes

pSn(an | an−1, · · · ) = pSn(an | an−1) (67)

Example for a discrete Markov process

a a0 a1 a2

p(a|a0) 0.90 0.05 0.05
p(a|a1) 0.15 0.80 0.05
p(a|a2) 0.25 0.15 0.60
p(a)
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Probability, Random Variables and Random Processes Random Processes

Continuous Markov Processes

Continuous Markov processes

fSn(sn | sn−1, · · · ) = fSn(sn | sn−1) (68)

Construction of continuous stationary Markov process S = {Sn} with
mean µS , given a zero-mean iid process Z = {Zn}

Sn = Zn + ρ (Sn−1 − µS) + µS , with |ρ| < 1 (69)

=⇒ Variance σ2
S of stationary Markov process S

σ2
S = E

{
(Sn − µS)2

}
= E

{
(Zn + ρ (Sn−1 − µS) )2

}
=

σ2
Z

1− ρ2
(70)

=⇒ Autocovariance function of stationary Markov process S

φk,` = φ|k−`| = E{(Sk − µS)(S` − µS)} = σ2
S ρ
|k−`| (71)
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Probability, Random Variables and Random Processes Random Processes

Gaussian Processes

Gaussian process: Continuous process S = {Sn} with the property that all
finite collections of random variables Sn represent Gaussian random vectors

N -th order pdf of stationary Gaussian process with N -th order
autocorrelation matrix CN and mean µS

fS(s) =
1√

(2π)N |CN |
e−

1
2 (s−µS)TC−1

N (s−µS) with µS =

 µs
...
µS

 (72)

Stationary Gauss-Markov process:
Stationary process that is a Gaussian process and a Markov process

IID process Z = {Zn} in (69)
has a Gaussian pdf

Statistical properties are
completely determined by

mean µS
variance σ2

S

correlation factor ρ
0 10 20 30 40 50

−1

−0.5

0

0.5

1

t

s(
t)
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Probability, Random Variables and Random Processes Chapter Summary

Chapter Summary

Random variables

Discrete and continuous random variables

Cumulative distribution function (cdf)

Probability density function (pdf)

Probability mass function (pmf)

Joint and conditional cdfs, pdfs, pmfs

Expectation values and conditional expectation values

Random processes

Stationary processes

Memoryless processes

IID processes

Markov processes

Gaussian processes

Gauss-Markov processes
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Probability, Random Variables and Random Processes Exercises (Set A)

Exercise 1

Given is a stationary discrete Markov process with the alphabet A = {a0, a1, a2}
and the conditional pmfs listed in the table below

a a0 a1 a2

p(a|a0) 0.90 0.05 0.05
p(a|a1) 0.15 0.80 0.05
p(a|a2) 0.25 0.15 0.60
p(a)

Determine the marginal pmf p(a).
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Probability, Random Variables and Random Processes Exercises (Set A)

Exercise 2

Investigate the relationship between independence and correlation.

(a) Two random variables X and Y are said to be correlated if and only if their
covariance CXY is not equal to 0.
Can two independent random variables X and Y be correlated?

(b) Let X be a continuous random variable with a variance σ2
X > 0 and a pdf

fX(x). The pdf shall be non-zero for all real numbers, fX(x) > 0, ∀x ∈ R.
Furthermore, the pdf fX(x) shall be symmetric around zero,
fX(x) = fX(−x), ∀x ∈ R. Let Y be a random variable given by
Y = aX2 + bX + c with a, b, c ∈ R.
For which values of a, b, and c are X and Y uncorrelated?
For which values of a, b, and c are X and Y independent?

(c) Which of the following statements for two random variables X and Y are
true?

If X and Y are uncorrelated, they are also independent.
If X and Y are independent, E{XY } = 0.
If X and Y are correlated, they are also dependent.
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Lossless Coding

Lossless Coding
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Lossless Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Introduction
Variable-Length Coding for Scalars
Variable-Length Coding for Vectors
Elias and Arithmetic Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Lossless Coding Introduction

Lossless Source Coding – Overview

Reversible mapping of sequence of discrete source symbols
into sequences of codewords

Other names:

Noiseless coding
Entropy coding

Original source sequence can be exactly reconstructed
(Note: Not the case in lossy coding)

Bit rate reduction possible, if and only if source data have statistical
properties that are exploitable for data compression

!! !
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Lossless Coding Introduction

Lossless Source Coding – Terminology

Message s(L) ={s0, · · · , sL−1} drawn from stochastic process S={Sn}

Sequence b(K) ={b0, · · · , bK−1} of K bits (bk ∈ B={0, 1})

Process of lossless coding: Message s(L) is converted to b(K)

Assume:

Subsequence s(N) = {sn, · · · , sn+N−1} with 1 ≤ N ≤ L and

Bits b(`)(s(N)) = {b0, · · · , b`−1} assigned to it

Lossless source code

Encoder mapping:
b(`) = γ

(
s(N)

)
(73)

Decoder mapping:

s(N) = γ−1
(
b(`)

)
= γ−1

(
γ
(
s(N)

) )
(74)
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Lossless Coding Introduction

Classification of Lossless Source Codes

Lossless source code

Encoder mapping:
b(`) = γ

(
s(N)

)
(75)

Decoder mapping:

s(N) = γ−1
(
b(`)

)
= γ−1

(
γ
(
s(N)

) )
(76)

Fixed-to-fixed mapping: N and ` are both fixed

Will be discussed as special case of fixed-to-variable

Fixed-to-variable mapping: N fixed and ` variable

Huffman algorithm for scalars and vectors (discussed in lecture)

Variable-to-fixed mapping: N variable and ` fixed

Tunstall codes (not discussed in lecture)

Variable-to-variable mapping: ` and N are both variable

Elias and arithmetic codes (discussed in lecture)
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Lossless Coding Variable-Length Coding for Scalars

Variable-Length Coding for Scalars

Assign a separate codeword to each scalar symbol sn of a message s(L)

Assume:
Message s(L) generated by stationary discrete random process S = {Sn}
Random variables Sn = S with symbol alphabet A = {a0, · · · , aM−1} and
marginal pmf p(a) = P (S = a)

Lossless source code:
Assign to each ai a binary codeword bi = {bi0, · · · , bi`(ai)−1}, length `(ai) ≥ 1

Example:

Alphabet A = {x, y, z}

Encoder mapping γ(a) =

 0 : a = x
10 : a = y
11 : a = z

Message s = “xyxxzyx”

Bit sequence b = “0100011100”
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Lossless Coding Variable-Length Coding for Scalars

Optimization Problem

Average codeword length is given as

¯̀= E{`(S)} =

M−1∑
i=0

p(ai) · `(ai) (77)

The goal of the lossless code design problem is to minimize the
average codeword length ¯̀ while being able to uniquely decode

ai p(ai) code A code B code C code D code E
a0 0.5 0 0 0 00 0
a1 0.25 10 01 01 01 10
a2 0.125 11 010 011 10 110
a3 0.125 11 011 111 110 111

¯̀ 1.5 1.75 1.75 2.125 1.75
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Lossless Coding Variable-Length Coding for Scalars

Unique Decodability and Prefix Codes

For unique decodability, we need to generate a code γ : ai → bi such that

if ak 6= aj then bk 6= bj (78)

Codes that don’t have that property are called singular codes

For sequences of symbols, above constraint needs to be extended to the
concatenation of multiple symbols

=⇒ For a uniquely decodable code, a sequence of codewords can only be
generated by one possible sequence of source symbols.

Prefix codes: One class of codes that satisfies the constraint of unique
decodability

A code is called a prefix code if no codeword for an alphabet letter
represents the codeword or a prefix of the codeword for any other
alphabet letter

It is obvious that if the code is a prefix code, then any concatenation of
symbols can be uniquely decoded
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Lossless Coding Variable-Length Coding for Scalars

Binary Code Trees

Prefix codes can be represented by trees

‘
0
’


‘
0
’


‘
0
’


‘
0
’


’
10
’


‘
1
’


‘
1
’


‘
1
’
 ‘
110
’


‘
111
’


root node


interior

node


terminal 

node


branch


‘
0
’


‘
0
’


‘
0
’


‘
0
’


’
10
’


‘
1
’


‘
1
’


‘
1
’
 ‘
110
’


‘
111
’


root node


interior

node


terminal 

node


branch


A binary tree contains nodes with two branches (labelled as ’0’ and ’1’)
leading to other nodes starting from a root node

A node from which branches depart is called an interior node while a node
from which no branches depart is called a terminal node

A prefix code can be constructed by assigning letters of the alphabet A to
terminal nodes of a binary tree
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Lossless Coding Variable-Length Coding for Scalars

Parsing of Prefix Codes

Given the code word assignment to terminal nodes of the binary tree, the
parsing rule for this prefix code is given as follows

1 Set the current node ni equal to the root node

2 Read the next bit b from the bitstream

3 Follow the branch labelled with the value of b from the current node ni to the
descendant node nj

4 If nj is a terminal node, return the associated alphabet letter
and proceed with step 1.
Otherwise, set the current node ni equal to nj
and repeat the previous two steps

Important properties of prefix codes:

Prefix codes are uniquely decodable
Prefix codes are instantaneously decodable
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Lossless Coding Variable-Length Coding for Scalars

Classification of Codes

prefix codes 

uniquely decodable codes 

non-singular codes 

all codes 
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Lossless Coding Variable-Length Coding for Scalars

Unique Decodability: Kraft Inequality

Assume fully balanced tree with depth `max (length of longest codeword)

Codewords are assigned to nodes with codeword length `(ak) ≤ `max

Each choice with `(ak) ≤ `max eliminates 2`max−`(ak) other possibilities of
codeword assignment at level `max, example:
→ `max − `(ak) = 0, one option is covered
→ `max − `(ak) = 1, two options are covered

Number of removed terminal nodes must be less than or equal to number of
terminal nodes in balanced tree with depth `max, which is 2`max

M−1∑
i=0

2`max−`(ai) ≤ 2`max (79)

A code γ may be uniquely decodable (McMillan) if

Kraft inequality: ζ(γ) =

M−1∑
i=0

2−`(ai) ≤ 1 (80)
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Lossless Coding Variable-Length Coding for Scalars

Proof of the Kraft Inequality

Consider(
M−1∑
i=0

2−`(ai)

)L
=

M−1∑
i0=0

M−1∑
i1=0

· · ·
M−1∑
iL−1=0

2−
(
`(ai0 )+`(ai1 )+···+`(aiL−1

)
)

(81)

`L = `(ai0) + `(ai1) + · · ·+ `(aiL−1
) represents the combined codeword

length for coding L symbols

Let A(`L) denote the number of distinct symbol sequences that produce a bit
sequence with the same length `L

Let `max be the maximum codeword length

Hence, we can write (
M−1∑
i=0

2−`(ai)

)L
=

L·`max∑
`L=L

A(`L) 2−`L (82)

Heiko Schwarz Source Coding and Compression December 7, 2013 73 / 661



o

Lossless Coding Variable-Length Coding for Scalars

Proof of the Kraft Inequality

We have (
M−1∑
i=0

2−`(ai)

)L
=

L·`max∑
`L=L

A(`L) 2−`L (83)

For a uniquely decodable code, A(`L) must be less than or equal to 2`L ,
since there are only 2`L distinct bit sequences of length `L

Hence, a uniquely decodable code must fulfill the inequality(
M−1∑
i=0

2−`(ai)

)L
=

L·`max∑
`L=L

A(`L) 2−`L ≤
L·`max∑
`L=L

2`L 2−`L = L (`max−1)+1 (84)

The left side of this inequality grows exponentially with L, while the right
side grows only linearly with L

If the Kraft inequality is not fulfilled, we can always find a value of L for
which the condition (84) is violated

=⇒ Kraft inequality specifies a necessary condition for uniquely decodable codes
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Lossless Coding Variable-Length Coding for Scalars

Prefix Codes and the Kraft Inequality

Given is a set of codeword lengths {`0, `1, · · · , `M−1} that satisfies the Kraft
inequality, with `0 ≤ `1 ≤ · · · ≤ `M−1

Construction of prefix code

Start with fully balanced code tree of infinite depth (or depth `M−1)
Choose a node of depth `0 for first codeword and prune tree at this node
Choose a node of depth `1 for second codeword and prune tree at this node
Continue this procedure until all codeword length are assigned

Question: Is that always possible?

Selection of codeword `k removes 2`i−`k codewords with length `i ≥ `k
=⇒ For codeword of length `i, number of available choices is given by

n(`i) = 2`i −
i−1∑
k=0

2`i−`k = 2`i

(
1−

i−1∑
k=0

2−`k

)
(85)
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Lossless Coding Variable-Length Coding for Scalars

Prefix Codes and the Kraft Inequality

Number of available choices for codeword length `i

n(`i) = 2`i −
i−1∑
k=0

2`i−`k = 2`i

(
1−

i−1∑
k=0

2−`k

)
(86)

Kraft inequality is fulfilled
M−1∑
k=0

2−`k ≤ 1 (87)

This yields

n(`i) ≥ 2`i

(
M−1∑
k=0

2−`k −
i−1∑
k=0

2−`k

)
= 2`i

M−1∑
k=i

2−`k = 1 +

M−1∑
k=i+1

2`i−`k ≥ 1

(88)

=⇒ Can construct prefix code for any set of codeword lengths that fulfills
Kraft inequality
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Lossless Coding Variable-Length Coding for Scalars

Practical Importance of Prefix Codes

We have shown:

All uniquely decodable codes fulfill Kraft inequality

Possible to construct prefix code for any set of codeword lengths
that fulfills Kraft inequality

=⇒ There are no uniquely decodable codes that have a smaller average
codeword length than the best prefix code

Prefix codes have further desirable properties

Instantaneous decodability
Easy to construct

=⇒ All variable-length codes used in practice are prefix codes
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Lossless Coding Variable-Length Coding for Scalars

Lower Bound for Average Codeword Length

Average codeword length

¯̀=

M−1∑
i=0

p(ai) `(ai) = −
M−1∑
i=0

p(ai) log2

(
2−`(ai)

p(ai)

)
−
M−1∑
i=0

p(ai) log2 p(ai) (89)

With the definition q(ai) = 2−`(ai)/
(∑M−1

k=0 2−`(ak)
)

, we obtain

¯̀= − log2

(
M−1∑
i=0

2−`(ai)

)
−
M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
−
M−1∑
i=0

p(ai) log2 p(ai) (90)

We will show that

¯̀≥ −
M−1∑
i=0

p(ai) log2 p(ai) = H(S) (Entropy) (91)
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Lossless Coding Variable-Length Coding for Scalars

Historical Reference

C. E. Shannon introduced entropy as an uncertainty measure for random
experiments and derived it based on three postulates

Published 1 year later as: ”The Mathematical Theory of Communication”
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Lossless Coding Variable-Length Coding for Scalars

Lower Bound for Average Codeword Length

Average codeword length

¯̀= − log2

(
M−1∑
i=0

2−`(ai)

)
−
M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
−
M−1∑
i=0

p(ai) log2 p(ai) (92)

Kraft inequality
∑M−1
i=0 2−`(ai) ≤ 1 applied to first term

− log2

(
M−1∑
i=0

2−`(ai)

)
≥ 0 (93)

Inequality lnx ≤ x− 1 (with equality if and only if x = 1), applied to second
term, yields

−
M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
≥ 1

ln 2

M−1∑
i=0

p(ai)

(
1− q(ai)

p(ai)

)

=
1

ln 2

(
M−1∑
i=0

p(ai)−
M−1∑
i=0

q(ai)

)
= 0 (94)

Called divergence inequality
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Lossless Coding Variable-Length Coding for Scalars

Entropy and Redundancy

Average codeword length ¯̀ for uniquely decodable codes is bounded

¯̀≥ H(S) = E{− log2 p(S)} = −
M−1∑
i=0

p(ai) log2 p(ai) (95)

The measure H(S) is called the entropy of a random variable S

The entropy is a measure of the uncertainty of a random variable

Redundancy of a code is given by the difference

% = ¯̀−H(S) =

M−1∑
i=0

p(ai)
(
`(ai)− log2 p(ai)

)
≥ 0 (96)

Redundancy is zero only, if and only if

Kraft inequality is fulfilled with equality (codeword at all terminal nodes)

All probability masses are negative integer powers of two
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Lossless Coding Variable-Length Coding for Scalars

An Upper Bound for the Minimum Average Codeword Length

Upper bound of ¯̀: Choose `(ai) = d− log2 p(ai)e, ∀ai ∈ A

Codewords satisfy Kraft inequality (show using dxe ≥ x)

M−1∑
i=0

2−d− log2 p(ai)e ≤
M−1∑
i=0

2log2 p(ai) =

M−1∑
i=0

p(ai) = 1 (97)

Obtained average codeword length (use dxe < x+ 1)

¯̀=

M−1∑
i=0

p(ai) d− log2 p(ai)e <
M−1∑
i=0

p(ai) (1− log2 p(ai)) = H(S) + 1 (98)

=⇒ Bounds on minimum average codeword length ¯̀
min

H(S) ≤ ¯̀
min < H(S) + 1 (99)
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Lossless Coding Variable-Length Coding for Scalars

Entropy of a Binary Source

A binary source has probabilities p(0) = p and p(1) = 1− p
The entropy of the binary source is given as

H(S) = −p log2 p− (1− p) log2(1− p) = Hb(p) (100)

with Hb(x) being the so-called binary entropy function
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Lossless Coding Variable-Length Coding for Scalars

Relative Entropy or Kullback-Leibler Divergence

Defined as

D(p||q) =

M−1∑
i=0

p(ai) log2

p(ai)

q(ai)
(101)

Divergence inequality (we have already proofed it)

D(p||q) ≥ 0 (equality if and only if p = q) (102)

Note: D(p||q) 6= D(q||p)

What does the measure D(p||q) tell us?
Assume we have an optimal code with an average codeword length equal to
the entropy for a pmf q and apply it to a pmf p
D(p||q) is the difference between average codeword length and entropy

D(p||q) = −
M−1∑
i=0

p(ai) log2 q(ai) +

M−1∑
i=0

p(ai) log2 p(ai)

=

M−1∑
i=0

p(ai)`q(ai)−H(S) = ¯̀
q −H(S) (103)
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Lossless Coding Variable-Length Coding for Scalars

Optimal Prefix Codes

Conditions for optimal prefix codes

1 For any two symbols ai, aj ∈ A with p(ai)> p(aj), the associated codeword
lengths satisfy `(ai) ≤ `(aj)

2 There are always two codewords that have the maximum codeword length
and differ only in the final bit

Justification

1 Otherwise, an exchange of the codewords for the symbols ai and aj would
decrease the average codeword length while preserving the prefix property

2 Otherwise, the removal of the last bit of the codeword with maximum length
would preserve the prefix property and decrease the average codeword length
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Lossless Coding Variable-Length Coding for Scalars

The Huffman Algorithm

How can we generate an optimal prefix code?

The answer to this question was given by D. A. Huffman in 1952

The so-called Huffman algorithm always finds a prefix-free code with
minimum redundancy

For a proof that Huffman codes are optimal instantaneous codes (with
minimum expected length), see Cover and Thomas

General idea

Both optimality conditions are obeyed if the two codewords with maximum
length (that differ only in the final bit) are assigned to the letters ai and aj
with minimum probabilities

The two letters are then treated as a new letter with probability p(ai) + p(aj)

Procedure is repeated for the new alphabet
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Lossless Coding Variable-Length Coding for Scalars

The Huffman Algorithm

Huffman algorithm for given alphabet A with marginal pmf p

1 Select the two letters ai and aj with the smallest probabilities
and create a parent node for the nodes that represent
these two letters in the binary code tree

2 Replace the letters ai and aj by a new letter
with an associated probability of p(ai) + p(aj)

3 If more than one letter remains, repeat the previous steps

4 Convert the binary code tree into a prefix code

Note: There are multiple optimal prefix codes

Assigment of “0” and “1” to tree branches is arbitrary

If some letters have the same probability (at some stage of the algorithm),
there might be multiple ways to select two letters with smallest probabilities

But, all optimal prefix codes have the same average codeword length
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Lossless Coding Variable-Length Coding for Scalars

Example for the Design of a Huffman code

P=0.03 ‘0’ 
‘1’ 

P=0.06 
‘0’ 

‘1’ P=0.13 
‘0’ 

‘1’ P=0.27 
‘0’ 

‘1’ P=0.43 
‘0’ 

‘1’ 

P=0.57 
‘0’ 
‘1’ 

‘0’ 

‘1’ 

P(7)=0.29 

P(6)=0.28 

P(5)=0.16 

P(4)=0.14 

P(3)=0.07 

P(2)=0.03 

P(1)=0.02 

P(0)=0.01  

’11’ 

’10’ 

‘01’ 

‘001’ 

‘0001’ 

‘00001’ 

‘000001’ 

‘000000’ 
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Lossless Coding Variable-Length Coding for Scalars

Conditional Huffman Codes

Random process {Sn} with memory: Design VLC for conditional pmf

Example:
Stationary discrete Markov process, A = {a0, a1, a2}
Conditional pmfs p(a|ak) = P (Sn=a |Sn−1 =ak) with k = 0, 1, 2

a a0 a1 a2 entropy

p(a|a0) 0.90 0.05 0.05 H(Sn|a0) = 0.5690

p(a|a1) 0.15 0.80 0.05 H(Sn|a1) = 0.8842

p(a|a2) 0.25 0.15 0.60 H(Sn|a2) = 1.3527

p(a) 0.64 0.24 0.1 H(S) = 1.2575

Design Huffman code for conditional pmfs

ai
Huffman codes for conditional pmfs Huffman code

for marginal pmfSn−1 = a0 Sn−1 = a1 Sn−1 = a2

a0 1 00 00 1
a1 00 1 01 00
a2 01 01 1 01

¯̀
0 = 1.1 ¯̀

1 = 1.2 ¯̀
2 = 1.4 ¯̀= 1.3556
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Lossless Coding Variable-Length Coding for Scalars

Average Codeword Length for Conditional Huffman Codes

We know: Average codeword length ¯̀
k = ¯̀(Sn−1 =ak) is bounded by

H(Sn|ak) ≤ ¯̀
k < H(Sn|ak) + 1 (104)

with conditional entropy of Sn given the event {Sn−1 =ak}

H(Sn|ak) = H(Sn|Sn−1 =ak) = −
M−1∑
i=0

p(ai|ak) log2 p(ai|ak) (105)

Resulting average codeword length

¯̀=

M−1∑
k=0

p(ak) ¯̀
k (106)

Resulting bounds

M−1∑
k=0

p(ak)H(Sn|Sn−1 =ak) ≤ ¯̀<

M−1∑
k=0

p(ak)H(Sn|Sn−1 =ak) + 1 (107)
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Lossless Coding Variable-Length Coding for Scalars

Conditional Entropy

Lower bound is called conditional entropy H(Sn|Sn−1) of the random
vriable Sn given random variable Sn−1

H(Sn|Sn−1) = E{− log2 p(Sn|Sn−1)}

= =

M−1∑
k=0

p(ak)H(Sn|Sn−1 =ak)

= −
M−1∑
i=0

M−1∑
k=0

p(ai, ak) log2 p(ai|ak), (108)

Minimum average codeword length for conditional code is bounded by

H(Sn|Sn−1) ≤ ¯̀
min < H(Sn|Sn−1) + 1 (109)
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Lossless Coding Variable-Length Coding for Scalars

Conditioning May Reduce Minimum Average Codeword Length

Minimum average codeword length ¯̀
min

H(Sn|Sn−1) ≤ ¯̀
min < H(Sn|Sn−1) + 1 (110)

Conditioning may reduce minimum average codeword length
(use divergence inequality)

H(S)−H(Sn|Sn−1) = −
M−1∑
i=0

M−1∑
k=0

p(ai, ak)
(

log2 p(ai)− log2 p(ai|ak)
)

= −
M−1∑
i=0

M−1∑
k=0

p(ai, ak) log2

p(ai) p(ak)

p(ai, ak)

≥ 0 (111)

Note: Equality for iid process, p(ai, ak) = p(ai) p(ak)

For the example Markov source:
No conditioning: H(S) = 1.2575, `min = 1.3556

Conditioning: H(Sn|Sn−1) = 0.7331, `min = 1.1578
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Lossless Coding Variable-Length Coding for Vectors

Huffman Coding of Fixed-Length Vectors

Consider stationary discrete random sources S = {Sn} with an M -ary
alphabet A = {a0, · · · , aM−1}
N symbols are coded jointly (code vector instead of scalar)

Design Huffman code for joint pmf
p(a0, · · · , aN−1) = P (Sn=a0, · · · , Sn+N−1 =aN−1)

Average codeword length ¯̀
min per symbol is bounded

H(Sn, · · · , Sn+N−1)

N
≤ ¯̀

min <
H(Sn, · · · , Sn+N−1)

N
+

1

N
(112)

Define block entropy

H(Sn, · · · , Sn+N−1)

= E{− log2 p(Sn, · · · , Sn+N−1)}
= −

∑
a0

· · ·
∑
aN−1

p(a0, · · · , aN−1) log2 p(a0, · · · , aN−1) (113)
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Lossless Coding Variable-Length Coding for Vectors

Entropy Rate

Entropy rate

The following limit is called entropy rate

H̄(S) = lim
N→∞

H(S0, · · · , SN−1)

N
(114)

The limit in (114) always exists for stationary sources

Fundamental lossless source coding theorem

Entropy rate H̄(S): Greatest lower bound for the average codeword length ¯̀

per symbol
¯̀≥ H̄(S) (115)

Always asymptotically achievable with block Huffman coding for N →∞
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Lossless Coding Variable-Length Coding for Vectors

Entropy Rate for Special Sources

Entropy rate for iid processes

H̄(S) = lim
N→∞

E{− log2 p(S0, S1, · · · , SN−1)}
N

= lim
N→∞

∑N−1
n=0 E{− log2 p(Sn)}

N
= lim

N→∞
E{− log2 p(Sn)}

= H(S) (116)

Entropy rate for stationary Markov processes

H̄(S) = lim
N→∞

E{− log2 p(S0, S1, · · · , SN−1)}
N

= lim
N→∞

E{− log2 p(S0)}+
∑N−1
n=1 E{− log2 p(Sn|Sn−1)}
N

= lim
N→∞

E{− log2 p(S0)}
N

+ E{− log2 p(Sn|Sn−1)}
= H(Sn|Sn−1) (117)
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Lossless Coding Variable-Length Coding for Vectors

Example for Block Huffman Coding

Example:

Joint Huffman coding of 2 symbols for example Markov source

Efficiency of block Huffman coding for different N

Table sizes for different N

aiak p(ai, ak) codewords

a0a0 0.58 1
a0a1 0.032 00001
a0a2 0.032 00010
a1a0 0.036 0010
a1a1 0.195 01
a1a2 0.012 000000
a2a0 0.027 00011
a2a1 0.017 000001
a2a2 0.06 0011

N ¯̀ NC
1 1.3556 3
2 1.0094 9
3 0.9150 27
4 0.8690 81
5 0.8462 243
6 0.8299 729
7 0.8153 2187
8 0.8027 6561
9 0.7940 19683
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Lossless Coding Variable-Length Coding for Vectors

Huffman Codes for Variable-Length Vectors

Assign codewords to variable-length vectors: V2V codes

Associate each leaf node Lk of the symbol tree with a codeword

Use pmf of leaf nodes p(Lk) for Huffman design

Average number of bits per alphabet letter

¯̀=

∑NL−1
k=0 p(Lk) `k∑NL−1
k=0 p(Lk)Nk

(118)

where Nk denotes number of alphabet letters associated with Lk
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Lossless Coding Variable-Length Coding for Vectors

V2V Code Performance

Example Markov process: H̄(S) = H(Sn|Sn−1) = 0.7331

Faster reduction of ¯̀ with increasing NC compared to fixed-length vector
Huffman coding

ak p(Lk) codewords

a0a0 0.5799 1
a0a1 0.0322 00001
a0a2 0.0322 00010
a1a0 0.0277 00011
a1a1a0 0.0222 000001
a1a1a1 0.1183 001
a1a1a2 0.0074 0000000
a1a2 0.0093 0000001
a2 0.1708 01

NC ¯̀

5 1.1784
7 1.0551
9 1.0049

11 0.9733
13 0.9412
15 0.9293
17 0.9074
19 0.8980
21 0.8891
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Lossless Coding Summary on Variable-Length Coding

Summary on Variable-Length Coding

Uniquely decodable codes

Necessary condition: Kraft inequality

Prefix codes: Instantaneously decodable

Can construct prefix codes for codeword lengths that fulfill Kraft inequality

Bounds for lossless coding

Entropy

Conditional entropy

Block entropy

Entropy rate

Optimal prefix codes

Huffman algorithm for given pmf

Scalar Huffman codes

Conditional Huffman codes

Block Huffman codes

V2V codes
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Lossless Coding Exercises (Set B)

Exercise 3

A fair coin is tossed an infinite number of times. Let Yn be a random variable, with n ∈ Z, that
describes the outcome of the n-th coin toss. If the outcome of the n-th coin toss is head, Yn is
equal to 1; if it is tail, Yn is equal to 0. Now consider the random process X = {Xn}. The
random variables Xn are determined by Xn = Yn + Yn−1, and thus describe the total number
of heads in the n-th and (n− 1)-th coin tosses.

(a) Determine the marginal pmf pXn (xn) and the marginal entropy H(Xn). Is it possible to
design a uniquely decodable code with one codeword per possible outcome of Xn that has
an average codeword length equal to the marginal entropy?

(b) Determine the conditional pmf pXn|Xn−1
(xn|xn−1) and the conditional entropy

H(Xn|Xn−1). Design a conditional Huffman code. What is the average codeword length of
the conditional Huffman code?

(c) Is the random process X a Markov process?

(d) Derive a general formula for the N -th order block entropy HN = H(Xn, · · · , Xn−N+1).
How many symbols have to be coded jointly at minimum for obtaining a code that is more
efficient than the conditional Huffman code developed in (b)?

(e) Calculate the entropy rate H̄(X) of the random process X. Is it possible to design a
variable length code with finite complexity and an average codeword length equal to the
entropy rate? If yes, what requirement has to be fulfilled?
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Lossless Coding Exercises (Set B)

Exercise 4

Given is a discrete iid process X with the alphabet A = {a, b, c, d, e, f, g}. The pmf
pX(x) and 6 example codes are listed in the following table.

x pX(x) A B C D E F
a 1/3 1 0 00 01 000 1
b 1/9 0001 10 010 101 001 100
c 1/27 000000 110 0110 111 010 100000
d 1/27 00001 1110 0111 010 100 10000
e 1/27 000001 11110 100 110 111 000000
f 1/9 001 111110 101 100 011 1000
g 1/3 01 111111 11 00 001 10

(a) Develop a Huffman code for the given pmf pX(x), calculate its average codeword
length and its absolute and relative redundancy.

(b) For all codes A, B, C, D, E, and F, do the following:

Calculate the average codeword length per symbol;
Determine whether the code is a singular code;
Determine whether the code is uniquely decodable;
Determine whether the code is a prefix code;
Determine whether the code is an optimal prefix code.

(c) Briefly describe a process for decoding a symbol sequence given a finite sequence of
K bits that is coded with code F.
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Lossless Coding Exercises (Set B)

Exercise 5

Given is a Bernoulli process X with the alphabet A = {a, b} and the pmf
pX(a) = p, pX(b) = 1− p. Consider the three codes in the following table.

Code A Code B Code C
symbols codeword symbols codeword symbol codeword
aa 1 aa 0001 a 0
ab 01 ab 001 b 1
b 00 ba 01

bb 1

(a) Calculate the average codeword length per symbol for the three codes.

(b) For which probabilities p is the code A more efficient than code B?

(c) For which probabilities p is the simple code C more efficient than both code A
and code B?
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Lossless Coding Exercises (Set B)

Exercise 6

Given is a Bernoulli process B = {Bn} with the alphabet AB = {0, 1}, the pmf
pB(0) = p, pB(1) = 1− p, and 0 ≤ p < 1. Consider the random variable X that
specifies the number of random variables Bn that have to be observed to get
exactly one “1”.

Calculate the entropies H(Bn) and H(X).

For which value of p, with 0 < p < 1, is H(X) four times as large as H(Bn)?

Hint: ∀|a|<1,

∞∑
k=0

ak =
1

1− a

∀|a|<1,

∞∑
k=0

k ak =
a

(1− a)2
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Lossless Coding Exercises (Set B)

Exercise 7

Proof the chain rule for the joint entropy,

H(X,Y ) = H(X) +H(Y |X).

Heiko Schwarz Source Coding and Compression December 7, 2013 104 / 661



o

Lossless Coding Exercises (Set B)

Exercise 8

Investigate the entropy of a function of a random variable X. Let X be a discrete
random variable with the alphabet AX = {0, 1, 2, 3, 4} and the binomial pmf

pX(x) =

 1/16 : x = 0 ∨ x = 4
1/4 : x = 1 ∨ x = 3
3/8 : x = 2

.

(a) Calculate the entropy H(X).

(b) Consider the functions g1(x) = x2 and g2(x) = (x− 2)2.
Calculate the entropies H(g1(X)) and H(g2(X)).

(c) Proof that the entropy H(g(X)) of a function g(x) of a random variable X is
not greater than the entropy of the random variable X,

H(g(X)) ≤ H(X)

Determine the condition under which equality is achieved.
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Lossless Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Introduction
Variable-Length Coding for Scalars
Variable-Length Coding for Vectors
Elias and Arithmetic Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Lossless Coding Elias and Arithmetic Coding

Elias Coding and Arithmetic Coding

Scalar and conditional Huffman codes can be very inefficient

Main drawback of block Huffman codes: Large table sizes

Another class of uniquely decodable codes are Elias and Arithmetic codes

Mapping of a string of N symbols s = {s0, s1, ..., sN−1} onto a string of K
bits b = {b0, b1, ..., bK−1}

γ : s→ b (119)

Decoding or parsing maps the bit string onto the string of symbols

γ−1 : b→ s (120)

Complexity of code construction: Linear per symbol

Suitable for adapting pmfs to instationary statistics
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Lossless Coding Elias and Arithmetic Coding

Idea of Elias Coding

x 

F(x) 

xk 

F(xk-1) 

F(xk) 

xk-1 

p(xk) 

Order symbols or messages

Transmit number in interval [0, 1) which characterizes the symbol or message

Number of transmitted bits depends on probability of the message
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Lossless Coding Elias and Arithmetic Coding

Define an Order of Symbol Sequences

Consider coding of symbol sequences s = {s0, s1, . . . , sN−1}
Realization of sequence of random variables S = {S0, S1, . . . , SN−1}
Number N of symbols is known at encoder and decoder

Each random variable Sn is characterized by an alphabet An of Mn symbols

Statistical properties are characterized by joint pmf

p(s) = P (S=s) = P (S0 =s0, S1 =s1, · · · , SN−1 =sN−1) (121)

Need to define an order for symbol sequences

For example: Symbol sequence sa = {sa0 , sa1 , · · · , saN−1} is less than another

symbol sequence sb = {sb0, sb1, · · · , sbN−1} if and only if there exists an
integer n, with 0 ≤ n < N such that

sak = sbk for k = 0, · · · , n− 1 and san < sbn (122)
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Lossless Coding Elias and Arithmetic Coding

Mapping of Symbol Sequences to Intervals

Joint pmf

p(s) = P (S=s) = P (S0 =s0, S1 =s1, · · · , SN−1 =sN−1) (123)

Using the defined order for symbol sequences, the pmf of s can be written

p(s) = P (S=s) = P (S≤s)− P (S<s) (124)

Mapping of s = {s0, s1, . . . , sN−1} to half-open interval IN ⊂ [0, 1)

IN (s) = [LN , LN+WN ) =
[
P (S<s), P (S≤s)

)
(125)

with

LN = P (S < s) (126)

WN = P (S = s) = p(s) (127)

Heiko Schwarz Source Coding and Compression December 7, 2013 110 / 661



o

Lossless Coding Elias and Arithmetic Coding

Unique Identification: The Intervals are Disjoint

Consider two symbol sequences sa and sb, with sa < sb

Intervals are disjoint if and only if LbN ≥ LaN +W a
N

Proof:

LbN = P (S<sb)

= P ( {S≤sa} ∪ {sa< S< sb})
= P (S≤sa) + P (sa < S < sb)︸ ︷︷ ︸

≥0

≥ P (S≤ sa)

= LaN +W a
N (128)

=⇒ Intervals IaN and IbN do not overlap

=⇒ Any number v in the interval IN (s) uniquely identifies s
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Lossless Coding Elias and Arithmetic Coding

How Many Bits for Identifying an Interval?

Identify an interval IN (s) for a sequence s by a number v

Number v can be represented as a binary fraction with K bits

v =

K−1∑
i=0

bi · 2i−1 = 0.b0b1 · · · bK−1 ∈ IN (s) (129)

For identifying s: Transmit bit sequence b = {b0, b1, · · · , bK−1}
Elias code: Assignment of bit sequences b to symbol sequences s

Question: How many bits do we need to uniquely identify an interval IN (s)?

Intuitively: Size of interval, given by p(s), governs number K of bits that are
needed to identify the interval

p(s)=1/2 → B={.0, .1}
p(s)=1/4 → B={.00, .01, .10, .11}
p(s)=1/8 → B={.000, .001, .010, .011, .100, .101, .110, .111}
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Lossless Coding Elias and Arithmetic Coding

How Many Bits for Identifying an Interval?

Goal: Choose real number v ∈ IN that can be represented with the
minimum amount of bits

Distance between successive binary fractions of K bits is 2−K

To be sure that a binary fraction of K bits falls inside an interval
of width WN , we need

2−K ≤ WN

K ≥ − log2WN (130)

Hence, we choose

K = K(s) = d− log2WNe = d− log2 p(s)e (131)

The binary number v identifying the interval IN can be determined by

v = dLN · 2Ke · 2−K (132)
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Lossless Coding Elias and Arithmetic Coding

Verification of Selection of Bits and Bitstring

Binary number v identifying the interval In

v = dLN · 2Ke · 2−K with K = d− log2WNe (133)

With x ≤ dxe and dxe < x+ 1, we obtain

LN ≤ v < LN + 2−K (134)

Using the expression for the required number of bits

K = d− log2 p(s)e ≥ − log2 p(s) =⇒ 2−K ≤ p(s) = WN (135)

yields
LN ≤ v < LN +WN (136)

The representative v = 0.b0b1 . . . bK−1 always lies inside the interval IN (s)

=⇒ Message s can be uniquely decoded from the transmitted bit string
b = {b0, b1, . . . , bK−1} of K(s) = d− log2 p(s)e bits
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Lossless Coding Elias and Arithmetic Coding

Redundancy of Elias Coding

Average codeword length per symbol

¯̀=
E{K(S)}

N
=
E
{⌈
− log2 p(S)

⌉}
N

(137)

Applying inequalities x ≤ dxe and dxe < x+ 1, we obtain

E{− log2 p(S)}
N

≤ ¯̀<
E{1− log2 p(S)}

N
(138)

Average codeword length is bounded

HN (S)

N
≤ ¯̀≤ HN (S)

N
+

1

N
(139)

Note: Same bounds as for block Huffman codes

For specific application: One additional bit required (see exercise)

Question: What is the advantage?
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Lossless Coding Elias and Arithmetic Coding

Derivation of Iterative Algorithm for Elias Coding

Iterative construction of codewords

Consider sub-sequences s(n) = {s0, s1, · · · , sn−1} with 1 ≤ n ≤ N

Interval width Wn+1 for the sub-sequence s(n+1) = {s(n), sn}

Wn+1 = P
(
S(n+1) =s(n+1)

)
= P

(
S(n) =s(n), Sn=sn

)
= P

(
S(n) =s(n)

)
· P
(
Sn=sn

∣∣ S(n) =s(n)
)

Iteration rule for interval width

Wn+1 = Wn · p(sn | s0, s1, . . . , sn−1 ) (140)

Since p(sn | s0, s1, . . . , sn−1 ) ≤ 1, it follows

Wn+1 ≤Wn (141)
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Lossless Coding Elias and Arithmetic Coding

Derivation of Iterative Algorithm for Elias Coding

Derivation for lower interval border Ln+1 for the
sub-sequence s(n+1) = {s(n), sn}

Ln+1 = P
(
S(n+1)<s(n+1)

)
= P

(
S(n)<s(n)

)
+ P

(
S(n) =s(n), Sn<sn

)
= P

(
S(n)<s(n)

)
+ P

(
S(n) =s(n)

)
· P
(
Sn<sn

∣∣S(n) =s(n)
)

Iteration rule of lower interval boundary

Ln+1 = Ln +Wn · c(sn | s0, s1, . . . , sn−1 ) (142)

with the cmf c(·) being defined as

c(sn | s0, s1, . . . , sn−1 ) =
∑

∀a∈An: a<sn

p(a | s0, s1, . . . , sn−1 ) (143)

Note: The function c(·) excludes the current symbol

Since Wn · c(sn | s0, s1, . . . , sn−1 ) ≥ 0, it follows

Ln+1 ≥ Ln (144)
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Lossless Coding Elias and Arithmetic Coding

Intervals Are Nested

Iteration rules:

Wn+1 = Wn · P
(
Sn = sn

∣∣S(n) = s(n)
)

Ln+1 = Ln +Wn · P
(
Sn < sn

∣∣S(n) = s(n)
)

We have already shown: Ln+1 ≥ Ln
Now, we consider upper interval boundary Ln+1 +Wn+1

Ln+1 +Wn+1 = Ln +Wn · P
(
Sn < sn

∣∣S(n) = s(n)
)

+Wn · P
(
Sn = sn

∣∣S(n) = s(n)
)

= Ln +Wn · P
(
Sn ≤ sn

∣∣S(n) = s(n)
)

= Ln +Wn −Wn · P
(
Sn > sn

∣∣S(n) = s(n)
)︸ ︷︷ ︸

≥0

≤ Ln +Wn (145)

=⇒ Intervals are nested: In+1 ⊂ In
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Lossless Coding Elias and Arithmetic Coding

Iterative Algorithm for IID and Markov Sources

Derivation above for general case of dependent and differently distributed
random variables (may even have different alphabets)

Initialization

W0 = 1 (146)

L0 = 0 (147)

For iid sources, interval refinement can be simplified

Wn+1 = Wn · p(sn) (148)

Ln+1 = Ln +Wn · c(sn) (149)

For Markov sources: Conditional pmf p(sn|sn−1) and cmf c(sn|sn−1)

Wn+1 = Wn · p(sn|sn−1) (150)

Ln+1 = Ln +Wn · c(sn|sn−1) (151)

Non-stationary sources: Probabilities p(·) can be adapted during coding
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Lossless Coding Elias and Arithmetic Coding

Elias Coding Example: IID Source

Example for an iid source for which an optimum Huffman code exists

symbol ak pmf p(ak) Huffman code cmf c(ak)

a0=‘A’ 0.25 = 2−2 00 0.00 = 0
a1=‘B’ 0.25 = 2−2 01 0.25 = 2−2

a2=‘C’ 0.50 = 2−1 1 0.50 = 2−1

Suppose we intend to send the symbol string s = “CABAC”

Using the Huffman code, the bit string would be b = 10001001 (8 bits)

An alternative to Huffman coding is Elias coding

Probability of the symbol string “CABAC” is given by

p(s) = p(′C ′) · p(′A′) · p(′B′) · p(′A′) · p(′C ′) =
1

2

1

4

1

4

1

4

1

2
=

1

256

The size of the bit string is

K = d− log2 p(s)e = 8 bits
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Lossless Coding Elias and Arithmetic Coding

Encoding Algorithm for Elias Codes

Encoding algorithm:

1 Given is a sequence {s0, · · · , sN−1} of N symbols

2 Initialization of the iterative process by W0 = 1, L0 = 0

3 For each n = 0, 1, · · · , N − 1, determine the interval In+1 by

Wn+1 = Wn · p(sn|s0, · · · , sn−1)

Ln+1 = Ln +Wn · c(sn|s0, · · · , sn−1)

4 Determine the codeword length by K = d− log2WNe
5 Transmit the codeword b(K) of K bits that represents

the fractional part of v = dLN 2Ke 2−K
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Lossless Coding Elias and Arithmetic Coding

Example for Elias Encoding

s0=‘C’ s1=‘A’ s2=‘B’

W1 = W0 · p(‘C’) W2 = W1 · p(‘A’) W3 = W2 · p(‘B’)
= 1 · 2−1 = 2−1 = 2−1 · 2−2 = 2−3 = 2−3 · 2−2 = 2−5

= (0.1)2 = (0.001)2 = (0.00001)2

L1 = L0 +W0 · c(‘C’) L2 = L1 +W1 · c(‘A’) L3 = L2 +W2 · c(‘B’)
= 0 + 1 · 2−1 = 2−1 + 2−1 · 0 = 2−1 + 2−3 · 2−2

= 2−1 = 2−1 = 2−1 + 2−5

= (0.1)2 = (0.100)2 = (0.10001)2

s3=‘A’ s4=‘C’ termination

W4 = W3 · p(‘A’) W5 = W4 · p(‘C’) K = d− log2 W5e = 8
= 2−5 · 2−2 = 2−7 = 2−7 · 2−1 = 2−8

= (0.0000001)2 = (0.00000001)2 v =
⌈
L5 2K

⌉
2−K

L4 = L3 +W3 · c(‘A’) L5 = L4 +W4 · c(‘C’) = 2−1 + 2−5 + 2−8

= (2−1 + 2−5) + 2−5 · 0 = (2−1 + 2−5) + 2−7 · 2−1

= 2−1 + 2−5 = 2−1 + 2−5 + 2−8 b = ‘10001001′

= (0.1000100)2 = (0.10001001)2

Heiko Schwarz Source Coding and Compression December 7, 2013 122 / 661



o

Lossless Coding Elias and Arithmetic Coding

Illustration of Iteration

C 

B 

A 

0 

1 

CC 

CB 

CA 

0.12 

1.02 

CAC 

CAB 

CAA 

0.1002 

0.1012 

CABC 

CABB 

CABA 

0.100012 

0.100102 

CABAC 

CABAB 

CABAA 

0.10001002 

0.10001012 

0.100010012 

0.100010102 

0.100010012 

CABAC 
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Lossless Coding Elias and Arithmetic Coding

Decoding Algorithm for Elias Codes

Decoding algorithm:

1 Given is the number N of symbols to be decoded and
a codeword b(K) = {b0, · · · , bK−1} of KN bits

2 Determine the interval representative v according to

v =

K−1∑
i=0

bi 2−i

3 Initialization of the iterative process by W0 = 1, L0 = 0

4 For each n = 0, 1, · · · , N − 1, do the following:

1 For each ai ∈ An, determine the interval In+1(ai) by

Wn+1(ai) = Wn · p(ai|s0, . . . , sn−1)

Ln+1(ai) = Ln +Wn · c(ai|s0, . . . , sn−1)

2 Select the letter ai ∈ An for which v ∈ In+1(ai)
and set sn = ai, Wn+1 = Wn+1(ai), Ln+1 = Ln+1(ai)
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Lossless Coding Elias and Arithmetic Coding

Properties of Elias Codes

Efficiency

Bounds on average codeword length are the same as for block Huffman codes

Concatenations cannot always be decoded using iterative procedure

Issue can be solved by adding one bit per message (see exercise)

Block Huffman codes of same size N are optimal

=⇒ No higher efficiency than block Huffman codes of same size

Code construction

Can iteratively construct the codeword for a given message

Don’t need to construct and store the entire code table

Easy to incorporate adaptation of probabilities to source statistics

=⇒ That’s the advantage of Elias codes

Are there any issues?

Require extremely high precision arithmetic for calculating interval size and
lower interval boundary for long messages

Solution: Approximation using fixed-precision integer arithmetic
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Lossless Coding Elias and Arithmetic Coding

Arithmetic Coding

Elias coding

Very efficient for long symbol sequences (if suitable probabilities are used)

Simple codeword construction

Do not need to store codeword tables

Problem: Precision requirement for Wn and Ln

Arithmetic coding

Fixed-precision variant of Elias coding

Can be realized with standard precision integer arithmetic

Loss in efficiency due to fixed-precision arithmetic is negligible

Following approximations are used

=⇒ Represent probabilities with fixed-precision integers

=⇒ Represent interval width with fixed-precision integers

=⇒ Output bits as soon as they cannot be modified in following steps
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Lossless Coding Elias and Arithmetic Coding

Quantization of Pmf and Cmf

Represent pmfs p(a) and cmfs c(a) by V -bit integers pV (a) and cV (a)

p(a) = pV (a) · 2−V (152)

c(a) = cV (a) · 2−V =
∑
ai<a

pV (ai) · 2−V (153)

Following condition has to be fulfilled(∑
∀ai

pV (ai)

)
· 2−V ≤ 1 (154)

Simple (but not necessarily best) approach

pV (ai) =
⌊
p(ai) · 2V

⌋
(155)

Note: V must be so large that pV (ai) > 0 for all ai
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Lossless Coding Elias and Arithmetic Coding

Quantization of Interval Width

Observation: Elias code remains decodable if intervals are always nested

0 < Wn+1 ≤Wn · p(sn) (156)

=⇒ Rounding down of Wn ·p(sn) at each iteration (for fixed-precision rep.)

Represent Wn by U -bit integer An and integer zn ≥ U

Wn = An · 2−zn (157)

Initialization: Approximate W0 = 1 by

A0 = 2U − 1 and z0 = U (158)

Restriction for An

2U−1︸ ︷︷ ︸
max. precision

≤ An < 2U︸︷︷︸
U-bit integer

(159)
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Lossless Coding Elias and Arithmetic Coding

Rounding in Interval Refinement

Representation of interval width

Wn = An · 2−zn with 2U−1 ≤ An < 2U (160)

Interval refinement for arbitrary precision

Wn+1 = Wn · p(sn)

An+1 · 2−zn+1 = An · 2−zn · pV (sn) · 2−V
=
(
An · pV (sn) · 2−yn+1

)
· 2−zn−V+yn+1 (161)

Interval refinement for fixed-precision arithmetic

An+1 =
⌊
An · pV (sn) · 2−yn+1

⌋
(simple right shift by yn+1 bits) (162)

zn+1 = zn + V − yn+1 (163)

Choose yn+1 so that 2U−1 ≤ An+1 < 2U (some comparison operations)

yn+1 =
⌈

log2(An · pV (sn) + 1)
⌉︸ ︷︷ ︸

pos. of most-sign. bit in AnpV (sn)

− U (164)
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Lossless Coding Elias and Arithmetic Coding

Analysis of Binary Representations

Binary representation of interval width Wn = An · 2−zn :

Wn = 0.

zn bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

1xx · · ·x︸ ︷︷ ︸
U bits

000 · · ·

Binary representation of cmf c(sn) = cV (sn) · 2−V :

c(sn) = 0. xxx · · ·x︸ ︷︷ ︸
V bits

000 · · ·

Binary representation of product Wn · c(sn) (added to Ln in update):

Wn · c(sn) = 0.

zn+V bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

xxx · · ·x︸ ︷︷ ︸
U+V bits

000 · · ·

Heiko Schwarz Source Coding and Compression December 7, 2013 130 / 661



o

Lossless Coding Elias and Arithmetic Coding

Effect on Lower Interval Boundary

Remember: Update of lower interval boundary Ln+1 = Ln +Wn · c(sn)

Binary representation of the product Wn · c(sn):

Wn · c(sn) = 0.

zn+V bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

xxx · · ·x︸ ︷︷ ︸
U+V bits

000 · · ·

What is the effect on lower interval boundary

Ln = 0.

zn−U bits︷ ︸︸ ︷
aaaaa · · · a︸ ︷︷ ︸
zn−cn−U
settled bits

0111111 · · · 1︸ ︷︷ ︸
cn

outstanding bits

xxxxx · · ·x︸ ︷︷ ︸
U+V

active bits

00000 · · ·︸ ︷︷ ︸
trailing bits

Trailing bits: Equal to 0, but maybe changed later
Active bits: Directly modified by the update Ln+1 = Ln +Wn · c(sn)
Outstanding bits: May be modified by a carry from the active bits
Settled bits: Not modified in any following interval update
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Lossless Coding Elias and Arithmetic Coding

Representation of Lower Interval Boundary

Lower interval boundary Ln

Ln = 0.

zn−U bits︷ ︸︸ ︷
aaaaa · · · a︸ ︷︷ ︸
zn−cn−U
settled bits

0111111 · · · 1︸ ︷︷ ︸
cn

outstanding bits

xxxxx · · ·x︸ ︷︷ ︸
U+V

active bits

00000 · · ·︸ ︷︷ ︸
trailing bits

Active bits can be represented by an (U + V )-bit integer Bn

Outstanding bits can be represented by a counter cn

Settled bits are output as soon as they become settled

Total number of bits to output is

K = d− log2WNe = zn − blog2ANc = zn − U + 1 (165)

Termination of arithmetic coding
=⇒ Output all outstanding bits
=⇒ Output most significant bit of (U + V )-integer Bn
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Lossless Coding Elias and Arithmetic Coding

Overview of Process of Arithmetic Coding

Initialization:

Initialize integer representation of interval width: A0 = 2U − 1

Initialize U + V active bits: B0 = 0

Initialize number of outstandig bits: c0 = 0

Iterative coding (for n = 0 to n = N − 1):

Calculate product A∗n+1 = An · pV (sn)

Determine bit shift parameter yn+1 (check first bit equal to “1” in A∗n+1)

Update interval width: An+1 = A∗n+1 >> yn+1

Output settled bits

Update active bits Bn+1 and counter cn+1 for outstanding bits

Termination

Output outstanding bits

Output most significant bit of (U + V )-integer BN
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Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding

Consider iid process with symbol alphabet A = {M, I,S,P}
Marginal pmf given by p(ai) = {1/11, 4/11, 4/11, 2/11}
Consider arithmetic coding with V = 4 and U = 4

Consider coding of symbol sequence “MISSISSIPPI”

Preparation: Quantization of pmf (and cmf) with V = 4 bits

ai p(ai) p(ai) · 24 pV (ai) cV (ai)
M 1/11 16/11 ≈ 1.45 1 0
I 4/11 64/11 ≈ 5.82 6 1
S 4/11 64/11 ≈ 5.82 6 7
P 2/11 32/11 ≈ 2.91 3 13

Note: Quantized pmf pQ(an) fulfills the requirement
∑
pQ(an) ≤ 1∑

∀ai

pQ(ai) =
∑
∀ai

pV (ai) · 2−4 = 16 · 2−4 = 1
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Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 1

sn pV cV parameter updates & output

A0 = 15 = ’1111’

initialization c0 = 0 (’’)

B0 = 0 = ’0000 0000’

bitstream = “”

“M” 1 0 A0 · pV = 15 · 1 = 15 = ’0000 1111’

B0 +A0 · cV = 0 + 15 · 0 = 0 = ’0 0000 0000’

y1 = 0

A1 = ’1111’ = 15

c1 = 1 (’0’)

B1 = ’0000 0000’ = 0

output = “000”

bitstream = “000”
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Example for Arithmetic Coding – Step 2

sn pV cV parameter updates & output

A1 = 15 = ’1111’

after step 1 c1 = 1 (’0’)

B1 = 0 = ’0000 0000’

bitstream = “000”

“I” 6 1 A1 · pV = 15 · 6 = 90 = ’0101 1010’

B1 +A1 · cV = 0 + 15 · 1 = 15 = ’0 0000 1111’

y2 = 3

A2 = ’1011’ = 11

c2 = 1 (’0’)

B2 = ’0001 1110’ = 30

output = “0”

bitstream = “0000”
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Example for Arithmetic Coding – Step 3

sn pV cV parameter updates & output

A2 = 11 = ’1011’

after step 2 c2 = 1 (’0’)

B2 = 30 = ’0001 1110’

bitstream = “0000”

“S” 6 7 A2 · pV = 11 · 6 = 66 = ’0100 0010’

B2 +A2 · cV = 30 + 11 · 7 = 107 = ’0 0110 1011’

y3 = 3

A3 = ’1000’ = 8

c3 = 1 (’0’)

B3 = ’1101 0110’ = 214

output = “0”

bitstream = “0000 0”
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Example for Arithmetic Coding – Step 4

sn pV cV parameter updates & output

A3 = 8 = ’1000’

after step 3 c3 = 1 (’0’)

B3 = 214 = ’1101 0110’

bitstream = “0000 0”

“S” 6 7 A3 · pV = 8 · 6 = 48 = ’0011 0000’

B3 +A3 · cV = 214 + 8 · 7 = 270 = ’1 0000 1110’

y4 = 2

A4 = ’1100’ = 12

c4 = 1 (’0’)

B4 = ’0011 1000’ = 56

output = “10” (invert outstanding bits)

bitstream = “0000 010”
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Example for Arithmetic Coding – Step 5

sn pV cV parameter updates & output

A4 = 12 = ’1100’

after step 4 c4 = 1 (’0’)

B4 = 56 = ’0011 1000’

bitstream = “0000 010”

“I” 6 1 A4 · pV = 12 · 6 = 72 = ’0100 1000’

B4 +A4 · cV = 56 + 12 · 1 = 68 = ’0 0100 0100’

y5 = 3

A5 = ’1001’ = 9

c5 = 1 (’0’)

B5 = ’1000 1000’ = 136

output = “0”

bitstream = “0000 0100”
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Example for Arithmetic Coding – Step 6

sn pV cV parameter updates & output

A5 = 9 = ’1001’

after step 5 c5 = 1 (’0’)

B5 = 136 = ’1000 1000’

bitstream = “0000 0100”

“S” 6 7 A5 · pV = 9 · 6 = 54 = ’0011 0110’

B5 +A5 · cV = 136 + 9 · 7 = 68 = ’0 1100 0111’

y6 = 2

A6 = ’1101’ = 13

c6 = 3 (’011’)

B6 = ’0001 1100’ = 28

output = “”

bitstream = “0000 0100”
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Example for Arithmetic Coding – Step 7

sn pV cV parameter updates & output

A6 = 13 = ’1101’

after step 6 c6 = 3 (’011’)

B6 = 28 = ’0001 1100’

bitstream = “0000 0100”

“S” 6 7 A6 · pV = 13 · 6 = 78 = ’0100 1110’

B6 +A6 · cV = 28 + 13 · 7 = 119 = ’0 0111 0111’

y7 = 3

A7 = ’1001’ = 9

c7 = 1 (’0’)

B7 = ’1110 1110’ = 238

output = “011”

bitstream = “0000 0100 011”
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Example for Arithmetic Coding – Step 8

sn pV cV parameter updates & output

A7 = 9 = ’1001’

after step 7 c7 = 1 (’0’)

B7 = 238 = ’1110 1110’

bitstream = “0000 0100 011”

“I” 6 1 A7 · pV = 9 · 6 = 54 = ’0011 0110’

B7 +A7 · cV = 238 + 9 · 1 = 247 = ’0 1111 0111’

y8 = 2

A8 = ’1101’ = 13

c8 = 3 (’011’)

B8 = ’1101 1100’ = 220

output = “”

bitstream = “0000 0100 011”
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Example for Arithmetic Coding – Step 9

sn pV cV parameter updates & output

A8 = 13 = ’1101’

after step 8 c8 = 3 (’011’)

B8 = 220 = ’1101 1100’

bitstream = “0000 0100 011”

“P” 3 13 A8 · pV = 13 · 3 = 39 = ’0010 0111’

B8 +A8 · cV = 220 + 13 · 13 = 389 = ’1 1000 0101’

y9 = 2

A9 = ’1001’ = 9

c9 = 1 (’0’)

B9 = ’0001 0100’ = 20

output = “1001” (invert outstanding bits)

bitstream = “0000 0100 0111 001”
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Example for Arithmetic Coding – Step 10

sn pV cV parameter updates & output

A9 = 9 = ’1001’

after step 9 c9 = 1 (’0’)

B9 = 20 = ’0001 0100’

bitstream = “0000 0100 0111 001”

“P” 3 13 A9 · pV = 9 · 3 = 27 = ’0001 1011’

B9 +A9 · cV = 20 + 9 · 13 = 137 = ’0 1000 1001’

y10 = 1

A10 = ’1101’ = 13

c10 = 1 (’0’)

B10 = ’0100 1000’ = 72

output = “010”

bitstream = “0000 0100 0111 0010 10”
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Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Step 11

sn pV cV parameter updates & output

A10 = 13 = ’1101’

after step 10 c10 = 1 (’0’)

B10 = 72 = ’0100 1000’

bitstream = “0000 0100 0111 0010 10”

“I” 6 1 A10 · pV = 13 · 6 = 78 = ’0100 1110’

B10 +A10 · cV = 72 + 13 · 1 = 85 = ’0 0101 0101’

y11 = 3

A11 = ’1001’ = 9

c11 = 1 (’0’)

B11 = ’1010 1010’ = 170

output = “0”

bitstream = “0000 0100 0111 0010 100”
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Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Termination

sn pV cV parameter updates & output

A11 = 9 = ’1001’

after step 11 c11 = 1 (’0’)

B11 = 170 = ’1010 1010’

bitstream = “0000 0100 0111 0010 100”

termination output = “01” (outstanding + first bit of B11)

bitstream = “0000 0100 0111 0010 1000 1”

Transmitted bitstream: “0000 0100 0111 0010 1000 1”

Number of transmitted bits: K = 21
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Lossless Coding Elias and Arithmetic Coding

Example for Arithmetic Coding – Efficiency

Number of written bits using arithmetic coding: KAC = 21

Number of bits for Elias coding

KEC =
⌈
− log2 p(“MISSISSIPPI”)

⌉
=

⌈
− log2

(
1

11
· 4

11
· 4

11
· 4

11
· 4

11
· 4

11
· 4

11
· 4

11
· 2

11
· 2

11
· 4

11

)⌉
=
⌈
− log2(0.000 000 918 · · · )

⌉
=
⌈
20.053 · · ·

⌉
= 21

Scalar Huffman coding

ai p(ai) codeword
M 1/11 000
I 4/11 01
S 4/11 1
P 2/11 001

Bitstream:
“0000 1110 1110 1001 0010 1”

Number of written bits: KHC = 21
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Lossless Coding Elias and Arithmetic Coding

Efficiency of Arithmetic Coding

Excess rate due to down rounding of interval width

∆` =
⌈
− log2WN

⌉
−
⌈
− log2 p(s)

⌉
< 1 + log2

p(s)

WN
(166)

Upper bound for increase in codeword length per symbol of arithmetic coding
relative to infinite precision Elias coding

∆¯̀<
1

N
+ log2

(
1 + 21−U)− log2

(
1− 2−V

pmin

)
(167)

For a derivation see Wiegand, Schwarz, page 51-52

Example:

number of coded symbols N = 1000,
precision for representing probabilities V = 16,
precision for representing intervals U = 12,
minimum probablity pmin = 0.02

=⇒ Increase in codeword length is less than 0.003 bit per symbol

Heiko Schwarz Source Coding and Compression December 7, 2013 148 / 661



o

Lossless Coding Elias and Arithmetic Coding

Binary Arithmetic Coding

Complexity reduction: Most popular type of arithmetic coding

MQ-coder in JPEG 2000
M-coder in H.264/AVC and H.265/HEVC

Binarization of S ∈ {a0, a1, . . . , aM−1} produces C ∈ {0, 1}
Any prefix code can be used for binarization

Example in table: Unary truncated binarization

Sn number of bins B C0 C1 C2 · · · CM−2 CM−1

a0 1 1
a1 2 0 1
...

...
...

...
. . .

aM−2 M − 2 0 0 0 · · · 0 1
aM−1 M − 2 0 0 0 · · · 0 0

Entropy and efficiency of coding unchanged due to binarization S 7→ C

H(S) = E{− log2 p(S)} = E{− log2 p(C)} = H(C)
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Lossless Coding Comparison of Lossless Coding Techniques

Comparison of Lossless Coding Techniques

Experimental determination of average codeword length

Coding of 1 000 000 realizations of our example stationary Markov source

Determine average codeword length for sequences of 1 to 1000 symbols

Tested lossless coding techniques

Scalar Huffman coding (3 codewords)

Conditional Huffman coding (9 codewords)

Block Huffman coding of 5 symbols (243 codewords)

Huffman coding for variable-length vectors (17 codewords)

Arithmetic coding with U = V = 16

Bounds for lossless coding

Marginal entropy H(S) for coding of a single symbol

Entropy rate H̄(S) for coding of infinite many symbols

Instantaneous entropy rate H̄inst(S, L) for coding L symbols

H̄inst(S, L) =
1

L
H(S0, S1, . . . , SL−1) (168)
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Lossless Coding Comparison of Lossless Coding Techniques

Comparison of Lossless Coding Techniques
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Lossless Coding Sources with Memory and Instationary Sources

Conditional and Adaptive Codes

Question: How can we efficiently code sources with memory and/or with
varying statistics

Conditional Huffman coding (adaptive for instationary sources)

The resulting number of code tables is often too large in practice
Adaptation of Huffman code tables is often considered as to complex

Block Huffman coding (adaptive for instationary sources)

Code tables are typically too large to be used in practice
Adaptation of Huffman code tables is often considered as to complex

Conditional and adaptive arithmetic coding

Easy to incorporate conditional probabilities as well as varying probabilities
In adaptive arithmetic coding, probabilities p(ak) are estimated/adapted
simultaneously at encoder and decoder
Statistical dependencies can be exploited using so-called context modeling
techniques: Conditional probabilities p(ak|zk) with zk being a context/state
that is simultaneously computed at encoder and decoder based on already
transmitted symbols
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Lossless Coding Sources with Memory and Instationary Sources

Forward and Backward Adaptation

The two basic approaches for adaptation are

Forward adaptation:

Gather statistics for a large enough block of source symbols
Transmit adaptation signal to decoder as side information
Disadvantage: Increased bit rate due to side information

Backward adaptation:

Gather statistics simultaneously at coder and decoder
Drawback: Error resilience

With today’s packet-switched transmission systems, an efficient combination of
the two adaptation approaches can be achieved:

1 Gather statistics for the entire packet and provide initialization of entropy
code at the beginning of the packet

2 Conduct backwards adaptation for each symbol inside the packet in order to
minimize the size of the packet
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Lossless Coding Sources with Memory and Instationary Sources

Forward and Backward Adaptation
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Lossless Coding Chapter Summary

Chapter Summary

Uniquely decodable codes and bounds for lossless coding

Kraft inequality, prefix codes

Entropy, conditional entropy, block entropy

Entropy rate, instantaneous entropy rate

Huffman codes for scalars and vectors (optimal prefix codes)

Efficient and simple entropy coding method

Needs a code table

Can be inefficient for certain probabilities

Difficult to use for sources with memory or time-varying statistics

Arithmetic coding (fixed-precision variant of Elias coding)

Universal method for encoding strings of symbols

Does not need a code table, but a table for storing probabilities

Approaches entropy for long symbol sequences

Well suited for exploiting statistical dependencies and coding of instationary
sources (probability updates)
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Lossless Coding Exercises (Set C)

Exercise 9 – Part 1/2

Given is a Bernoulli process X = {Xn} with the alphabet A = {a, b} and the pmf
pX(a) = 1/4 and pX(b) = 3/4.

(a) Consider Elias coding and derive the codeword for the symbol sequence
“abba” using the iterative encoding procedure.

(b) Develop the complete code for an Elias coding of 3 symbols (i.e., determine
the codewords for all symbol sequences that consist of 3 symbols).

Determine the average codeword length per symbol and compare it to the
entropy rate and the average codeword length per symbol for a joint Huffman
code for sequences of 3 symbols.

Is the Elias code more efficient than the Huffman code for the same number
of jointly coded symbols?

(c) Decode the 3-symbol sequence {s0, s1, s2} represented by the bit string “100”
using the iterative Elias decoding algorithm.
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Lossless Coding Exercises (Set C)

Exercise 9 – Part 2/2

(d) Consider the case in which the developed Elias code is used for coding
multiple 3-symbol sequences. The codewords for the 3-symbol sequences are
concatenated. Given is a bit string “10011100”.

Decode the symbol sequence using the developed code table.

Decode the first three symbols (i.e., the first 3-symbol sequence) using the
iterative decoding algorithm.

What do you observe?

(e) How many bits have to be used for a codeword in order to make an Elias code
uniquely decodable using the iterative decoding algorithm for a sequence of
codewords.

Derive a lower and upper bound for the average codeword length per symbol
for the corresponding Elias code if a codeword is generated for a sequences of
N symbols.
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Lossless Coding Exercises (Set C)

Exercise 10 – Part 1/3 (Optional Self Study)

Given is a discrete iid process X = {Xn} with the symbol alphabet
A = {’M’, ’I’, ’S’, ’P’} and the pmf

pX(x) =


0.1 : x = ’M’
0.3 : x = ’I’
0.4 : x = ’S’
0.2 : x = ’P’

Consider binary arithmetic coding of the given source.

(a) Use a fixed-length code for binarizing the given source X.

Verify on the given example that binarization does not have any impact on
the coding efficiency (assuming a successive coding that achieves the entropy
rate).

What binarization schemes can be used in the context of binary arithmetic
coding?

Show that binarization does not change the lower bound for the average
codeword length per symbol.
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Lossless Coding Exercises (Set C)

Exercise 10 – Part 2/3 (Optional Self Study)

(b) For arithmetic coding, the probability masses have to be represented with
finite precision. Round the pmfs for the binary symbols to a precision of
V = 4 bit.

What conditions need to be fulfilled for the rounded version of a pmf? Are
these conditions fulfilled for the example?

Investigate the impact on the average codeword length per symbol of the
given source X (assuming that the following arithmetic coding process does
not have any negative impact on the coding efficiency).

(c) For arithmetic coding, the interval width has to be represented with finite
precision.

Show that, for a coding of N symbols, the corresponding increase in average
codeword length per arithmetically coded symbol is less than
1/N + log2(1 + 21−U ) bits, if U is the number of bits used for representing
the interval width.

Determine the minimum precision U that is required to guarantee that the
coding efficiency loss due to rounding the interval width is less than 0.1%
when more than 10000 symbols X are transmitted.
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Lossless Coding Exercises (Set C)

Exercise 10 – Part 3/3 (Optional Self Study)

(d) Consider arithmetic coding that uses U bits for representing the interval width
and V bits for representing the probability masses.

Show that the lower interval boundaries can be represented by a counter and
an integer value of U + V bits.

(e) Consider binary arithmetic coding for the given source X with fixed-length
binarization, V = 4 bits for representing the probability masses, and U = 4
bits for representing the interval width.

Generate the arithmetic codeword for the symbol sequence “MISS”.

Compare the length of the arithmetic codeword with the length of the
codeword that would be generated by Elias coding.
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Rate-Distortion Theory

Rate-Distortion Theory
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Rate-Distortion Theory

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Rate-Distortion Theory

Operational Rate-Distortion Function
Information Rate-Distortion Function
Shannon Lower Bound
Rate-Distortion Function for Gaussian Sources

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Rate-Distortion Theory Introduction

Rate-Distortion Theory – Motivation

Lossy coding: Decoded signal is an approximation of original

Rate-distortion theory: Information theoretical bounds for lossy compression

Results are obtained without consideration of a specific coding method

Goal of rate-distortion theory is to calculate the minimum transmission bit
rate for a given distortion and source

Example for a rate-distortion function of a discrete iid source

1
0
0

€ 

(H(S),Dmin = 0)

€ 

(R = 0,D = Dmax )

€ 

D
Dmax

Rate Distortion Function 
€ 

R
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Rate-Distortion Theory Introduction

Transmission System and Variables

Transmission system

Coder Decoder Source Sink 

Distortion 

Bit-Rate 
€ 

D

€ 

S

€ 

S'

€ 

R

Derivation in two steps

Define S, S′, coder/decoder, distortion D and rate R

Establish a functional relationship between S, S′, D, and R

For two types of random variables

Discrete random variables

Continuous-amplitude random variables (Gaussian, Laplacian, etc.)
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Rate-Distortion Theory The Operational Rate-Distortion Function

General Structure of Lossy Source Codecs

Encoder:

Irreversible encoder mapping α : s→ i

Lossless mapping γ : i→ b

Decoder:

Lossless mapping γ−1 : b→ i

Decoder mapping β : i→ s′
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Rate-Distortion Theory The Operational Rate-Distortion Function

Source Codes

A source code Q = (α, β, γ) is given by an encoder mapping α, a decoder
mapping β and a lossless mapping γ

Special case: N -dimensional block source code QN = {αN , βN , γN}
Blocks of N consecutive input samples are independently coded
Each block of input samples s(N) = {s0, · · · , sN−1} is mapped to a vector of
K quantization indexes

i(K) = αN (s(N)) (169)

Resulting vector of indexes i(N) is converted into a bit sequence

b(`) = γN (i(K)) = γN (αN (s(N))) (170)

At decoder side, index vector is recovered

i(K) = γ−1
N (b(`)) = γ−1

N (γN (i(K))) (171)

Index vector is mapped to a block of reconstructed samples
s′

(N)
= {s′0, · · · , s′N−1}

s′
(N)

= βN (i(K)) = βN (αN (s(N))) (172)
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Rate-Distortion Theory The Operational Rate-Distortion Function

Distortion

Distortion: Measure of difference between a block of N input samples
s(N) = {s0, s1, . . . , sN−1} and the corresponding block of reconstructed

samples s′
(N)

= {s′0, s′1, . . . , s′N−1},

dN

(
s(N), s′

(N)
)

Typically: Additive distortion measures

dN (s(N), s′
(N)

) =
1

N

N−1∑
i=0

d1(si, s
′
i) (173)

with the single symbol distortion d1(s, s′) ≥ 0 (equality, if and only if s = s′)

In this lecture: Mean squared error d1(s, s′) = (s− s′)2

dN

(
s(N), s′

(N)
)

=
1

N

N−1∑
i=0

d1(si, s
′
i) =

1

N

N−1∑
i=0

(si − s′i)2 (174)
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Rate-Distortion Theory The Operational Rate-Distortion Function

Average Distortion for Source Codes

Average distortion for a stationary random process S = {Sn} and an
N -dimensional block source code QN = {αN , βN , γN}

δ(QN ) = E
{
dN
(
S(N), βN (αN (S(N)))

)
)
}

(175)

=

∫
RN

f(s) dN
(
s, βN (αN (s))

)
ds (176)

For arbitrary random process S = {Sn} and arbitrary code Q

δ(Q) = lim
N→∞

E
{
dN
(
S(N), βN (αN (S(N)))

)
)
}

(177)

For additive distortion measures (such as the MSE distortion)

δ(Q) = δ(S, S′) = E{d1(S, S′)} =

∫
s

∫
s′
fSS′(s, s

′) d1(s, s′) dsds′ (178)
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Rate-Distortion Theory The Operational Rate-Distortion Function

Average Rate for Source Codes

Average number of bits per input symbol (| · | denotes the number of bits)

rN (s(N)) =
1

N

∣∣γN (αN (s(N)))
∣∣ with b(`) = γN (αN (s(N))) (179)

Stationary random process S = {Sn} and N -dimensional block source code
QN = {αN , βN , γN}

r(QN ) =
1

N
E
{∣∣γN (αN (S(N)))

∣∣} (180)

=
1

N

∫
RN

f(s)
∣∣γN (αN (s))

∣∣ds (181)

For arbitrary random process S = {Sn} and arbitrary code Q

r(Q) = lim
N→∞

1

N
E
{∣∣γN (αN (S(N)))

∣∣} (182)

Heiko Schwarz Source Coding and Compression December 7, 2013 169 / 661



o

Rate-Distortion Theory The Operational Rate-Distortion Function

Operational Rate-Distortion Function

For given source S:

Each code Q is associated with a rate distortion point (R,D) = (r(Q), δ(Q))

A rate distortion point is achievable, if there exist a code Q
such that r(Q) ≤ R and δ(Q) ≤ D
The operational rate-distortion function R(D) and its inverse,
the operational distortion-rate function D(R) are defined by

R(D) = inf
Q: δ(Q)≤D

r(Q) D(R) = inf
Q: r(Q)≤R

δ(Q) (183)

Heiko Schwarz Source Coding and Compression December 7, 2013 170 / 661



o

Rate-Distortion Theory The Information Rate-Distortion Function

Motivation for Information Rate-Distortion Function

Operational rate-distortion function

Defined by
R(D) = inf

Q: δ(Q)≤D
r(Q) (184)

Specifies a fundamental performance bound for lossy source coding

Difficulty to evaluate (minimization over all possible codes)

Information rate-distortion function

Introduced by Shannon in [Shannon 1948; Shannon1959]

Obtain expression of rate-distortion bound that involves the distribution of
the source using mutual information

Show that information rate-distortion function is achievable

Heiko Schwarz Source Coding and Compression December 7, 2013 171 / 661



o

Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Discrete Random Variables

Mutual information between two discrete random variables A and B is
defined by

I(A;B) = H(A)−H(A|B) (185)

Entropy H(A) is a measure of uncertainty about random variable A

Conditional entropy H(A|B) is a measure of uncertainty about random
variable A after observing random variable B

Mutual information is a measure for the reduction of uncertainty about A
due to the observation of B

=⇒ Average amount of information that A carries about B

Mutual information for discrete random variables A ∈ A and B ∈ B

I(A;B) = H(A)−H(A|B) =
∑
a∈A

∑
b∈B

p(a, b) log2

p(a|b)
p(a)

(186)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Discrete Random Variables

Mutual information rewritten using Bayes’ rule

I(A;B) =
∑
a∈A

∑
b∈B

p(a, b) log2

p(a|b)
p(a)

=
∑
a∈A

∑
b∈B

p(a, b) log2

p(a, b)

p(a) p(b)

=
∑
a∈A

∑
b∈B

p(a, b) log2

p(b|a)

p(b)

= H(B)−H(B|A) (187)

Mutual information between two random variables A and B represents
the average amount of information that

the random variable A carries about the random variable B, or

the random variable B carries about the random variable A
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Discrete Random Vectors

Mutual information between two random variables A and B

I(A;B) = H(A)−H(A|B)

= H(B)−H(B|A)

=
∑
a∈A

∑
b∈B

p(a, b) log2

p(a, b)

p(a) p(b)
(188)

Extension to N -dimensional random vectors A = (A0, A1, · · · , AN−1)T and
B = (B0, B1, · · · , BN−1)T

IN (A;B) = HN (A)−HN (A|B)

= HN (B)−HN (B|A)

=
∑
a∈AN

∑
b∈BN

p(a, b) log2

p(a, b)

p(a) p(b)
(189)
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Rate-Distortion Theory The Information Rate-Distortion Function

Properties of Mutual Information for Discrete RV

Mutual information between discrete random vectors A and B

IN (A;B) = HN (A)−HN (A|B) (190)

= HN (B)−HN (B|A) (191)

Since the conditional entropies are non-negative

IN (A;B) ≤ HN (A) (192)

IN (A;B) ≤ HN (B) (193)

For independent random vectors A and B

IN (A;B) = 0 (194)

If the random vector B is a deterministic function of the random vector A,

B = f(A) =⇒ IN (A;B) = HN (B) (195)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Coding of Discrete Sources

Consider mutual information IN (S;S′) between a vector of N successive
input samples S and the corresponding vector of N reconstructed samples S′

IN (S;S′) = HN (S′)−HN (S′|S)

≤ HN (S′) (196)

where equality is achieved if and only if the vector S′ of reconstructed
samples is a deterministic function of the input vector S

Recall: Fundamental bound for lossless coding

r(Q) ≥ H̄(S′) = lim
N→∞

HN (S′)

N
(197)

Rate of for code Q

r(Q) ≥ lim
N→∞

HN (S′)

N
≥ lim
N→∞

IN (S′;S)

N
(198)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Continuous Random Variables

Remember: Discrete random variables

Mutual information for discrete random variables A and B

I(A;B) = H(A)−H(A|B) (199)

= H(B)−H(B|A) (200)

For continuous random variables, the discrete entropies are not defined
(they approach infinity)

Definition of mutual information for continuous random variables

Quantize pdfs with a quantization step size ∆

Calculate mutual information for resulting discrete random variables

Consider limit for quantization step size ∆ approaching zero
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Rate-Distortion Theory The Information Rate-Distortion Function

Discretization of Continuous Random Variables

Approximation f
(∆)
X of pdf fX

∀x : xi ≤ x < xi+1 f
(∆)
X (x) =

1

∆

∫ xi+1

xi

fX(x′) dx′ (201)

Pmf pX∆ for random variable X∆

pX∆
(xi) =

∫ xi+1

xi

fX(x′) dx′ = f
(∆)
X (xi) ·∆ (202)

Joint pmf of two discrete approximations X∆ and Y∆

pX∆Y∆(xi, yj) = f
(∆)
XY (xi, yj) ·∆2 (203)
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Rate-Distortion Theory The Information Rate-Distortion Function

Mutual Information for Continuous Random Variables

Mutual information for discrete random variables X∆ ∈ AX∆
and Y∆ ∈ AY∆

I(X∆;Y∆) =
∑

xi∈AX∆

∑
yi∈AY∆

pX∆Y∆
(xi, yj) log2

pX∆Y∆(xi, yi)

pX∆
(xi) pY∆

(yj)
(204)

=
∑

xi∈AX∆

∑
yi∈AY∆

f
(∆)
XY (xi, yj) · log2

f
(∆)
XY (xi, yj)

f
(∆)
X (xi) f

(∆)
Y (yj)

·∆2

The mutual information I(X;Y ) for the continuous random variables X
and Y is obtained for ∆ approaching zero,

I(X;Y ) = lim
∆→0

I(X∆;Y∆) (205)

For ∆→ 0, the piecewise constant pdf approximations f
(∆)
XY , f

(∆)
X , and f

(∆)
Y

approach the pdfs fXY , fX , and fY , and we obtain

I(X;Y ) =

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y) log2

fXY (x, y)

fX(x) fY (y)
dxdy (206)
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Mutual Information for Continuous Random Vectors

Mutual information for continuous random variables X and Y

I(X;Y ) =

∞∫
−∞

∞∫
−∞

fXY (x, y) log2

fXY (x, y)

fX(x) fY (y)
dxdy (207)

Consider extension to N -dimensional random vectors
X = (X0, X1, · · · , XN−1)T and Y = (Y0, Y1, · · · , YN−1)T

IN (X;Y ) =

∫
RN

∫
RN

fXY (x,y) log2

fXY (x,y)

fX(x) fY (y)
dx dy (208)

Using fXY (x,y) = fX(x)fY |X(x,y), we can also write

IN (X;Y ) =

∫
RN

∫
RN

fX(x)fY |X(x,y) log2

fY |X(x,y)

fY (x)
dx dy (209)
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Mutual Information between Discrete and Continuous RV

Let Y be a discrete random vector with alphabet ANY
fY (y) =

∑
a∈ANY

δ(y − a) pY (a) (210)

fY |X(y|x) =
∑
a∈ANY

δ(y − a) pY |X(a|x) (211)

Rewriting mutual information using above pmfs yields

IN (X;Y ) =

∫
RN

∫
RN

fX(x)fY |X(x,y) log2

fY |X(x,y)

fY (x)
dx dy

=

∫
RN

fX(x)
∑
a∈ANY

pY |X(a|x) log2

pY |X(a|x)

pY (a)
dx

=

∫
RN

fX(x)
∑
a∈ANY

pY |X(a|x)
(

log2 pY |X(a|x)− log2 pY (a)
)

dx

(212)
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Mutual Information between Discrete and Continuous RV

Continue reformulation of mutual information IN (X;Y )

IN (X;Y ) =

∫
RN

fX(x)
∑
a∈ANY

pY |X(a|x)
(

log2 pY |X(a|x)− log2 pY (a)
)

dx

= −
∑
a∈ANY

 ∫
RN

pY |X(a|x)fX(x) dx

 log2 pY (a)

+

∫
RN

fX(x)

 ∑
a∈ANY

pY |X(a|x) log2 pY |X(a|x)

 dx

= −
∑
a∈ANY

pY (a) log2 pY (a)−
∫
RN

fX(x)HN (Y |X = x) dx

= HN (Y )−
∫
RN

fX(x)HN (Y |X = x) dx (213)
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Mutual Information between Discrete and Continuous RV

Mutual information between a discrete random vector Y and a continuous
random vector X

IN (X;Y ) = HN (Y )−
∫
RN

fX(x)HN (Y |X = x) dx (214)

where HN (Y ) is the entropy of the discrete random vector Y and

HN (Y |X=x) = −
∑
a∈AN

Y

pY |X(a|x) log2 pY |X(a|x) (215)

is the conditional entropy of Y given the event {X=x}

Since the conditional entropy HN (Y |X=x) is always nonnegative, we have

IN (X;Y ) ≤ HN (Y ) (216)

with equality if and only if Y is a deterministic function of X

If X and Y are independent, we have IN (X;Y ) = 0
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Mutual Information for Coding of Continuous Sources

Consider mutual information IN (S;S′) between a vector of N successive
input samples S and the corresponding vector of N reconstructed samples S′

Since vectors of reconstructed samples are discrete, we can write

IN (S;S′) = HN (S′)−
∫
RN

fS(s)HN (S′|S = s) ds ≤ HN (S′) (217)

where equality is achieved if and only if the vector S′ of reconstructed
samples is a deterministic function of the input vector S

Using the fundamental bound for lossless coding, we have for the average
rate of a source code Q,

r(Q) ≥ lim
N→∞

HN (S′)

N
≥ lim
N→∞

IN (S′;S)

N
(218)

=⇒ Same expression as for coding of discrete sources
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Description of a Source Code using a Conditional Pdf

Statistical properties of a mapping s′ = β(α(s)) can be described by an
N -th order conditional pdf gN (s′|s)

Example 1: Mapping s→ s′ : s′ = bs/∆c ·∆

g1(s
′|s)

⌊s/∆⌋∆ s′

g1(s′|s) = δ(s′ − bs/∆c ·∆)

For N > 1, gN (s′|s) are multivariate conditional pdfs

The pdfs gN (s′|s) obtained by a deterministic mapping (codes) are a subset
of the set of all conditional pmfs
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Description of a Source Code using a Conditional Pdf

Example 2: Mapping (sn, sn+1)→ (s′n, s
′
n+1)

(s′n, s
′
n+1) =


(1, 1) : sn + sn+1 > 1
(−1,−1) : sn + sn+1 < −1
(0, 0) : otherwise

1 sn

sn+1

1

−1

−1

g1(s
′|s)

1−1 s′

g1(s′|s) = x·δ(s′+1)+y·δ(s′)+z·δ(s′−1)

with x+ y + z = 1
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Distortion for a Source Code using Conditional Pdf

Let gQN (s′|s) be the N -th order conditional pdf of a source code Q
with s′ ∈ RN and s ∈ RN

N -th order distortion

δN (gN ) = E{dN (S,S′)}

=

∫
RN

∫
RN

fSS′(s, s′) · dN (s, s′) dsds′

=

∫
RN

∫
RN

fS(s) · gQN (s′|s) · dN (s, s′) dsds′ (219)

Recall: General expression for distortion δ(Q) of a source code Q

δ(Q) = lim
N→∞

E{dN (S,S′)} (220)

Distortion for a source code Q can be written as

δ(Q) = lim
N→∞

δN (gQN ) (221)
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Mutual Information for a Source Code using Conditional Pdf

N -th order mutual information

IN (gN ) = E

{
log2

fSS′(S,S′)

fS(S)fS′(S′)

}
=

∫
RN

∫
RN

fSS′(s, s′) · log2

fSS′(S,S′)

fS(S)fS′(S′)
dsds′

=

∫
RN

∫
RN

fS(s) · gN (s′|s) · log2

gN (s′|s)
fS′(s′)

dsds′ (222)

with

fS′(s′) =

∫
RN

fS(s) · gN (s′|s) ds. (223)

For a given source S, both the N -th order distortion δN and the N -th order
mutual information IN are completely determined by the N -th order
conditional pdf gQN (s′|s)
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Information Rate-Distortion Function

Consider any source code Q with a distortion δ(Q) ≤ D
Associated rate is denoted by r(Q)

Output S′ of source codec is a discrete random process

Remember: Fundamental theorem for lossless coding

r(Q) ≥ H̄(S′) = lim
N→∞

HN (S′)

N
(224)

Using mutual information, we can write

r(Q) ≥ lim
N→∞

HN (S′)

N
≥ lim
N→∞

IN (S;S′)

N
= lim
N→∞

IN (gQN )

N
(225)

Deterministic mapping gQN as given by a source code Q is a special case of a
random mapping gN

IN (gQN ) ≥ inf
gN :δN (gN )≤D

IN (gN ) (226)
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Information Rate-Distortion Function

Hence, we have

r(Q) ≥ lim
N→∞

IN (gQN )

N
≥ lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(227)

Information rate-distortion function

R(I)(D) = lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(228)

Fundamental source coding theorem

∀Q : δ(Q) ≤ D, r(Q) ≥ R(I)(D) (229)

=⇒ For a given maximum distortion D, the rate r(Q) for each source code Q
that yields a distortion δ(Q) ≤ D is greater than or equal to the information
rate-distortion function R(I)(D)
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Information vs Operational Rate-Distortion Function

We have shown that information rate-distortion function R(I)(D) represents
a lower bound for all source codes Q

=⇒ Lower bound for operational rate-distortion function

It can also be shown that R(I)(D) is asymptotically achievable

For any ε > 0, there exists a code Q with

δ(Q) ≤ D and

r(Q) ≤ R(I)(D) + ε

(see proof in [Cover and Thomas])

=⇒ Information rate-distortion function is equal to
operational rate-distortion function

Use the term rate-distortion function R(D) for both in the following
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(Information) Distortion-Rate Function

Fundamental source coding theorem

∀Q : δ(Q) ≤ D, r(Q) ≥ R(D) (230)

with (information) rate-distortion function

R(D) = lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(231)

Alternative formulation by interchanging roles of rate and distortion

∀Q : r(Q) ≤ R, δ(Q) ≥ D(I)(R) (232)

with (information) distortion-rate function

D(R) = lim
N→∞

inf
gN : IN (gN )/N≤R

δN (gN ) (233)

Distortion-rate function D(R) is inverse of rate-distortion function R(D)
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R(D) for Discrete Sources and Additive Distortion Measures

1
0
0

€ 

(H(S),Dmin = 0)

€ 

(H(S) −H(S | ′ S ) = 0,Dmax )

€ 

D
Dmax

Example of R(D) for
a discrete iid source

R(D) is a non-increasing
and convex function of D

There exists a value Dmax, so that

∀D ≥ Dmax R(D) = 0 (234)

=⇒ For MSE distortion measure: Dmax is equal to the variance σ2 of the source

Minimum rate required for lossless transmission of a discrete source is equal
to the entropy rate

Dmin = 0 R(0) = H̄(S) (235)

=⇒ Fundamental bound for lossless coding:
Special case of the fundamental bound for lossy coding
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R(D) for Continuous Sources and Additive Distortion Meas.

Example of R(D) for an amplitude-continuous source

1
0
0

 R(D) for continuous amplitude sources


€ 

D /σ 2

 R [bits]
 ∞


R(D) is a non-increasing and convex function of D

There exists a value Dmax, so that

∀D ≥ Dmax R(D) = 0 (236)

=⇒ For MSE distortion measure: Dmax is equal to the variance σ2 of the source

R(D) approaches infinity as D approaches zero
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Rate-Distortion Function for IID Sources

N -th order distortion δN (gN ) for additive distortion measures

δN (gN ) = E{dN (S,S′)} = E

{
1

N

N−1∑
i=0

d1(Si, S
′
i)

}
= E{d1(S, S′)}

=

∞∫
−∞

fS(s) · g1(s′|s) · d1(s, s′) ds = δ1(g) (237)

N -th order mutual information for iid sources
(Note: If the source S is iid, the reconstruction S′ is also iid)

IN (gN ) = E

{
log2

fSS′(S,S′)

fS(S) fS′(S′)

}
= E

{
log2

(
fSS′(S, S

′)

fS(S) fS′(S′)

)N}

= N · E
{

log2

fSS′(S, S
′)

fS(S) fS′(S′)

}

= N

∞∫
−∞

∞∫
−∞

fS(s) g1(s′|s) log2

g1(s′|s)
fS′(s′)

dsds′ = N · I1(g) (238)
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Rate-Distortion Function for IID Sources

For iid sources and additive distortion measures, we have

δN (gQN ) = δ1(gQ) and IN (gQN ) = N · I1(gQ) (239)

Rate-distortion function for iid sources and additive distortion measures

R(D) = lim
N→∞

inf
gN : δN (gN )≤D

IN (gN )

N
= inf
g1: δ1(g1)≤D

I1(g1) (240)

=⇒ Also called first-order rate-distortion function R1(D)

Distortion-rate function for iid sources and additive distortion measures

D(R) = lim
N→∞

inf
gN : IN (gN )/N≤R

δN (gN ) = inf
g1: I1(g1)≤R

δ1(g1) (241)

=⇒ Also called first-order distortion-rate function D1(R)
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N -th Order Rate-Distortion Functions

Can define N -th order rate-distortion and distortion-rate functions

RN (D) = inf
gN : δN (gN )≤D

IN (gN )

N
(242)

DN (R) = inf
gN : IN (gN )/N≤R

δN (gN ) (243)

In general, the rate-distortion and distortion-rate functions can be written as

R(D) = lim
N→∞

RN (D) and D(R) = lim
N→∞

DN (R) (244)

For iid sources and additive distortion measures, we have

R(D) = R1(D) and D(R) = D1(R) (245)
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Discussion of Rate-Distortion Functions

Operational rate-distortion function

R(D) = inf
Q: δ(Q)≤D

r(Q) (246)

Minimization over all possible source codes

Easy to define, but impossible to evaluate

Information rate-distortion function

R(D) = lim
N→∞

inf
gN :δN (gN )≤D

IN (gN )

N
(247)

Property of source: Don’t need to consider all possible codes

Still impossible to evaluate directly (minimization over all conditional pdfs)

Numerical minimization for discrete sources: Blahut-Arimoto algorithm

How can we proceed?

Can derive lower bound for (information) rate-distortion function
For some sources and distortion measures (e.g., Gaussian and MSE):

=⇒ Can show that lower bound is achievable
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Differential Entropy

Mutual information between a continuous random vector X and a
continuous or discrete random vector Y

I(X;Y ) = E

{
log2

fXY (X,Y )

fX(X) fY (Y )

}
= E

{
log2

fX|Y (X|Y )

fX(X)

}
= E{− log2 fX(X)} − E

{
− log2 fX|Y (X|Y )

}
= h(X)− h(X|Y ) (248)

Define: Differential entropy of a continuous random vector X

h(X) = E{− log2 fX (X)} = −
∫
RN

fX (x) log2 fX (x) dx (249)

Define: Conditional differential entropy of X given Y

h(X|Y ) = E
{
− log2 fX|Y (X|Y )

}
= −

∫
RN

∫
RN

fXY (x,y) log2 fX|Y (x|y) dx dy (250)
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Example: Differential Entropy for an Uniform IID Source

For an continuous iid source S, differential entropy is defined as

h(S) = E{− log2 f(S)} = −
∫ ∞
−∞

f(s) log2 f(s) ds (251)

h(S) for uniform distribution f(s) = 1/A for −A/2 ≤ s ≤ A/2

h(S) = −
∫ A/2

−A/2

1

A
log2

1

A
ds =

1

A
log2 A

∫ A/2

−A/2
ds = log2 A (252)

Differential entropy can become negative (in contrast to discrete entropy)
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Differential Entropy for an Gaussian IID Source

Gaussian iid process

fS(s) =
1√

2πσ2
e−

(s−µ)2

2σ2 (253)

Differential entropy

h(S) = −
∞∫
−∞

fS(s) log2 fS(s)ds

= −
∞∫
−∞

fS(s)

[
− (s− µ)2

2σ2
log2 e− log2

√
2πσ2

]
ds

=
E
{

(S − µ)2
}

2σ2
· log2 e+

1

2
log2(2πσ2)

=
1

2
log2 e+

1

2
log2(2πσ2)

=
1

2
log2(2πeσ2) (254)
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N -th Order Differential Entropy

N-th order differential entropy

hN (S) = h(S(N)) = h(S0, · · · , SN−1) = E
{
− log2 fS(S(N))

}
(255)

Differential entropy rate

h̄(S) = lim
N→∞

hN (S)

N
= lim
N→∞

h(S0, · · · , SN−1)

N
(256)

N -th order pdf of a stationary Gaussian process

fG(s) =
1

(2π)N/2 |CN |1/2
e−

1
2 (s−µN )TC−1

N (s−µN ) (257)

N -th order differential entropy of stationary Gaussian process

h
(G)
N (S) = −

∫
RN

fG(s) log2 fG(s) ds

=
1

2
log2

(
(2π)N |CN |

)
+

log2 e

2

∫
RN

fG(s) (s−µN )TC−1
N (s−µN ) ds (258)
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N -th order Differential Entropy of Stationary Gaussian Process

General stationary process with pdf fS(s), mean µN , covariance matrix CN∫
RN

fS(s) (s−µN )TC−1
N (s−µN ) ds

= E
{

(S−µN )TC−1
N (S−µN )

}
= E


N−1∑
i=0

N−1∑
j=0

(Si − µi)(C−1)i,j(Sj − µj)


=

N−1∑
i=0

N−1∑
j=0

E{(Si − µi)(Sj − µj)} (C−1)i,j

=

N−1∑
i=0

N−1∑
j=0

Cj,i(C
−1)i,j

=

N−1∑
i=0

(CC−1)j,j

= N (259)
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N -th order Differential Entropy of Stationary Gaussian Process

Showed for general pdf fS(s)∫
RN

fS(s) (s−µN )TC−1
N (s−µN ) ds = N (260)

Continue derivation for stationary Gaussian source

h
(G)
N (S) =

1

2
log2

(
(2π)N |CN |

)
+

log2 e

2

∫
RN

fG(s) (s−µN )TC−1
N (s−µN ) ds

=
1

2
log2

(
(2π)N |CN |

)
+
N

2
log2 e

=
1

2
log2

(
(2π)N |CN |

)
+

1

2
log2 e

N

=
1

2
log2

(
(2πe)N |CN |

)
(261)
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N -th order Differential Entropy of Stat. Non-Gaussian Process

Consider stationary non-Gaussian process with N -th order pdf f(s)

Let fG(s) be the N -th order pdf of a Gaussian process with the same N -th
order autocovariance matrix CN

By applying the divergence inequality for pdfs, we obtain

hN (S) = −
∫
RN

f(s) log2 f(s) ds

≤ −
∫
RN

f(s) log2 fG(s) ds

=
1

2
log2

(
(2π)N |CN |

)
+

log2 e

2

∫
RN

f(s)(s−µN )TC−1
N (s−µN ) ds

=
1

2
log2

(
(2πe)N |CN |

)
= h

(G)
N (S) (262)

=⇒ Gaussian process with a given N-th order autocovariance matrix CN

has the largest N-th order differential entropy among all processes
with the same autocovariance matrix CN
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Eigendecomposition of the Covariance Matrix

Determinant |CN |: Product of the eigenvalues ξi of the matrix CN ,

CN = ANΞNA
T
N → |CN | = |AN |︸︷︷︸

=1

·|ΞN | · |AT
N |︸︷︷︸

=1

=

N−1∏
i=0

ξ
(N)
i (263)

AN : Orthogonal matrix with the N unit-norm eigenvectors as columns

AN =
(
v

(N)
0 ,v

(N)
1 , · · · ,v(N)

N−1

)
(264)

ΞN : Diagonal matrix with the N eigenvalues of CN on its main diagonal

ΞN =


ξ

(N)
0 0 . . . 0

0 ξ
(N)
1 . . . 0

...
...

. . . 0

0 0 0 ξ
(N)
N−1

 (265)
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Maximum Differential Entropy

Determinant of a matrix is the product of its eigenvalues

|CN | =
N−1∏
i=0

ξ
(N)
i (266)

Trace of a matrix is the sum of its eigenvalues (trace is similarity invariant)

tr (|CN |) =

N−1∑
i=0

ξ
(N)
i = N · σ2 (267)

Inequality of arithmetic and geometric means:(
N−1∏
i=0

xi

)1
N

≤ 1

N

N−1∑
i=0

xi, (268)

with equality if and only if x0 =x1 = . . .=xN−1

(when geometric mean is maximized)
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Maximum Differential Entropy

Apply inequality to determinant of autocovariance matrix

|CN | =
N−1∏
i=0

ξi ≤
(

1

N

N−1∑
i=0

ξi

)N
= σ2N (269)

=⇒ Equality if and only if source is iid (all eigenvalues are the same)

For N -th order differential entropy of any source S, we get

hN (S) ≤ 1

2
log2

(
(2πe)N |CN |

)
(equality for Gaussian)

≤ N

2
log2

(
2πeσ2

)
(equality for iid) (270)

=⇒ Equality if and only if source is Gaussian iid

=⇒ For a given variance σ2, the N-th order differential entropy is
maximized for Gaussian iid processes

hN (S) ≤ N

2
log2

(
2πeσ2

)
(271)
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Shannon Lower Bound

Lower bound for rate-distortion function R(D)

R(D) = lim
N→∞

inf
gN : δN (gN )≤D

IN (S;S′)

N

= lim
N→∞

inf
gN : δN (gN )≤D

hN (S)− hN (S|S′)

N

= lim
N→∞

hN (S)

N
− lim
N→∞

sup
gN : δN (gN )≤D

hN (S|S′)

N

= h̄(S)− lim
N→∞

sup
gN : δN (gN )≤D

hN (S − S′|S′)

N
(272)

Define: Shannon Lower Bound

RL(D) = h̄(S)− lim
N→∞

sup
gN : δN (gN )≤D

hN (S − S′)

N
(273)

Since conditioning does not increase differential entropy, we have

R(D) ≥ RL(D) (equality if S − S′ is independent of S′) (274)
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Shannon Lower Bound for MSE Distortion

For MSE distortion: Distortion is given by variance of differences

δN (gN ) = σ2
Z with Z = S − S′ and µZ = 0 (275)

Remember: Maximum differential entropy

hN (S − S′) = hN (Z) ≤ N

2
log2

(
2πeσ2

Z) =
N

2
log2

(
2πeD) (276)

Shannon lower bound for MSE distortion

RL(D) = h̄(S)− 1

2
log2

(
2πeD

)
(277)

=⇒ For given CN or ΦSS(ω), maximized for Gaussian processes
=⇒ For given σ2, maximized for Gaussian iid processes

When is the Shannon lower bound for MSE achievable?
=⇒ Difference process Z = S − S′ has to be zero-mean Gaussian iid

=⇒ Difference process Z = S − S′ has to be independent of S′:

gZ|S′(z|s′) = gZ(z)
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Shannon Lower Bound for IID Sources MSE Distortion

Shannon lower bound for MSE distortion

RL(D) = h̄(S)− 1

2
log2

(
2πeD

)
DL(R) =

1

2πe
· 2 2 h̄(S) · 2−2R (278)

For iid sources S, we have

h̄(S) = lim
N→∞

hN (S)

N
= lim
N→∞

1

N
E{− log2 fS(S)}

= lim
N→∞

1

N

N−1∑
i=0

E{− log2 fS(Si)} = lim
N→∞

N

N
E{− log2 fS(S)}

= E{− log2 fS(S)} = h(S) (279)

Shannon lower bound for MSE distortion and iid sources

RL(D) = h(S)− 1

2
log2

(
2πeD

)
DL(R) =

1

2πe
· 2 2h(S) · 2−2R (280)
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Shannon Lower Bound Selected IID Sources

Uniform pdf:

h(S) =
1

2
log2(12σ2) =⇒ DL(R) =

6

πe︸︷︷︸
≈0.7

σ2 · 2−2R (281)

Laplacian pdf:

h(S) =
1

2
log2(2e2σ2) =⇒ DL(R) =

e

π︸︷︷︸
≈0.865

σ2 · 2−2R (282)

Gaussian pdf:

h(S) =
1

2
log2(2πeσ2) =⇒ DL(R) = σ2 · 2−2R (283)
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Shannon Lower Bound Selected IID Sources

Shannon lower bound using MSE and SNR

SNR = 10 log10

σ2

MSE
(284)

Uniform iid process: red

Laplace iid process: green

Gauss iid process: blue
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Asymptotic Tightness of the Shannon Lower Bound

Shannon lower bound approaches distortion rate function for small distortions
or high rates

lim
D→0

R(D)−RL(D) = 0. (285)

Comparison of D(R) with DL(R) for the Laplacian iid source
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Shannon Lower Bound for Gaussian Sources with Memory

Differential entropy for Gaussian sources

h
(G)
N (S) =

1

2
log2

(
(2πe)N |CN |

)
(286)

Shannon lower bound for MSE distortion

RL(D) = lim
N→∞

h
(G)
N (S)

N
− 1

2
log2

(
2πeD

)
= lim

N→∞

log2((2πe)N |CN |)
2N

− 1

2
log2

(
2πeD

)
=

1

2
log2(2πe) + lim

N→∞

log2(|CN |)
2N

− 1

2
log2

(
2πeD

)
= lim

N→∞

log2 |CN |
2N

− 1

2
log2D

= lim
N→∞

1

2N

N−1∑
i=0

log2 ξ
(N)
i − 1

2
log2D (287)
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Grenander and Szegö’s theorem

Assume zero-mean process: CN = RN

Given the conditions

RN is a sequence of Hermitian Toeplitz matrices with elements φk on the
k-th diagonal
The infimum Φinf = infω Φ(ω) and supremum Φsup = supω Φ(ω) of the
Fourier series are finite

Φ(ω) =

∞∑
k=−∞

φk e
−jωk (288)

The function G is continuous in the interval [Φinf ,Φsup]

The following expression holds

lim
N→∞

1

N

N−1∑
i=0

G
(
ξ

(N)
i

)
=

1

2π

∫ π

−π
G (Φ(ω)) dω (289)

where ξ
(N)
i , for i = 0, 1, . . . , N − 1, denote the eigenvalues of the N -th

matrix RN
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Shannon Lower Bound for Gaussian Sources with Memory

We have already derived

RL(D) = lim
N→∞

1

2N

N−1∑
i=0

log2 ξ
(N)
i − 1

2
log2D (290)

Applying Grenander and Szegö’s theorem

lim
N→∞

1

N

N−1∑
i=0

G
(
ξ

(N)
i

)
=

1

2π

∫ π

−π
G (Φ(ω)) dω (291)

yields

RL(D) =
1

4π

∫ π

−π
log2 ΦSS(ω) dω − 1

2
log2D

=
1

4π

∫ π

−π
log2 ΦSS(ω) dω − 1

4π
log2D

∫ π

−π
dω

=
1

4π

∫ π

−π
log2

ΦSS(ω)

D
dω (292)
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Power Spectral Density of a Gauss-Markov Process

Zero-mean Gauss-Markov process with |ρ| < 1

Sn = Zn + ρ · Sn−1 (293)

Auto-correlation function
φ[k] = σ2 · ρ|k| (294)

Using the relationship
∞∑
k=1

ak e−jkx =
a

e−jx − a (295)

we obtain
ΦSS(ω) =

∞∑
k=−∞

φ[k] · e−jωk

=

∞∑
k=−∞

σ2 · ρ|k| · e−jωk

= σ2 ·
(

1 +
ρ

e−jω − ρ +
ρ

ejω − ρ

)
= σ2 · 1− ρ2

1− 2ρ cosω + ρ2
(296)
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Shannon Lower Bound for Gaussian-Markov Processes

Shannon lower bound for a zero-mean Gauss-Markov process with |ρ| < 1

RL(D) =
1

4π

∫ π

−π
log2

ΦSS(ω)

D
dω

=
1

4π

∫ π

−π
log2

σ2(1− ρ2)

D
dω −

1

4π

∫ π

−π
log2(1− 2ρ cosω + ρ2) dω︸ ︷︷ ︸

=0

RL(D) =
1

2
log2

σ2 (1− ρ2)

D
(297)

where we used ∫ π

0

ln(a2 − 2ab cosx+ b2) dx = 2π ln a (298)

Shannon lower bound as distortion-rate function

DL(R) = (1− ρ2)σ2 2−2R (299)
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Rate-Distortion Function for Gaussian IID Sources

Consider Gaussian iid source

fS(s) =
1

2πσ2
e−

(s−µ)2

2σ2 (300)

Shannon lower bound for Gaussian iid sources

DL(R) = σ2 · 2−2R ⇐⇒ RL(D) =

{
1
2 log2

σ2

D : D ≤ σ2

0 : D > σ2 (301)

For Gaussian iid sources: Rate-distortion function = Shannon lower bound

How can we proof it?

Could show that Shannon lower bound is achievable
=⇒ Need to find gS′|S(s′|s) for which the Shannon lower bound is achieved

Remember: Discussed that Shannon lower bound is achievable if

Difference signal Z = S − S′ is independent of S′

Difference signal Z = S − S′ has a zero-mean Gaussian distribution
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Rate-Distortion Function for Gaussian IID Sources

Consider conditional pdf gZ|S′(z|s′) = gS−S′|S′(s− s′|s′) instead of gS′|S(s′|s)
Given gZ|S′(z|s′), conditional pdf gS′|S(s′|s) can be derived by

gS′|S(s′|s) = gS|S′(s|s′) ·
fS′(s

′)

fS(s)
with gS|S′(s|s′) = gZ|S′(z + s′|s′)

(302)

Shannon lower bound coincides with rate-distortion function,
only if the difference signal Z = S − S′ fulfills the conditions:

Difference signal Z = S − S′ is independent of S′

Difference signal Z = S − S′ has a zero-mean Gaussian distribution

Hence, gZ|S′(z|s′) has to have the form

gZ|S′(z|s′) =
1√

2πσ2
Z

e
− z2

2σ2
Z =

1√
2πD

e−
z2

2D = fZ(z) (303)

Need to verify that this is a valid choice!
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Rate-Distortion Function for Gaussian IID Sources

Question: Is the conditional pdf gZ|S′(z|s′) a valid choice?

gZ|S′(z|s′) = fZ(z) =
1√

2πD
e−

z2

2D (304)

Source S is the sum of two independent random variables Z = S − S′ and S′

Hence, fS(s) is given by the convolution

fS(s) = fZ(z) ∗ fS′(s′) (305)

Note: Convolution of two Gaussians f(µ1, σ
2
1) and f(µ2, σ

2
2) is a Gaussian

with µ = µ1 + µ2 and σ = σ2
1 + σ2

2

Hence, the pdf of the reconstructed samples is

fS′(s
′) =

1√
2π (σ2 −D)

e
− (s′−µ)2

2(σ2−D) (306)

This is a valid pdf for S′ (no negative values)

=⇒ Our choice for gZ|S′(z|s′) is valid
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Rate-Distortion Function for Gaussian IID Sources

Check distortion and rate (mutual information)

Distortion given by variance of difference process Z = S − S′

δ(g) = E
{

(S − S′)2
}

= E
{
Z2
}

= D (307)

Mutual information

I(g) = h(S)− h(S|S′)
= h(S)− h(S − S′|S′)
= h(S)− h(Z|S′)
= h(S)− h(Z)

=
1

2
log2

(
2πeσ2

)
− 1

2
log2

(
2πeD

)
= R(D) =

1

2
log2

σ2

D
(308)

=⇒ For Gaussian iid processes and MSE distortion, the rate-distortion
function coincides with the Shannon lower bound
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Rate-Distortion Function for Gaussian IID Sources

Considered Gaussian iid source with a variance σ2 and MSE distortion
Shannon lower bound coincides with the rate-distortion function
The rate-distortion function R(D) is given by

R(D) =

{
1
2 log2

σ2

D , 0 ≤ D ≤ σ2

0, D > σ2 (309)

The distortion-rate function is given as

D(R) = σ2 · 2−2R (310)

The signal-to-noise ratio (SNR) is given as

SNR(R) = 10 · log10

σ2

D(R)
= 10 · log10 22R ≈ 6R [dB] (311)

For MSE distortion and a given variance σ2, the rate-distortion
function R(D) is maximized for Gaussian iid processes

=⇒ Gaussian iid processes are the hardest to code
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Rate-Distortion Function for Gaussian Sources with Memory

N -th order pdf of stationary Gaussian random process

f
(G)

S (s) =
1

(2π)N/2 |CN |1/2
e−

1
2 (s−µN )TC−1

N (s−µN ) (312)

Eigendecomposition of covariance matrix CN ,

CN = AN ·ΞN ·AT
N (313)

AN : Matrix with columns are equal to the N unit-norm eigenvectors

AN =
(
v

(N)
0 ,v

(N)
1 , · · · ,v(N)

N−1

)
(314)

ΞN : Diagonal matrix with eigenvalues of CN on its main diagonal

ΞN =


ξ

(N)
0 0 . . . 0

0 ξ
(N)
1 . . . 0

...
...

. . . 0

0 0 0 ξ
(N)
N−1

 (315)

Heiko Schwarz Source Coding and Compression December 7, 2013 225 / 661



o

Rate-Distortion Theory Rate-Distortion Function for Gaussian Sources with Memory

Signal Space Rotation

Given stationary Gaussian source {Sn}: Construct source {Un} by
decomposing {Sn} into vectors S of size N and applying the transform

U = A−1
N (S − µN ) = AT

N (S − µN ) (316)

Linear transformation of a Gaussian random vector results in another
Gaussian random vector

The chosen transform yields independent random variables Ui

fU (u) =
1

(2π)N/2 |ΞN |1/2
e−

1
2u

TΞ−1

N u =

N−1∏
i=0

1√
2πξ

(N)
i

e
− u2

i

2 ξ
(N)
i (317)

Mean
E{U} = AT

N (E{S} − µN ) = AT
N (µN − µN ) = 0 (318)

Covariance

E
{
U UT

}
= AT

N E
{

(S − µN ) (S − µN )
T
}
AN

= AT
N CN AN = ΞN (319)
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Distortion and Mutual Information

Inverse transform after compression identical to forward transform

S′ = AN U
′ + µN , (320)

With(
U ′ −U

)
= AT

N

(
S′ − S

)
⇐⇒

(
S′ − S

)
= AN

(
U ′ −U

)
(321)

MSE distortion between any realization s of S and its reconstruction s′

dN (s; s′) =
1

N

N−1∑
i=0

(si − s′i)2 =
1

N
(s− s′)T (s− s′)

=
1

N
(u− u′)TAT

NAN (u− u′) =
1

N
(u− u′)T (u− u′)

=
1

N

N−1∑
i=0

(ui − u′i)2 = dN (u;u′) (322)

Since coordinate transform is invertible,

IN (S;S′) = IN (U ;U ′) (323)
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Distortion-Rate Function

Mutual information and average distortion considering independence of the
components Ui

IN (gQN ) =

N−1∑
i=0

I1(gQi ) and δN (gQN ) =
1

N

N−1∑
i=0

δ1(gQi ) (324)

N -th order distortion rate function DN (R)

DN (R) =
1

N

N−1∑
i=0

Di(Ri) with R =
1

N

N−1∑
i=0

Ri (325)

Di(Ri): Distortion-rate function for Gaussian iid processes for component Ui

Di(Ri) = σ2
i 2−2Ri = ξ

(N)
i 2−2Ri (326)

with ξ
(N)
i being the eigenvalues of CN
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Optimal Bit Allocation

Have to distribute the bit rate in an optimal way

min
R0,R1,...,RN−1

DN (R) =
1

N

N−1∑
i=0

ξ
(N)
i 2−2Ri such that R ≥ 1

N

N−1∑
i=0

Ri

Comparison on different types of mean computations

DN (R) =
1

N

N−1∑
i=0

ξ
(N)
i 2−2Ri ≥

(
N−1∏
i=0

ξ
(N)
i 2−2Ri

) 1
N

=

(
N−1∏
i=0

ξ
(N)
i

) 1
N

︸ ︷︷ ︸
=|CN |

1
N =ξ̃(N)

· 2−2R

with
∏N−1
i=0 2−2Ri = 2−2R0 · 2−2R1 · · · 2−2RN−1 = 2−

∑N−1
i=0 2Ri = 2−2RN

Expression on the right-hand side of above inequality is constant:

equality achieved when all terms ξ
(N)
i 2−2Ri = ξ̃(N)2−2R

Ri = R+
1

2
log2

ξ
(N)
i

ξ̃(N)
=

1

2
log2

ξ
(N)
i

ξ̃(N)2−2R
with ξ̃(N) =

(
N−1∏
i=0

ξ
(N)
i

) 1
N
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Condition for Partial Bit Rates

So far, we have ignored that Ri cannot be less than 0

Ri =
1

2
log2

ξ
(N)
i

ξ̃(N)2−2R
≥ 0 =⇒ Ri = 0 if ξ

(N)
i ≤ ξ̃(N)2−2R (327)

Introducing the parameter θ, with 0 ≤ θ ≤ D, yields

Ri =

{
1
2 log2

ξ
(N)
i

θ : θ ≤ ξ(N)
i

0 : θ > ξ
(N)
i

(328)

and

Di =

{
θ : θ ≤ ξ(N)

i

ξ
(N)
i : θ > ξ

(N)
i

(329)

Can also be written as

Ri(θ) = max

(
0,

1

2
log2

ξ
(N)
i

θ

)
and Di(θ) = min

(
ξ

(N)
i , θ

)
(330)

This rate allocation concept is also referred to as reverse water filling
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Reverse Water Filling for Independents Gaussian RV

Di = min
(
σ2
i , θ
)

𝜎𝑖
2 

𝑖 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 

𝜃 𝐷0 

𝐷1 

𝐷2 𝐷3 

𝐷4 

Optimal rate allocation for independent Gaussian RV and MSE distortion

Code random variable with σ2
i > θ so that the same distortion is obtained

Do not assign any rate to random variables with σ2
i ≤ θ
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N -th Order Rate-Distortion Function

N -th order distortion-rate function DN (R)

DN (R) =
1

N

N−1∑
i=0

Di(Ri) with R =
1

N

N−1∑
i=0

Ri (331)

Optimal rate allocation

Ri(θ) = max

(
0,

1

2
log2

ξ
(N)
i

θ

)
and Di(θ) = min

(
ξ

(N)
i , θ

)
(332)

Parametric expressions for N -th order rate-distortion function

DN (θ) =
1

N

N−1∑
i=0

Di =
1

N

N−1∑
i=0

min
(
ξ

(N)
i , θ

)
(333)

RN (θ) =
1

N

N−1∑
i=0

Ri =
1

N

N−1∑
i=0

max

(
0,

1

2
log2

ξ
(N)
i

θ

)
(334)
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Parametric Rate-Distortion Function

Rate-distortion function is given by limit for N →∞

D(θ) = lim
N→∞

DN (θ) = lim
N→∞

1

N

N−1∑
i=0

min
(
ξ

(N)
i , θ

)
(335)

R(θ) = lim
N→∞

RN (θ) = lim
N→∞

1

N

N−1∑
i=0

max

(
0,

1

2
log2

ξ
(N)
i

θ

)
(336)

Recall: Grenander and Szegös theorem for infinite Toeplitz matrices

lim
N→∞

1

N

N−1∑
i=0

G(ξ
(N)
i ) =

1

2π

∫ π

−π
G(Φ(ω))dω (337)

=⇒ Rate-distortion function R(D) for Gaussian sources with memory

D(θ) =
1

2π

∫ π

−π
min{ΦSS(ω), θ}dω

R(θ) =
1

2π

∫ π

−π
max

{
0,

1

2
log2

ΦSS(ω)

θ

}
dω (338)

=⇒ Specifies upper bound for R(D) of all processes with the same ΦSS(ω)
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Rate-Distortion Theory Rate-Distortion Function for Gaussian Sources with Memory

Illustration of Minimization Approach

white noise 

 reconstruction error  
spectrum  

no signal transmitted 

€ 

Φss(ω)

€ 

θ

ω

€ 

preserved spectrum Φ ′ s ′ s (ω)

€ 

θ

Similar to reverse water filling

At each frequency, the variance of the frequency component as given by the
spectral density ΦSS(ω) is compared to the parameter θ, which represents
the target mean squared error of that frequency component

When ΦSS(ω) is found to be larger than θ, the rate 1
2 log2

Φss(ω)
θ is assigned,

otherwise zero rate is assigned to that frequency component
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o

Rate-Distortion Theory Rate-Distortion Function for Gauss-Markov Sources

Rate-Distortion Function for Gauss-Markov Sources

R(D) for zero-mean Gauss-Markov process with |ρ| < 1 and variance σ2

Sn = Zn + ρ · Sn−1 (339)

Auto-correlation function and spectral density function are given as

φ[k] = σ2|ρ|k Φ(ω) =

∞∑
k=−∞

φ[k]e−jkω =
σ2(1− ρ2)

1− 2ρ cosω + ρ2
(340)

If we choose

θ ≥ min
∀ω

ΦSS(ω) = σ2 1− ρ2

1− 2ρ+ ρ2
= σ2 1− ρ

1 + ρ
(341)

we obtain

R(D) =
1

2
log2

σ2(1− ρ2)

D
(342)
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Rate-Distortion Theory Rate-Distortion Function for Gauss-Markov Sources

Rate-Distortion Function for Gauss-Markov Sources

Corresponding distortion rate function for R ≥ log2(1 + ρ) is given by

D(R) = (1− ρ2) · σ2 · 2−2R (343)

Includes result for Gaussian iid sources (ρ = 0)
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o

Rate-Distortion Theory Chapter Summary

Chapter Summary

Rate-distortion theory

Determine minimum rate R for a given distortion D and source

Determine minimum distortion D for a given distortion R and source

Operational rate-distortion function

Fundamental bound as minimum over all possible source codes

Information rate-distortion function

Minimum over all conditional pdfs gS′|S(s′|s)
Coincides with operational rate-distortion function

Use term rate-distortion function R(D) for both

Fundamental bound for lossless coding is given by R(0)

Discrete sources: R(D) is a convex function with R(0) = H̄(S)

Continuous sources: R(D) is a convex function with R(0)→∞
MSE distortion measure: D(0) = σ2
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o

Rate-Distortion Theory Chapter Summary

Chapter Summary

Shannon lower bound

Lower bound of rate-distortion function

Asymptotically tight for high rates

Suitable reference for performance evaluation at high rates

Shannon lower bound RL(D) can often be computed analytically

Computed RL(D) for several iid sources and Gaussian source with memory

Rate-distortion function for Gaussian sources and MSE distortion

R(D) for Gaussian iid sources coincides with Shannon lower bound

Any other source than the Gaussian iid source with the same variance
requires less bits for same MSE distortion

R(D) for Gaussian source with memory can be specified as parametric
expression using the power spectral density ΦSS(ω)

Derived analytic expression for Gauss-Markov source and R ≥ log2(1 + ρ)

R(D) for Gaussian source with memory and a spectral density ΦSS(ω)
specifies an upper bound for all other sources with the same spectral density

=⇒ Gaussian sources are the most difficult to code
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o

Rate-Distortion Theory Exercises (Set D)

Exercise 11

A fair die is rolled at the same time as a fair coin is tossed. Let A be the number
on the upper surface of the die and let B describe the outcome of the coin toss,
where B is equal to 1 if the result is “head” and it is equal to 0 if the result if
“tail”. The random variables X and Y are given by X = A+B and Y = A−B,
respectively.

Calculate:

the joint entropy H(X,Y ),

the marginal entropies H(X) and H(Y ),

the conditional entropies H(X|Y ) and H(Y |X),

the mutual information I(X;Y ).
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o

Rate-Distortion Theory Exercises (Set D)

Exercise 12

Consider a stationary Gauss-Markov process X = {Xn} with mean µ, variance σ2,
and the correlation coefficient ρ (correlation coefficient between two successive
random variables).

Determine the mutual information I(Xk;Xk+N ) between two random variables
Xk and Xk+N , where the distance between the random variables is N times the
sampling interval.

Interpret the results for the special cases ρ = −1, ρ = 0, and ρ = 1.

Hint: In the lecture, we showed

E
{

(X− µN )T ·C−1
N · (X− µN )

}
= N,

which can be useful for the problem.
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Rate-Distortion Theory Exercises (Set D)

Exercise 13

Show that for discrete random processes the fundamental bound for lossless
coding is a special case of the fundamental bound for lossy coding.
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Rate-Distortion Theory Exercises (Set D)

Exercise 14

Determine the Shannon lower bound with MSE distortion, as distortion-rate
function, for iid processes with the following pdfs:

The exponential pdf fE(x) = λ · e−λ·x, with x ≥ 0

The zero-mean Laplace pdf fL(x) = λ
2 · e−λ·|x|

Express the distortion-rate function for the Shannon lower bound as a function of
the variance σ2.

Which of the given pdfs is easier to code (if the variance is the same)?
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Quantization

Quantization
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o

Quantization

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Rate-Distortion Theory

Quantization
Scalar Quantization

Centroid Quantizer and Lloyd Quantizer
Entropy-Constrained Scalar Quantization
High-Rate Approximations for Scalar Quantizers

Vector Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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o

Quantization Introduction

Quantization – Introduction

Quantization is the realization of the ”lossy part” of source coding

Typically allows for a trade-off between signal fidelity and bit rate

Quantizer 
s
 s’


Quantization is a functional mapping of an input point to an output point

the input can be discrete or continuous scalars or vectors
the set of obtainable output points is countable
less obtainable output points than input points

=⇒ Non-reversible loss in signal fidelity
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o

Quantization Introduction

Structure of Quantizers

Quantizer description is split into encoder α and decoder β,
between which a quantization index i is transmitted

α

i


β

s
 s’


Adding lossless coding γ of quantization indices

α
s
 i
 s’
β
i
 γ
 γ-1
channel b
 b


Quantization procedure

1 Encoder α maps one or more samples of input signal s to indices i
2 Lossless mapping γ codes the indices i into a bit stream b
3 Channel outputs transmitted bit stream b′ (error-free: b′ = b)
4 Inverse lossless mapping γ−1 reproduces quantization indices i
5 Decoder β maps index i to one or more samples of decoded signal s′
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o

Quantization Introduction

Quantizer Mappings

Encoder mappings α, γ have their counterparts at decoder β, γ−1

Decoder mappings must be either implemented at receiver and/or transmitted

General case: Mapping for N -dimensional vectors

Q : RN → {s′0, s′1, · · · , s′K−1} (344)

Quantization cells: Subsets Ci of the N -dimensional Euclidean space RN

Ci =
{
s ∈ RN : Q(s) = s′i

}
(345)

Quantization cells Ci form partition of the N -dimensional Euclidean space RN

K−1⋃
i=0

Ci = RN with ∀i 6= j : Ci ∩ Cj = ∅ (346)

Specify quantization mapping

Q(s) = s′i ∀s ∈ Ci (347)

Heiko Schwarz Source Coding and Compression December 7, 2013 247 / 661



o

Quantization Introduction

Performance of Quantizers

Encoder mapping α : RN → I introduces distortion

α

s
 i
 s’


β

i


γ
 γ-1
Channel

b
 b


β
s’


D
 R


Assume random process {Sn} to be stationary: Distortion and rate

D = E{dN (Sn, Q(Sn))} =
1

N

K−1∑
i=0

∫
Ci
dN (s, Q(s)) fS(s) ds (348)

R =
1

N
E{ |γ(Q(Sn) )| } =

1

N

N−1∑
i=0

pi · |γ(s′i)| =
1

N

N−1∑
i=0

pi · `i (349)

where |γ(s′i)| denotes codeword length `i and pi denotes the pmf for s′i

pi = p(s′i) =

∫
Ci
fS(s) ds (350)
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Quantization Scalar Quantization

Scalar Quantization

Input/output function of a scalar quantizer

K-1 decision

thresholds


K 

reconstruction


levels 


Input �
signal s


ui+1


s’i+2


ui+1


s’i+1

s’i


ui


Output signal s’


A scalar (one-dimensional) quantizer is a mapping

Q : R→ {s′0, s′1, . . . , s′K−1} (351)

Quantization cells Ci = [ui, ui+1) with u0 = −∞ and uK =∞
Step size for reconstruction level i is denoted as ∆i = ui+1 − ui
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o

Quantization Scalar Quantization

Performance of Scalar Quantizers

Scalar quantization of an amplitude-continuous random variable S can be
viewed as a discretization of its continuous pdf f(s)

Average MSE distortion is given as

D = E{d1(S,Q(S))} = E{d1(S, S′)} =

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2 · f(s) ds (352)

Average rate is given by the expectation value of the codeword length

R = E{|γ(Q(S))|} =
N−1∑
i=0

pi · |γ(s′i)| =
N−1∑
i=0

pi · `i (353)

Goal of design: Optimize mappings α (i.e. ui), β (i.e. s′i), and γ
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o

Quantization Scalar Quantization

Scalar Quantization with Fixed-Length Codes

Consider restriction on lossless mapping γ:

=⇒ Assign codeword of same length to all quantization indices

Quantizer of size K:

=⇒ Codeword length must be greater than or equal to dlog2Ke

If K is not a power of 2, quantizer requires the same minimum codeword
length as a quantizer of size K ′ = 2dlog2 Ke

Since K < K ′, quantizer of size K ′ can achieve a smaller distortion

Define rate according to
R = log2K, (354)

while only considering quantizer sizes K that represent integer powers of 2
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Quantization Scalar Quantization

Simplest Case: Pulse-Code-Modulation (PCM)

PCM: Uniform mappings α and β
All quantization intervals have same size ∆
Reconstruction values s′i lie in the middle of the intervals

PCM for random processes with amplitude range [smin, smax]

A = smax − smin =⇒ ∆ =
A

K
= A · 2−R (355)

Quantization mapping

Q(s) = round

(
s− smin

∆
+ 0.5

)
·∆ + smin (356)

Example: Uniform distribution f(s) = 1
A for −A2 ≤ s ≤ A

2

D =

K−1∑
i=0

∫ smin+(i+1)∆

smin+i∆

1

A

(
s− smin −

(
i+

1

2

)
·∆
)2

ds (357)

Resulting operational rate distortion function

DPCM,uniform(R) =
A2

12
· 2−2R = σ2 · 2−2R (358)
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Quantization Scalar Quantization

PCM for Sources with Infinite Support

In general, interval limits ui can be chosen as

u0 = −∞, uK =∞, ui+1 − ui = ∆ for 1 ≤ i ≤ K − 1 (359)

Symmetric pdfs: Reconstruction symbols si with 0 ≤ i < K and interval
boundaries ui with 0 < i < K

s′i = (i− K − 1

2
) ·∆ ui =

(
i− K

2

)
·∆ (360)

Distortion D is split into
granular distortion DG

and overload distortion DO

D(∆) = DG(∆) +DO(∆)

Optimum ∆ for given rate R?

Distortion minimization by balancing granular and overload distortion

min
∆

D(∆) = min
∆

[DG(∆) +DO(∆)] (361)
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Quantization Scalar Quantization

Overload and Granular Distortion

Average distortion for PCM for sources with infinite support

D(∆) =

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2 · f(s) ds

=

∫ (−K2 +1)∆

−∞
(s− s′0)2f(s)ds︸ ︷︷ ︸

overload distortion

+

K−2∑
i=1

∫ (i+1−K2 )∆

(i−K2 )∆

(s− s′i)2f(s) ds︸ ︷︷ ︸
granular distortion

+

∫ ∞
(K2 −1)∆

(s− s′K−1)2f(s) ds︸ ︷︷ ︸
overload distortion

(362)

In general: Optimum step size ∆opt cannot be analytically calculated
=⇒ Numerical optimization
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Quantization Scalar Quantization

Optimum Step Size for PCM

Distortion D(∆) vs. step size ∆ for a Gaussian pdf with unit variance

Cyan: R = 2, Magenta: R = 3, Green: R = 4 bit/sample
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Quantization Scalar Quantization

Numerical Optimization Results for PCM Quantization
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Numerical minimization of distortion by varying ∆

Loss in SNR is large and increases towards higher rates

Improvement through pdf-optimized quantizers

=⇒ Make quantization step sizes ∆i variable?

=⇒ Modify placement of s′i inside a quantization interval?

=⇒ Use variable length codes?
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Quantization Scalar Quantization

Optimality for Decoding Mapping: Centroid Condition

Assume given decision thresholds and consider optimal reconstruction values
Distortion Di inside a quantization interval Ci

Di =

∫ ui+1

ui

d1(s, s′i) · f(s|s′i) ds = E{d1(S, s′i)|S∈ Ci} (363)

Probability that a source symbol falls inside quantization interval Ci

pi =

∫ ui+1

ui

f(s) ds (364)

Average distortion

D =

K−1∑
i=0

pi ·Di =

K−1∑
i=0

∫ ui+1

ui

d1(s, s′i) · f(s) ds (365)

Since pi does not depend on s′i, the optimality criterion is

s′∗i = arg min
s′∈R

E{d1(S, s′)|S∈ Ci} (366)

=⇒ General centroid condition
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Quantization Scalar Quantization

Centroid Condition for MSE Distortion

Given a random variable X, the value of y that minimizes E
{

(X − y)2
}

is

y = E{X} (367)

which can be shown by

E
{

(X − y)2
}

= E
{

(X − E{X}+ E{X} − y)2
}

= E
{

(X − E{X})2
}

+ (E{X} − y)2

≥ E
{

(X − E{X})2
}

(368)

Consequently, given an event A, the value y that minimizes

E
{

(X − y)2|X ∈ A
}

(369)

is
y = E{X|X ∈ A} (370)
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Quantization Scalar Quantization

Centroid Condition for MSE Distortion

General centroid condition

s′∗i = arg min
s′∈R

E{d1(S, s′)|S∈ Ci} (371)

MSE distortion
d1(x, y) = (x− y)2 (372)

The value of s′i that minimizes the centroid condition is

s′∗i = E{S|S∈ Ci} =

ui+1∫
ui

s · f(s|s′i) ds =

ui+1∫
ui

s · f(s)

pi
ds (373)

=⇒ Centroid condition for MSE distortion

s′i =
1

pi

ui+1∫
ui

s f(s) ds =

ui+1∫
ui

s f(s) ds

ui+1∫
ui

f(s) ds

(374)
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Quantization Scalar Quantization

Properties of Centroid Quantizers

Quantization does not change the mean

E{S} =
∑
i

∫ ui+1

ui

s f(s) ds =
∑
i

pi s
′
i = E

{
S′
}

= E{Q(S)} (375)

Mean of quantization error

E{e(S)} = E{S −Q(S)} = E{S} − E{Q(S)} = 0 (376)

Distortion D (2nd moment and variance of quantization error)

D = E
{
e(S)2} =

∑
i

∫ ui+1

ui

(s− s′i)2 f(s) ds

=
∑
i

(∫ ui+1

ui

s2 f(s) ds− 2s′i

∫ ui+1

ui

s f(s) ds+ s′2i

∫ ui+1

ui

f(s) ds

)
=

∫ ∞
−∞

s2 f(s) ds−
∑
i

(
2s′i · s′i · pi − s′2i · pi

)
= E

{
S2}− E{Q(S)2} (377)

=⇒ σ2
e(S) = σ2

S − σ2
Q(S) (378)
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Quantization Scalar Quantization

Properties of Centroid Quantizers

Correlation between quantizer input S and quantizer output Q(S)

E{S ·Q(S)} =
∑
i

∫ ui+1

ui

s s′i f(s) g(s′i|s) ds

=
∑
i

s′i

∫ ui+1

ui

s f(s) ds =
∑
i

s′2i pi = E
{
Q(S)2} (379)

Correlation between quantizer input S and quantization error e(S)

E{S · e(S)} = E{S (S −Q(S))} = E
{
S2}− E{S Q(S)}

= E
{
e(S)2}+ E

{
Q(S)2}− E{Q(S)2}

= E
{
e(S)2} = D (380)

Correlation between quantizer output Q(S) and quantization error e(S)

E{Q(S) · e(S)} = E{Q(S) (S −Q(S))} = E{Q(S)S} − E
{
Q(S)2}

= E
{
Q(S)2}− E{Q(S)2} = 0 (381)

=⇒ Quantizer output and quantization error are uncorrelated

Heiko Schwarz Source Coding and Compression December 7, 2013 261 / 661



o

Quantization Scalar Quantization

Optimality for Encoding Mapping: Nearest Neighbor Condition

Assume fixed-length coding and given reconstruction levels s′i
Choose decision thresholds ui so that distortion D is minimized

D =

K−1∑
i=0

piDi =

K−1∑
i=0

∫ ui+1

ui

d1(s, s′i) · f(s) ds (382)

Each decision thresholds ui influences only the distortions Di−1 and Di of
the neighboring intervals Ci−1 and Ci, respectively

Distortion is minimized if the following condition is obeyed

d1(ui, s
′
i−1) = d1(ui, s

′
i) (383)

For MSE distortion, optimal decision thresholds u∗i are given by

u∗i =
s′i−1 + s′i

2
(384)
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Quantization Scalar Quantization

Lloyd Quantizer

Optimal scalar quantizer with fixed-length codes

Do not consider entropy coding of quantization indices

Minimize distortion for given number K of quantization intervals

Rate can be represented by
R = log2K (385)

Preferable to choose K as an integer power of 2

Necessary conditions for optimality

General centroid condition (for reconstruction levels s′i)

s′∗i = arg min
s′∈R

E{d1(S, s′) |S ∈ Ci} (386)

General nearest neighbor condition (for decision threshold ui)

d1(ui, s
′
i−1) = d1(ui, s

′
i) (387)
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Quantization Scalar Quantization

Lloyd Quantizer

Optimality conditions for MSE distortion

Centroid condition

s′i =

∫ ui+1

ui
s f(s) ds∫ ui+1

ui
f(s) ds

(388)

Nearest neighbor condition (for decision threshold ui)

ui =
s′i−1 + s′i

2
(389)

Design of Lloyd quantizers

In general, cannot be derived analytically

Iterative algorithm consisting of

Optimize decision thresholds ui given reconstruction levels s′i
Optimize reconstruction levels s′i given decision thresholds ui

Iterative design can be based on

Given probability density function (perhaps using numerical integration)
Sufficiently large training set for considered source
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Quantization Scalar Quantization

Lloyd Algorithm for a Training Set

Given is

a sufficiently large realization {sn} of considered source

the number K of reconstruction levels {s′i}

Iterative quantizer design
1 Choose an initial set of reconstruction levels {s′i}
2 Associate all samples of the training set {sn} with one of the quantization

intervals Ci according to

α(sn) = arg min
∀i

d1(sn, s
′
i) (nearest neighbor condition)

and update the decision thresholds {ui} accordingly
3 Update the reconstruction levels {s′i} according to

s′i = arg min
s′∈R

E{d1(S, s′) |α(S) = i} (centroid condition)

where the expectation value is taken over the training set
4 Repeat the previous two steps until convergence
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Quantization Scalar Quantization

Example: Lloyd Algorithm for a Gaussian Source

Gaussian distribution with zero mean and unit variance

f(s) =
1

σ
√

2π
e−s

2/(2σ2) (390)

Draw a sufficiently large number of samples (> 10000) from f(s)

Design Lloyd quantizer with rate R = 2 bit/symbol (K = 4)

Result of Lloyd algorithm

Decision thresholds ui

u1 = −0.98, u2 = 0, u3 = 0.98

Decoding symbols s′i

s′0 = −1.51, s′1 = −0.45

s′2 = 0.45, s′3 = 1.51

Minimum distortion:
D∗F = 0.12 = 9.3 dB
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0.5

 s

 f(
 s)
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Heiko Schwarz Source Coding and Compression December 7, 2013 266 / 661



o

Quantization Scalar Quantization

Convergence of Lloyd Algorithm for Gaussian Source Example

Initialization A:
s′i = −3.75 + 2.5 · i
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Initialization B:
s′3/0 = +/− 1.15, s′2/1 = +/− 0.32
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For both initializations, (D −D∗F )/D∗F < 1% after 6 iterations
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o

Quantization Scalar Quantization

Example: Lloyd Algorithm for a Laplacian Source

Laplacian distribution with zero mean and unit variance

f(s) =
1

σ
√

2
e−|s|

√
2/σ (391)

Draw a sufficiently large number of samples (> 10000) from f(s)

Design Lloyd quantizer with rate R = 2 bit/symbol (K = 4)

Result of Lloyd algorithm

Decision thresholds ui

u1 = −1.13, u2 = 0, u3 = 1.13

Decoding symbols s′i

s′0 = −1.83, s′1 = −0.42

s′2 = 0.42, s′3 = 1.83

Minimum distortion:
D∗F = 0.18 = 7.55 dB
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Quantization Scalar Quantization

Convergence of Lloyd Algorithm for Laplacian Source Example

Initialization A:
s′i = −3.75 + 2.5 · i
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Initialization B:
s′3/0 = +/−1.15, s′2/1 = +/−0.32
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For both initializations, (D −D∗F )/D∗F < 1% after 6 iterations
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Quantization Scalar Quantization

Entropy-Constrained Scalar Quantization (ECSQ)

Lloyd quantizer: Minimize distortion for given number K of intervals

Now: Consider quantizer design with variable-length coding of indices

Average rate (without exploiting dependencies between quantization indices)

R =

N−1∑
i=0

pi · `i ≥ H(S′) = −
K−1∑
i=0

pi log2 pi (392)

with

pi =

∫ ui+1

ui

f(s) ds (393)

=⇒ Consider entropy instead of the rate of an actual code

Average MSE distortion

D = E{d1(S, S′)} =

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2 · f(s) ds (394)
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Quantization Scalar Quantization

Joint Minimization of Rate and Distortion

We look for solutions of constrained minimization problems

minD subject to R ≤ RC (395)

or equivalently minR subject to D ≤ DC (396)

Instead of the constrained minimization, minimize a Lagrangian function

J = D + λ ·R = E{d1(S, S′)}+ λ · E{`(S′)} (397)

The chosen λ corresponds to a rate constraint RC (distortion constraint DC)

Minimization of J with respect to reconstruction levels s′i is the same as the
minimization of the distortion D with respect to the reconstruction levels s′i

=⇒ Centroid condition still optimal for reconstruction levels (decoder β(i))

MSE: s′∗i = E{S|s ∈ Ci} =

∫ ui+1

ui
s · f(s) ds∫ ui+1

ui
f(s) ds

(398)
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Quantization Scalar Quantization

Necessary Conditions for Optimality

Optimal quantizer design: Minimize Lagrange cost J for given λ

J = D + λ ·R = E{d1(S, S′)}+ λ · E{`(S′)} (399)

Optimal reconstruction levels only depend on decision thresholds ui

s′∗i = E{S|s ∈ Ci} =

ui+1∫
ui

s · f(s) ds

ui+1∫
ui

f(s) ds

(for MSE) (400)

Optimal codeword lengths also depends only on decision thresholds ui

`i = − log2 pi = − log2

 ui+1∫
ui

f(s) ds

 (401)

How to derive optimal decision thresholds?
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Quantization Scalar Quantization

Optimal Decision Thresholds

Want to minimize J given optimal decoder β and entropy coding γ

J = D + λ ·R

= =
∑
∀i

ui+1∫
ui

d1(s, s′i) f(s) ds+ λ
∑
∀i

`i

ui+1∫
ui

f(s) ds (402)

For given reconstruction levels s′i and codeword lengths `i:

=⇒ Each decision threshold ui only influences distortion of neighboring
intervals Ci−1 and Ci

Optimal threshold ui:
Each value s is assigned to the interval for which D + λR is minimized

α(s) = arg min
∀s′i

d1(s, s′i) + λ `i (403)
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Quantization Scalar Quantization

Optimal Decision Thresholds

Lagrangian function is minimized for encoding

α(s) = arg min
∀s′i

d1(s, s′i) + λ `i (404)

Optimal decision threshold ui fulfils condition

d1(ui, s
′
i−1) + λ · `i−1 = d1(ui, s

′
i) + λ · `i (405)

For MSE distortion, we have

(ui − s′i−1)2 + λ · `i−1 = (ui − s′i)2 + λ · `i (406)

yielding

u∗i =
s′i + s′i−1

2
+
λ

2
· `i − `i−1

s′i − s′i−1

(407)

The decision threshold is shifted from the middle between the reconstruction
values toward the reconstruction value with the longer codeword
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Quantization Scalar Quantization

Entropy-Constrained Lloyd Algorithm for a Training Set

Given is

a sufficiently large realization {sn} of considered source
a Lagrange parameter λ

Iterative quantizer design
1 Choose initial set of reconstruction levels {s′i} and codeword lengths {`i}
2 Associate all samples of the traing set {sn} with one of the quantization

intervals Ci according to

α(sn) = arg min
∀s′i

d1(sn, s
′
i) + λ `i (408)

and update the decision thresholds {ui} accordingly
3 Update the reconstruction levels {s′i} according to

s′i = arg min
s′∈R

E{d1(S, s′) | α(S) = i} (409)

4 Update the codeword lengths `i according to

`i = − log2 pi (410)

5 Repeat previous three steps until convergence
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Quantization Scalar Quantization

Number of Initial Intervals for EC Lloyd Algorithm
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N=14N=15N=16N=17N=18N=19

Entropy constraint in EC Lloyd algorithm causes shift of costs

If two level s′i and s′k are competing, the symbol with larger popularity has
higher chance of being chosen

Level which is not chosen further reduces its associated conditional probability

As a consequence, symbols get ”removed” and the EC Lloyd algorithm can
be initialized with more symbols than the final result
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Quantization Scalar Quantization

Entropy-Constrained Lloyd Algorithm for Gaussian Source

Consider Gaussian source with zero mean and unit variance

Design optimal entropy-constrained quantizer with rate R = 2 bit/symbol

Optimum average distortion: D∗F = 0.09 = 10.45 dB

Results for optimal decision thresholds ui and decoding symbols s′i are
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Quantization Scalar Quantization

Convergence EC Lloyd Algorithm for Gaussian Source

Initialization A:
s′i = −3 + 0.5 · i

0 2 4 6 8 10 12 14 16 18 20 22 24
!5
!4
!3
!2
!1
0
1
2
3
4
5

 u1
 u2
 u3
 u4
 u5
 u6
 u7
 u8
 u9
 u10
 u11
 u12

 u13

 u0

!

!!

 s’0
 s’1
 s’2
 s’3
 s’4
 s’5
 s’6
 s’7
 s’8
 s’9
 s’10
 s’11
 s’12

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

D
[dB]

R
[bit/s]

Initialization B:
s′i = −3 + 2 · i
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For initialization A, decoding bins get discarded

For initialization B, desired quantizer performance is not achieved
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Quantization Scalar Quantization

Entropy-Constrained Lloyd Algorithm for Laplacian Source

Consider Laplacian source with zero mean and unit variance

Design optimal entropy-constrained quantizer with rate R = 2 bit/symbol

Optimum average distortion: D∗V = 0.07 = 11.46 dB

Results for optimal decision thresholds ui and decoding symbols s′i are
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Quantization Scalar Quantization

Convergence of EC Lloyd Algorithm for Laplacian Source

Initialization A:
s′i = −3 + 0.5 · i
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Initialization B:
s′i = −3 + 2 · i
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For initialization A, faster convergence of costs than thresholds

For initialization B, desired quantizer performance is not achieved
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Quantization Scalar Quantization

High-Rate Approximation for Scalar Quantizers

Assumption: Small sizes ∆i of quantization intervals [ui, ui+1)

Then: Marginal pdf f(s) nearly constant inside each interval

f(s) ≈ f(s′i) for s ∈ [ui, ui+1) (411)

Approximation

pi =

∫ ui+1

ui

f(s) ds ≈ (ui+1 − ui)f(s′i) = ∆i · f(s′i) (412)

Average distortion

D = E{d(S,Q(S))}

=

K−1∑
i=0

∫ ui+1

ui

(s− s′i)2f(s) ds

≈
K−1∑
i=0

f(s′i)

∫ ui+1

ui

(s− s′i)2 ds (413)
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Quantization Scalar Quantization

High-Rate Approximation for Scalar Quantizers

Average distortion

D ≈
K−1∑
i=0

f(s′i)

∫ ui+1

ui

(s− s′i)2 ds (414)

=
1

3

K−1∑
i=0

f(s′i)
(
(ui+1 − s′i)3 − (ui − s′i)3

)
(415)

By differentiation with respect to s′i, we find that for minimum distortion,

(ui+1 − s′i)2 = (ui − s′i)2 =⇒ s′i =
1

2
(ui + ui+1) (416)

Average distortion at high rates

D ≈ 1

12

K−1∑
i=0

f(s′i) ∆3
i =

1

12

K−1∑
i=0

pi ∆2
i (417)

Average distortion at high rates for constant ∆ = ∆i

D ≈ ∆2

12
(418)
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Quantization Scalar Quantization

High-Rate Approximation for Scalar Quantizers with FLC

Using
∑K−1
i=0 K−1 = 1

D =
1

12

K−1∑
i=0

f(s′i)∆
3
i =

1

12

(K−1∑
i=0

f(s′i)∆
3
i

)1
3

·
(
K−1∑
i=0

1

K

)2
3

3

(419)

Using Hölders inequality

α+ β = 1 =⇒
(

b∑
i=a

xi

)α
·
(

b∑
i=a

yi

)β
≥

b∑
i=a

xαi · yβi (420)

with equality if and only if xi is proportional to yi, it follows

D ≥ 1

12

(
K−1∑
i=0

f(s′i)
1
3 ·∆i ·

(
1

K

)2
3

)3

=
1

12K2

(
K−1∑
i=0

3

√
f(s′i) ∆i

)3

(421)

Reason for α = 1/3: Obtain expression in which ∆i has no exponent
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Quantization Scalar Quantization

High-Rate Approximations for Scalar Quantizers with FLC

Inequality for average distortion

D ≥ 1

12K2

(
K−1∑
i=0

3

√
f(s′i) ∆i

)3

(422)

becomes equality if all terms f(s′i) ∆3
i are the same

Approximation asymptotically valid for small intervals ∆i

D =
1

12K2

(∫ ∞
−∞

3
√
f(s) ds

)3

(423)

With 1/K2 = 2− log2 K
2

= 2−2R: Operational distortion rate function for
optimal scalar quantizers with fixed-length codes

DF (R) = σ2 · ε2
F · 2−2R with ε2

F =
1

12σ2

(∫ ∞
−∞

3
√
f(s) ds

)3

(424)

=⇒ Published by Panter and Dite in [Panter and Dite, 1951] and is also
referred to as the Panter and Dite formula
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Quantization Scalar Quantization

Efficiency of Optimum High-Rate Quantizers with FLCs

DF (R) for optimum high-rate scalar quantization with fixed-length codes

DF (R) = ε2
F · σ2 · 2−2R (425)

Uniform pdf:

ε2
F = 1 (0 dB)

Laplacian pdf:

ε2
F = 4.5 (6.53 dB)

Gaussian pdf:

ε2
F =

√
3π

2
≈ 2.721 (4.35 dB)
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Quantization Scalar Quantization

High-Rate Approximation for Quantizers with VLC

Use variable length coding for the quantizer indexes

Again, assume pmf pi of quantized output signal s′ as pi = f(s′i)∆i

The average rate is given as

R = H(S′) = −
K−1∑
i=0

pi log2 pi = −
K−1∑
i=0

f(s′i)∆i log2(f(s′i)∆i)

= −
K−1∑
i=0

f(s′i) log2(f(s′i)) ·∆i −
K−1∑
i=0

f(s′i)∆i log2 ∆i

≈ −
∫
f(s) log2 f(s) ds︸ ︷︷ ︸

differential entropy h(S)

−1

2

K−1∑
i=0

pi log2 ∆2
i

= h(S)− 1

2

K−1∑
i=0

pi log2 ∆2
i (426)
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Quantization Scalar Quantization

High-Rate Approximation for Quantizers with VLC

Jensen’s inequality for convex functions ϕ(xi) such as ϕ(xi) = − log2 xi

ϕ

(
K−1∑
i=0

ai xi

)
≤
K−1∑
i=0

ai ϕ(xi) for

K−1∑
i=0

ai = 1 (427)

with equality for constant xi

Jensen’s inequality and the high-rate distortion approximation

R = h(S)− 1

2

K−1∑
i=0

p(s′i) log2 ∆2
i ≥ h(S)− 1

2
log2

(
K−1∑
i=0

p(s′i)∆
2
i

)

= h(S)− 1

2
log2(12D) (428)

with equality if and only if all ∆i = ∆, i.e. for uniform quantization

=⇒ For MSE distortion and high rates, optimal quantizers with variable
length codes have uniform step sizes
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Quantization Scalar Quantization

Comparison of High-Rate Distortion-Rate Functions

Optimum high-rate scalar quantizers with variable-length codes

DV (R) =
1

12
· 22h(S) · 2−2R (429)

is factor πe/6 ≈ 1.42 or ≈ 1.53 dB from the Shannon Lower Bound (SLB)

DL(R) =
1

2πe
· 22h(S) · 2−2R (430)

Recall: Optimum high-rate scalar quantizers with fixed-length codes

DF (R) =
1

12

[∫ ∞
−∞

3
√
f(s) ds

]3

· 2−2R (431)

The DX(R) functions (X = L,F, V ) can be expressed in general form as

DX(R) = ε2
X · σ2 · 2−2R (432)

with ε2
X being a factor that depends on pdf (f(s)) of the source and

properties of the quantizer (fixed-length vs. variable length vs. SLB)
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Quantization Scalar Quantization

Comparison of High-Rate Distortion-Rate Functions

Operational Distortion-rate function at high rates is given as

DX(R) = ε2
X · σ2 · 2−2R (433)

Values of ε2
X for quantization method X

Method Shannon Lower Panter & Dite Gish & Pierce
Bound (SLB) (Lloyd Quant. & FLC) (ECSQ & VLC)

Uniform pdf 6
πe ≈ 0.7 1 1

(1.53 dB to SLB) (1.53 dB to SLB)

Laplacian pdf e
π ≈ 0.86 9

2 = 4.5 e2

6 ≈ 1.23

(7.1 dB to SLB) (1.53 dB to SLB)

Gaussian pdf 1
√

3π
2 ≈ 2.72 πe

6 ≈ 1.42

(4.34 dB to SLB) (1.53 dB to SLB)
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Quantization Scalar Quantization

Performance of Scalar Quantizers for Gaussian Sources

R [bit/symbol]

SNR [dB]

Entropy-constrained scalar quantizer is 1.53 dB from distortion rate curve

For sources with memory: Statistical dependencies cannot be exploited

Heiko Schwarz Source Coding and Compression December 7, 2013 290 / 661



o

Quantization Vector Quantization

Can We Further Improve Quantization?

Scalar quantization: Special case of vector quantization (with N = 1)

Vector quantization with N > 1 allows a number of new options

• 

• 

• • • • • • • 
• • • • • • • • 

• • • • • • • 
• • • • • • • • • 
• • • • • • • • 
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Quantization Vector Quantization

Vector Quantization

Vector quantization:

Generalization of scalar quantization
Map vector of N > 1 samples to representative vectors

Many models and design techniques used in vector quantization are natural
generalizations of scalar quantization

Vector quantizer Q of dimension N and size K is a mapping from a point in
N -dimensional Euclidean space RN into a finite set C containing K code
vectors or code words

Q : RN → C (434)

Vector quantizer splits RN into K quantization cells Ci
Ci = {s ∈ RN : q(s) = s′} (435)

The cells form a partition of RN⋃
i

Ci = RN and Ci
⋂
Cj = ∅ for i 6= j (436)
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Quantization Vector Quantization

Measuring Vector Quantizer Performance

Average distortion for a N -dimensional vector quantizer

D = E{dN (S,S′)} =

∫
RN

dN (s, s′)f(s) ds (437)

Using the partitioning of RN into cells Ci and the codebook
C = {s′0, s′1, ...} for a given quantizer Q

D =

K−1∑
i=0

∫
Ci

dN (s, s′i)f(s) ds (438)

For MSE distortion

dN (s, s′i) =
1

N
‖s− s′i‖ =

1

N
(s− s′i)T (s− s′i) =

1

N

N−1∑
n=0

(sn− s′i,n)2 (439)

Average rate (bit/scalar) for a N -dimensional vector quantizer of size K

R =
1

N
E{− log2 p(S

′
i)} = − 1

N

K−1∑
i=0

pi log2 pi (440)
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Quantization Vector Quantization

The Linde-Buzo-Gray (LBG) Algorithm

Given is

a sufficiently large realization {sn} of considered source

the number K of reconstruction vectors {s′i}

Iterative quantizer design (extension of Lloyd algorithm)

1 Choose an initial set of reconstruction vectors {s′i}
2 Associate all vectors of the training set {sn} with one of the quantization

cells Ci according to

α(sn) = arg min
∀i

dN (sn, s
′
i) (nearest neighbor condition)

and update the decision thresholds {ui} accordingly

3 Update the reconstruction vectors {s′i} according to

s′i = arg min
s′∈R

E{dN (S, s′) |α(S) = i} (centroid condition)

4 Repeat the previous two steps until convergence
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Quantization Vector Quantization

LBG Algorithm Result for Gaussian IID

Result for dimension N = 2 and size K = 16 corresponding to R = 2 bit/sample

initialization after iteration 8 after iteration 49

Initialization:

s′i+4k = (−3.75+2.5i,−3.75+2.5k)T

After iteration 8: Same performance as
in scalar case: 9.3 dB

After iteration 49: Improvement to
9.67 dB
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Quantization Vector Quantization

LBG Algorithm Result for Gaussian IID

Result for dimension N = 2 and size K = 256 corresponding to R = 4 bit/sample
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it/
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1.31 dB

H=3.69 bit/s

Conjectured VQ performance for R=4 bit/s

Fixed!length SQ performance for R=4 bit/s

Random initialization

Gain around 0.9 dB for two-dimensional VQ compared to SQ with
fixed-length codes resulting in 20.64 dB (of conjectured 21.05 dB)
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o

Quantization Vector Quantization

LBG Algorithm Result for Laplacian IID

Result for dimension N = 2 and size K = 16 corresponding to R = 2 bit/sample
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1.32 dB

Initialization (equal to experiment with Gaussian iid):

s′i+4k = (−3.75 + 2.5i,−3.75 + 2.5k)T

Large gain (1.32 dB) for two-dimensional VQ compared to SQ with
fixed-length codes resulting in 8.87 dB
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o

Quantization Vector Quantization

LBG Algorithm Result for Laplacian IID

Result for dimension N = 2 and size K = 256 corresponding to R = 4 bit/sample
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Conjectured VQ performance for R=4 bit/s

Fixed!length SQ performance for R=4 bit/s

Random initialization

Large gain (1.84 dB) for two-dimensional VQ compared to SQ with
fixed-length codes resulting in 19.4 dB (of conjectured 19.99 dB)
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o

Quantization Vector Quantization

The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects

Space filling advantage:

Z lattice is not most efficient sphere packing in N dimensions (N > 1)
Independent from source distribution or statistical dependencies
Maximum gain for N →∞: 1.53 dB

Shape advantage:

Exploit shape of source pdf
Can also be exploited using entropy-constrained scalar quantization

Memory advantage:

Exploit statistical dependencies of the source
Can also be exploited using predictive coding, transform coding,
block entropy coding or conditional entropy coding
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o

Quantization Vector Quantization

Space Filling Advantage

Consider uniform iid source with f(s) = 1/A for −A/2 ≤ s ≤ A/2 and A = 10

=⇒
50 iterations

of LBG algorithm

DU (R) for SQ of uniform distribution is given as DU (R) = A2

12 2−2R;
with A = 10 and R = 3.32 bit/scalar we have DU (R) = 19.98 dB

LBG algorithm converged towards 20.08 dB showing an approximate
hexagonal lattice in 2D
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o

Quantization Vector Quantization

Space-Filling Advantage: Densest Sphere Packings

Densest packings, highest kissing numbers, and approximate gain using VQ

Dim. Densest Name Highest Kissing Approximate
Packing Number Gain [dB]

1 Z – Integer lattice 2 0

2 A2 – Hexagonal lattice 6 0.17

3 A3 ' D3 – Cuboidal lattice 12 0.29

4 D4 24 0.39

5 D5 40 0.47

6 E6 72 0.54

7 E7 126 0.60

8 E8 – Gosset lattice 240 0.66

9 Λ9 – Laminated lattice 240 0.70

10 P10c – Non-lattice arrangement 336 0.74

12 K12 – Coxeter-Todd lattice 756 0.81

16 BW16 ' Λ16 – Barnes-Wall lattice 4320 0.91

24 Λ24 – Leech lattice 196560 1.04

100 1.35

∞ 1.53
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o

Quantization Vector Quantization

Chou-Lookabaugh-Gray Algorithm: ECVQ

Given is

a sufficiently large realization {sn} of considered sources

a Lagrange parameter λ

Iterative quantizer design (extension of EC Lloyd algorithm)
1 Choose initial set of reconstruction vectors {s′i} and codeword lengths {`i}
2 Associate all samples of the training set {sn} with one of the quantization

cells Ci according to

α(sn) = arg min
∀s′i

dN (sn, s
′
i) + λ · `i

3 Update the reconstruction vectors {s′i} according to

s′i = arg min
s′∈R

E{dN (S, s′) |α(S) = i}

4 Update the codeword lengths `i according to

`i = − log2 pi

5 Repeat previous three steps until convergence
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Quantization Vector Quantization

Shape Advantage: Results for Gaussian IID (N = 2, K = 16)
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0.26 dB

Result of CLG algorithm for Gaussian iid

Gain of ECVQ compared to ECSQ is 0.26 dB

Gain of VQ compared to SQ with fixed-length codes is 0.37 dB
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o

Quantization Vector Quantization

Shape Advantage: Results for Laplace IID (N = 2, K = 16)

0 10 20 30 40 500

2

4

6

8

10

12

14

Iteration
SN

R 
[d

B]
, R

 [b
it/

s] 0.2 dB

R=2.04 bit/s

Result of CLG algorithm for Laplace iid

Gain of ECVQ compared to ECSQ is 0.20 dB

Gain of VQ compared to SQ with fixed-length codes is 1.32 dB
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o

Quantization Vector Quantization

Shape Advantage: Results for Gaussian IID (N = 2, K = 256)
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ECVQ performance for R=4.04 bit/s (conjectured)

ECSQ performance for R=4.04 bit/s

Result of CLG algorithm for Gaussian iid

Gain of ECVQ compared to ECSQ is 0.17 dB

Gain of VQ compared to SQ with fixed-length codes is 0.9 dB
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o

Quantization Vector Quantization

Shape Advantage: Results for Laplace IID (N = 2; K = 256)

Result of CLG algorithm for 2D Laplace i.i.d.

Gain of ECVQ compared to ECSQ is 0.17 dB

Gain of VQ compared to SQ with fixed-length codes is 1.84 dB

=⇒ Entropy coding of quantization indices only leaves the space-filling gain,
which is approximately 0.17 dB for N = 2
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o

Quantization Vector Quantization

Summary on Shape Advantage

When comparing ECSQ with ECVQ for iid sources, the gain due to K > 1
reduces to the space filling gain

VQ with fixed-length codes can also exploit the gain that ECSQ shows
compared to SQ with fixed-length codes
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o

Quantization Vector Quantization

Memory Advantage: Results for Gauss-Markov with ρ = 0.9

VQ results from LBG algorithm for Gauss-Markov source with correlation ρ = 0.9

⇐= R = 1 bit/scalar

R = 2 bit/scalar =⇒

⇐= R = 3 bit/scalar

R = 4 bit/scalar =⇒
LBG algorithm has been ex-
tended by re-inserting discarded
symbols s′i using random choices
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o

Quantization Vector Quantization

Memory Advantage: Results for Gauss-Markov with ρ = 0.9
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Conjectured VQ performance for R=2 bit/s

Fixed!length SQ performance for R=2 bit/s
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Conjectured VQ performance for R=4 bit/s

Fixed!length SQ performance for R=4 bit/s

Gains are additive from space-filling, shape and memory effects

For high rates, conjectured VQ performance is approached
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o

Quantization Vector Quantization

Summary on Memory Advantage

Largest gain to be made if source contains statistical dependencies

Exploiting the memory advantage is one of the most relevant aspects of
source coding (shape advantage can be obtained using entropy coding)

Remainder of source coding course will consider this issue

1 2 4 8 160
1
2
3
4
5
6
7
8
9

10
11

Dimension  K

SN
R 

G
ai

n 
[d

B]

!=0.5

!=0.9

!=0.95

"

10.11 dB

7.21 dB

1.25 dB

Heiko Schwarz Source Coding and Compression December 7, 2013 310 / 661



o

Quantization Vector Quantization

Vector Quantizer Advantage for a Gauss-Markov Source

Gauss-Markov source with correlation factor ρ = 0.9
Conjectured numbers are empirically verified for K = 2

Fixed-Length Coded SQ (K=1) 

(Panter-Dite Approximation)


ECSQ  using EC Lloyd Algorithm 

VQ, K=2 (e)


VQ, K=2 using LBG algorithm 

VQ, K=5 (e)


VQ, K=10 (e)


VQ, K=100 (e)


R(D)


SNR [dB]


R [bit/scalar]
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o

Quantization Vector Quantization

Vector Quantization with Structural Constraints

Vector quantizers can asymptotically achieve rate-distortion curve for N →∞

Complexity requirements: Storage and computation

Delay

Impose structural constraints can reduce complexity

Tree-Structured VQ

Transform VQ

Multistage VQ

Shape-Gain VQ

Lattice Codebook VQ

Predictive VQ

Predictive VQ can be seen as a generalization of very popular techniques:
Motion compensation in video coding and various techniques in speech coding
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o

Quantization Chapter Summary

Chapter Summary

Scalar quantization

Lloyd quantizer: Minimum distortion for given number of representative levels

Variable length coding: Additional gains by entropy-constrained quantization

Optimal scalar quantizer for high rates: Uniform quantizer

Vector quantization

Vector quantizers can achieve rate-distortion curve forN →∞
Space filling gain: Only exploited by vector quantizers (1.53 dB for N →∞)

Shape gain: Can also be exploited by entropy coding of quantization indices

Memory gain: Can be exploited by predictive coding, transform coding, or
entropy coding using joint or conditional probability mass functions

Vector quantization can achive rate-distortion bound. – Are we done?

=⇒ No! Complexity of vector quantizers is the issue

=⇒ Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met
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o

Quantization Exercises (Set E)

Exercise 15

Consider a symmetric scalar quantizer with 3 intervals and a quantizer input with a
zero-mean Laplace pdf,

q(x) =


−b : x < −a

0 : |x| ≤ a
b : x > a

f(x) =
1

2m
e−
|x|
m

(a) Derive the optimal reconstruction value b as a function of the decision threshold a
for MSE distortion.

Express the resulting distortion as function of a and the variance σ2=2m2.

(b) Determine the decision threshold a in a way that a Lloyd quantizer for MSE
distortion is obtained.

Determine the distortion and rate for the Lloyd quantizer by assuming fixed-length
coding (R = log2N) and compare the obtained R-D point with the Shannon lower
bound.

(c) Can the derived optimal quantizer for fixed-length coding be improved by adding
entropy coding (without changing the decision thresholds and reconstruction levels)?
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o

Quantization Exercises (Set E)

Exercise 16

Given is a Centroidal quantizer (not necessarily a Lloyd quantizer) for MSE
distortion and a source X. The quantizer has 5 reconstruction levels
{−3,−1, 0, 1, 3} which are chosen with probabilities {0.05, 0.1, 0.4, 0.3, 0.15} and
achieves an MSE of 1.05.

(a) Determine the mean µ and variance σ2 of the source X.

(b) With q(X) being the quantizer output and e(X) = X − q(X) being the
quantization error, determine the correlations E{X q(X)}, E{X e(X)}, and
E{q(X) e(X)}.
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o

Quantization Exercises (Set E)

Exercise 17

Consider a discrete Markov process X = {Xn} with the symbol alphabet
AX = {0, 2, 4, 6} and the conditional pmf

pXn|Xn−1
(xn|xn−1) =

{
a : xn = xn−1
1
3 (1− a) : xn 6= xn−1

,

for xn, xn−1 ∈ AX . The parameter a, with 0 < a < 1, is a variable that specifies
the probability that the current symbol is equal to the previous symbol. For
a = 1/4, our source X would be i.i.d.
Given is a quantizer of size 2 with the reconstruction levels s′0 = 1 and s′1 = 5 and
the decision threshold u1 = 3.

(a) Assume optimal entropy coding using the marginal probabilities of the
quantization indices and determine the rate-distortion point of the quantizer.

(b) Can the overall quantizer performance be improved by applying conditional
entropy coding (e.g., using arithmetic coding with conditional probabilities)?
How does it depend on the parameter a?
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o

Quantization Exercises (Set E)

Exercise 18

Calculate the gain of optimal 2-dimensional vector quantization relative to optimal
scalar quantization for high rates on the example of a uniform pdf.

Hint:
For high rates, border effects can be neglected. It can be assumed that the signal
space for which the pdf is non-zero is completely filled with regular quantization
cells.
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o

Quantization Exercises (Set E)

Exercise 19

Consider scalar quantization of a Laplacian source at high rates:

f(x) =
λ

2
· e−λ |x| with σ2

S =
2

λ2

In a given system, the used quantizer is a Lloyd quantizer with fixed-length
entropy coding (the number of quantization intervals represents a power of 2).
How many bits per sample can be saved if the quantizer is replaced by an
entropy-constrained quantizer with optimal entropy coding?

Note: The operation points of the quantizers can be accurately described by high
rate approximations.
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o

Predictive Coding

Predictive Coding

Q
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o

Predictive Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Optimal Prediction
Linear and Affine Prediction
Predictive Coding: DPCM

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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o

Predictive Coding Introduction

Predictive Coding – Introduction

The better the future of a random process is predicted from the past and the
more redundancy the signal contains, the less new information is contributed
by each successive observation of the process

Predictive coding idea:
1 Predict a sample using an estimate which is a function of past samples
2 Quantize residual between signal and its prediction
3 Add quantizer residual and prediction to obtain reconstructed sample

Q
 +
+


€ 

ˆ S n

€ 

ˆ S n

€ 

Sn

€ 

′ S n

€ 

Un

€ 

′ U n
-


Problems:

How to obtain the predictor Ŝn?

How to combine predictor and quantizer?
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o

Predictive Coding Introduction

Prediction

Statistical estimation procedure:

Value of random variable Sn of random process {Sn} is estimated using
values of other random variables of the random process

Predictor


+


€ 

ˆ S n
€ 

Sn

€ 

Un-


Select: Set of observed random variables Bn
=⇒ Typical example: N random variables that directly precede Sn

Bn = {Sn−1, Sn−2, · · · , Sn−N} (441)

Predictor for Sn: Deterministic function of observation set Bn

Ŝn = An(Bn) (442)

Prediction error

Un = Sn − Ŝn = Sn −An(Bn) (443)
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o

Predictive Coding Introduction

Prediction Performance

MSE distortion using ui = si − ŝi and s′i = u′i + ŝi

dN (s, s′) =
1

N

N−1∑
i=0

(si − s′i)2 =
1

N

N−1∑
i=0

(ui + ŝi − u′i − ŝi)2 = dN (u,u′) (444)

=⇒ Operational rate-distortion function of a predictive coding is equal to
op. r-d function of (scalar) quantization of the prediction residuals

Operational distortion-rate function: D(R) = σ2
U · g(R)

σ2
U : variance of the prediction residual

g(R): depends only on the type of the distribution of the residuals

=⇒ Assume stationary processes: An(·) becomes A(·)
=⇒ Neglect the dependency on the distribution type

=⇒ Define: Predictor A(Bn) given an observation set Bn is optimal
if it minimizes variance σ2

U
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o

Predictive Coding Optimal Prediction

Optimal Prediction

Optimization criterion typically used in literature:

ε2U = E
{
U2
n

}
= E

{(
Sn − Ŝn

)2}
= E

{(
Sn −A(Bn)

)2}
(445)

Minimization of second moment

ε2U = E
{

(Un − µU + µU )2
}

= E
{

(Un − µU )2
}

+ 2E{(Un − µU )µU}+ E
{
µ2
U

}
= σ2

U + µ2
U + 2µU (E{Un} − µU )

= σ2
U + µ2

U (446)

implies minimization of variance σ2
U and mean µU

Solution: Conditional mean (see proof in [Wiegand and Schwarz])

Ŝ∗n = A∗(Bn) = E{Sn | Bn} (447)

=⇒ General case requires storage of large tables
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o

Predictive Coding Optimal Prediction

Optimal Prediction for Autoregressive Processes

Autoregressive process of order m (AR(m) process)

Sn = Zn + µS +

m∑
i=1

ai · (Sn−i − µS)

= Zn + µS · (1− aTmem) + aTmS
(m)
n−1 (448)

where

{Zn} is a zero-mean iid process
µS is the mean of the AR(m) process
am = (a1, · · · , am)T is a constant parameter vector
em = (1, · · · , 1)T is an m-dimensional unit vector

Prediction of Sn given the vector Sn−1 = (Sn−1, · · · , Sn−N ) with N ≥ m

E{Sn |Sn−1} = E
{
Zn + µS(1− aTNeN ) + aTN Sn−1 |Sn−1

}
= µS(1− aTNeN ) + aTN Sn−1 (449)

where aN = (a1, · · · , am, 0, · · · , 0)T
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o

Predictive Coding Linear and Affine Prediction

Affine Prediction

Suitable structural constraint: Affine predictor

Ŝn = A(Sn−k) = h0 + hTNSn−k (450)

where hN = (h1, · · · , hN )T is a constant vector and h0 a constant offset

Variance σ2
U of prediction residual only depends on hN

σ2
U (h0,hN ) = E

{(
Un−E{Un}

)2}
= E

{(
Sn−h0−hTNSn−k − E

{
Sn−h0−hTNSn−k

})2
}

= E
{(
Sn−E{Sn} − hTN

(
Sn−k−E{Sn−k}

))2}
(451)

Mean squared prediction error

ε2U (h0,hN ) = σ2
U (hN ) + µ2

U (h0,hN ) = σ2
U (hN ) + E

{
Sn − h0 − hTN Sn−k

}2

= σ2
U (hN ) +

(
µS(1− hTNeN )− h0

)2
(452)

Minimize mean squared prediction error by setting

h∗0 = µS (1− hTN eN ) (453)
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Predictive Coding Linear and Affine Prediction

Linear Prediction for Zero-Mean Processes

€ 

S n
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ˆ S n
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z−1
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z−1

+
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hN

+

-


€ 
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The function used for prediction is linear, of the form

Ŝn = h1 · Sn−1 + h2 · Sn−2 + · · ·+ hN · Sn−N = hTNSn−1 (454)

Mean squared prediction error (same as variance for zero mean)

σ2
U (hN ) = E

{
(Sn − Ŝn)2

}
= E

{
(Sn − hTNSn−1)(Sn − STn−1hN )

}
= E

{
S2
n

}
− 2E

{
hTNSn−1Sn

}
+ E

{
hTNSn−1S

T
n−1hN

}
= E

{
S2
n

}
− 2hTNE{SnSn−1}+ hTNE

{
Sn−1S

T
n−1

}
hN (455)
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o

Predictive Coding Linear and Affine Prediction

Autocovariance Matrix and Autocovariance Vector

Variance σ2
S = E

{
S2
n

}
Autocovariance vector (for zero mean: Autocorrelation vector)

ck = E{SnSn−k} = σ2
S ·



ρk
...
ρi
...

ρN + k − 1

 with ρi = E{Sn · Sn−i} /σ2
S

(456)

Autocovariance matrix (for zero mean: Autocorrelation matrix)

CN = E
{
Sn−1S

T
n−1

}
= σ2

S ·


1 ρ1 ρ2 · · · ρN−1

ρ1 1 ρ1 · · · ρN−2

ρ2 ρ1 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 (457)
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o

Predictive Coding Linear and Affine Prediction

Optimal Linear Prediction

Prediction error variance

σ2
U (hN ) = σ2

S − 2hTNck + hTNCN hN (458)

Minimization of σ2
U (hN ) yields a system of linear equations

CN · hN = ck (459)

When CN is non-singular

h∗N = C−1
N · ck (460)

Minimum of σ2
U (hN ) is given as (with (C−1

N ck)T = cTkC
−1
N )

σ2
U (h∗N ) = σ2

S − 2 (h∗N )T ck + (h∗N )TCN h
∗
N

= σ2
S − 2

(
cTkC

−1
N

)
ck +

(
cTkC

−1
N )CN (C−1

N ck
)

= σ2
S − 2 cTkC

−1
N ck + cTkC

−1
N ck

= σ2
S − cTkC−1

N ck = σ2
S − cTk h∗N (461)

=⇒ Optimal prediction: Signal variance σ2
S is reduced by cTkC

−1
N ck = cTk h

∗
N
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o

Predictive Coding Linear and Affine Prediction

Verification of Optimality

The optimality of the solution can be verified by inserting hN = h∗N + δN into

σ2
U (hN ) = σ2

S − 2hTNck + hTNCN hN (462)

yielding

σ2
U (hN ) = σ2

S − 2(h∗N + δN )T ck + (h∗N + δN )TCN (h∗N + δN )

= σ2
S − 2 (h∗N )T ck − 2 δTNck +

(h∗N )TCN h
∗
N + (h∗N )TCN δN + δTNCN h

∗
N + δTNCN δN

= σ2
U (h∗N )− 2δTNck + 2δTNCN h

∗
N + δTNCNδN

= σ2
U (h∗N ) + δTNCN δN (463)

The additional term is always non-negative

δTNCN δN ≥ 0 (464)

It is equal to 0 if and only if hN = h∗N

=⇒ h∗N is the optimal choice for the prediction parameters
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Predictive Coding Linear and Affine Prediction

The Orthogonality Principle

Important property for optimal affine predictors

E{Un Sn−k} = E
{(
Sn − h0 − hTNSn−k

)
Sn−k

}
= E{Sn Sn−k} − h0E{Sn−k} − E

{
Sn−kS

T
n−k

}
hN

= ck + µ2
S eN − h0 µS eN − (CN + µ2

S eN e
T
N ) hN

= ck −CNhN + µS eN
(
µS (1− hTN eN )− h0

)
(465)

Inserting the optimal solutions

h∗N = C−1
N · ck and h∗0 = µS (1− hTN eN ) (466)

yields

E{Un Sn−k} = 0 (467)

=⇒ For optimal affine prediction, the correlation between the observation vector
and the prediction residual is zero
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Geometric Interpretation of Orthogonality Principle

For optimal affine prediction, the correlation between the prediction residual
Un and the observation vector Sn−k is zero

E{Un Sn−k} = 0 (468)

For optimum affine filter design, prediction error should be orthogonal to
input signal

€ 

S0

€ 

ˆ S 0
*

€ 

S1

€ 

S2 € 

U0
*

Approximate a vector S0 by a linear
combination of S1 and S2

Best approximation Ŝ
∗
0 is given by

projection of S0 onto the plane
spanned by S1 and S2

Error vector U∗0 has minimum
length and is orthogonal to the
projection
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Predictive Coding Linear and Affine Prediction

One-Step Prediction

Random variable Sn is predicted using the N directly preceding random
variables Sn−1 = (Sn−1, · · · , Sn−N )T

Using φk = E
{(
Sn − E{Sn}

)(
Sn+k − E{Sn+k}

)}
, the normal equations

are given as 
φ0 φ1 · · · φN−1

φ1 φ0 · · · φN−2

...
...

. . .
...

φN−1 φN−2 · · · φ0



hN1
hN2

...
hNN

 =


φ1

φ2

...
φN

 (469)

where hNk represent elements of h∗N = (hN1 , · · · , hNN )T

Changing the equation to
φ1 φ0 φ1 · · · φN−1

φ2 φ1 φ0 · · · φN−2

...
...

...
. . .

...
φN φN−1 φN−2 · · · φ0




1
−hN1
−hN2

...
−hNN

 =


0
0
...
0

 (470)
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One-Step Prediction

Including the prediction error variance for optimal linear prediction using
the N preceding samples

σ2
N = σ2

S − cT1C−1
N c1 = σ2

S − cT1 h∗N
= φ0 − hN1 φ1 − hN2 φ2 − · · · − hNNφN (471)

yields and additional row in the matrix
φ0 φ1 φ2 · · · φN
φ1 φ0 φ1 · · · φN−1

φ2 φ1 φ0 · · · φN−2

...
...

...
. . .

...
φN φN−1 φN−2 · · · φ0


︸ ︷︷ ︸

CN+1


1
−hN1
−hN2

...
−hNN


︸ ︷︷ ︸
aN

=


σ2
N

0
0
...
0

 (472)

The resulting equation is called augmented normal equation
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One-Step Prediction

Multiplying both sides of the augmented normal equation with aTN yields

σ2
N = aTN CN+1 aN (473)

Combing the equations for 0 to N preceding samples into one matrix
equation yields

CN+1 ·



1 0 · · · 0 0

−hN1 1
. . . 0 0

−hN2 −hN−1
1

. . . 0 0
...

...
. . . 1 0

−hNN −hN−1
N−1 · · · −h1

1 1


=



σ2
N X · · · X X

0 σ2
N−1

. . . X X

0 0
. . . X X

...
...

. . . σ2
1 X

0 0 · · · 0 σ2
0


Taking the determinant of both sides of the equation gives

|CN+1| = σ2
N · σ2

N−1 · . . . · σ2
0 (474)

Prediction error variance σ2
N for optimal linear prediction using the N

preceding samples

σ2
N =

|CN+1|
|CN |

(475)
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One-Step Prediction for Autoregressive Processes

Recall: AR(m) process with mean µS and am = (a1, · · · , am)T

Sn = Zn + µS(1− aTmem) + aTmS
(m)
n−1 (476)

Prediction using N preceding samples in hN with N ≥ m:
Define aN = (a1, · · · , am, 0, · · · , 0)T

Prediction error

Un = Sn − hTNSn−1 = Zn + µS(1− aTNeN ) + (aN − hN )TSn−1 (477)

Subtracting the mean E{Un} = µS(1− aTNeN ) + (aN − hN )T E{Sn−1}
Un − E{Un} = Zn + (aN − hN )T

(
Sn−1 − E{Sn−1}

)
(478)

Optimal prediction: covariances between Un and Sn−1 must be equal to 0

0 = E
{(
Un − E{Un}

)(
Sn−k − E{Sn−k}

)}
= E

{
Zn
(
Sn−k − E{Sn−k}

)}
+CN (aN − hN ) (479)

yields

h∗N = aN (480)
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One-Step Prediction in Gauss-Markov Processes

Gauss-Markov process is a particular AR(1) process

Sn = Zn + µS(1− ρ) + ρ · Sn−1, (481)

for which the iid process {Zn} has a Gaussian distribution

Auto-covariance matrix and its inverse

C2 = σ2
S

(
1 ρ
ρ 1

)
C−1

2 =
1

σ2
S(1− ρ2)

(
1 −ρ
−ρ 1

)
(482)

Auto-covariance vector

c1 = σ2
S

(
ρ
ρ2

)
(483)

Optimum predictor h∗2 = C−1
2 c1

h∗2 =
1

1− ρ2

(
1 −ρ
−ρ 1

)(
ρ
ρ2

)
=

1

1− ρ2

(
ρ− ρ3

−ρ2 + ρ2

)
=

(
ρ
0

)
First element of h∗N is equal to ρ, all other elements are equal to 0
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One-Step Prediction in Gauss-Markov Processes

Minimum prediction residual

σ2
U =

|C2|
|C1|

=
σ4
S − σ4

S ρ
2

σ2
S

= σ2
S (1− ρ2) (484)

Prediction residual for filter h1

Un = Sn − h1Sn−1

Average squared error

σ2
U (h1) = E

{
U2
n

}
= σ2

S(1 + h2
1 − 2ρh1)

Note: Setting derivative to zero

∂σ2
U (h1)

∂h1
= σ2

S(2h1 − 2ρ)
!
= 0

also yields the result h1 = ρ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

!

σ2
U (Φ−1φ)

σ2
U (h1), h1 = 0.5
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Prediction Gain

Prediction gain using ΦN = CN/σ
2
S and φ1 = c1/σ

2
S

GP =
E
{
S2
n

}
E{U2

n}
=
σ2
S

σ2
U

=
σ2
S

σ2
S − cT1 C−1

N c1

=
1

1− φT1 Φ−1
N φ1

, (485)

Prediction gain for optimal prediction in first-order Gauss-Markov process

GP (h∗) =
1

1− ρ2
(486)

Prediction gain for filter h1

GP (h1) =
σ2
S

σ2
S(1 + h2

1 − 2ρh1)

=
1

1 + h2
1 − 2ρh1

At high bit rates, 10 log10GP :
SNR improvement achieved by
predictive coding 0 0.2 0.4 0.6 0.8 1!5

0

5

10

15

20

!

10 log10GP (h∗)

10 log10GP (h1), h1 = 0.5
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Optimum Linear One-Step Prediction for K = 2

The normalized auto-correlation matrix and its inverse follow as

Φ2 =

(
1 ρ1

ρ1 1

)
Φ−1

2 =
1

1− ρ2
1

(
1 −ρ1

−ρ1 1

)
(487)

With normalized correlation vector

φ1 =

(
ρ1

ρ2

)
(488)

we obtain the optimum predictor

h∗2 = Φ−1
2 φ1 =

1

1− ρ2
1

(
1 −ρ1

−ρ1 1

)(
ρ1

ρ2

)
=

1

1− ρ2
1

(
ρ1 − ρ1ρ2

−ρ2
1 + ρ2

)
=

1

1− ρ2
1

(
ρ1(1− ρ2)
ρ2 − ρ2

1

)
(489)

For AR(1) sources, where we have ρ2 = ρ2
1, second coefficient does not

improve prediction gain

General: For AR(m) sources, only m coefficients are unequal to zero
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Prediction in Images: Intra-Picture Prediction

Random variables are samples within that image

Derivations on linear prediction for zero-mean random variables
(subtract µS or roughly 127 from 8-bit picture)

Pictures are typically scanned line-by-line
from upper left corner to lower right corner

1-d horizontal prediction:

Ŝ0 = h1 · S1

1-d vertical prediction:

Ŝ0 = h2 · S2

2-d prediction:

Ŝ0 =

3∑
i=1

hiSi

€ 

S2

€ 

h2

€ 

S1

€ 

S0

€ 

S3

€ 

h3

+


€ 

ˆ S 0

€ 

h1

€ 

U0

+

-
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Predictive Coding Linear and Affine Prediction

Prediction Example: Test Pattern

σ2
S = 4925.81

(s− 127)

horizontal predictor
h1 = 0.953
h2 = 0
h3 = 0
σ2
U (h) = 456.17
GP = 10.33 dB

vertical predictor
h1 = 0
h2 = 0.932
h3 = 0
σ2
U (h) = 646.67
GP = 8.82 dB

2-d predictor
h1 = 0.911
h2 = 0.871
h3 = −0.788
σ2
U (h) = 109.90
GP = 16.51 dB
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Prediction Example: Picture “Lena”

256× 256 center
cropped picture
σ2
S = 2746.43

(s− 127)

horizontal predictor
h1 = 0.962
h2 = 0
h3 = 0
σ2
U (h) = 212.36
GP = 11.12 dB

vertical predictor
h1 = 0
h2 = 0.977
h3 = 0
σ2
U (h) = 123.61
GP = 13.47 dB

2-d predictor
h1 = 0.623
h2 = 0.835
h3 = −0.48
σ2
U (h) = 80.35
GP = 15.34 dB
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Prediction Example: PMFs for Picture Lena

0 63 127 195
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

s

p(s)

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

u

p(u)

Pmfs p(s) and p(u) change significantly due to prediction operation

Entropy changes significantly
(rounding prediction signal towards integer: E

{
bUn + 0.5c2

}
= 80.47)

H(S) = 7.44 bit/sample H(U) = 4.97 bit/sample (490)

Linear prediction can be used for lossless coding: JPEG-LS

Heiko Schwarz Source Coding and Compression December 7, 2013 344 / 661



o

Predictive Coding Linear and Affine Prediction

Asymptotic Prediction Gain

Consider upper bound for prediction gain: N →∞
One-step prediction of a random variable Sn given the countably infinite set
of preceding random variables {Sn−1, Sn−2, · · · } and {h0, h1, · · · }

Un = Sn − h0 −
∞∑
i=1

hi Sn−i, (491)

Orthogonality criterion: Un is uncorrelated with all Sn−k for k > 0

Furthermore, Un−k for k > 0 is fully determined by a linear combination of
past input values Sn−k−i for i ≥ 0

Hence, Un is uncorrelated with Un−k for k > 0

φUU (k) = σ2
U,∞ · δ(k) ⇐⇒ ΦUU (ω) = σ2

U,∞ (492)

where σ2
U,∞ is the asymptotic one-step prediction error variance for N →∞
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Asymptotic Prediction Error Variance

For one-step prediction we showed

|CN | = σ2
N−1 · σ2

N−2 · σ2
N−3 · · ·σ2

0 (493)

which yields

1

N
ln |CN | = ln |CN |

1
N =

1

N

N−1∑
i=0

lnσ2
i (494)

If a sequence of numbers α0, α1, α2, · · · approaches a limit α∞,
the average value approaches the same limit,

lim
N→∞

1

N

N−1∑
i=0

αi = α∞ (495)

Hence, we can write

lim
N→∞

ln |CN |
1
N = lim

N→∞

1

N

N−1∑
i=0

lnσ2
i = lnσ2

∞ (496)

yielding

σ2
∞ = exp

(
lim
N→∞

ln |CN |
1
N

)
= lim
N→∞

|CN |
1
N (497)
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Asymptotic Prediction Error Variance

Asymptotic One-Step Prediction Error Variance

σ2
U,∞ = lim

N→∞
|CN |

1
N (498)

Determinant of N×N matrix: Product of its eigenvalues ξ
(N)
i

lim
N→∞

|CN |
1
N = lim

N→∞

(
N−1∏
i=0

ξ
(N)
i

)1
N

= 2

(
lim
N→∞

N−1∑
i=0

1
N log2 ξ

(N)
i

)
(499)

Apply Grenander and Szegö’s theorem

lim
N→∞

1

N

N−1∑
i=0

G
(
ξ

(N)
i

)
=

1

2π

∫ π

−π
G (Φ(ω)) dω (500)

Expression using power spectral density

σ2
U,∞ = lim

N→∞
|CN |

1
N = 2

1
2π

∫ π
−π log2 ΦSS(ω) dω (501)
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Asymptotic Prediction Gain

Prediction gain G∞P

G∞P =
σ2
S

σ2
U,∞

=
1

2π

∫ π
−π Φ(ω) dω

2
1

2π

∫ π
−π log2 Φ(ω) dω

(502)

Result for first-order Gauss-Markov source (can also be computed differently)
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← Arithmetic mean
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Predictive Coding Predictive Coding: DPCM

Differential Pulse Code Modulation (DPCM)

Combining prediction with quantization requires simultaneous reconstruction
of predictor at encoder and decoder
=⇒ Use quantized samples for prediction

Q
 +
+


€ 

ˆ S n

€ 

Sn

€ 

′ S n

€ 

Un

€ 

′ U n
-


P


€ 

ˆ S n

Re-drawing yields block-diagram with typical DPCM structure

Q


+


+


€ 

Sn

€ 

′ S n€ 

Un

€ 

′ U n
-


P


€ 

ˆ S n
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Predictive Coding Predictive Coding: DPCM

DPCM Codec

Redrawing with encoder mapping α, lossless coding γ, and decoder
mapping β yields DPCM encoder

α	



+	



+	



€ 

Sn

€ 

ʹ′ S n

€ 

Un

€ 

ʹ′ U n

-	



P	



€ 

ˆ S n

β	



€ 

In

+	



γ	

 γ -1	



€ 

Bn

β	



€ 

ʹ′ S nP	


€ 

ʹ′ U n€ 

In

€ 

BnChannel	



DPCM Encoder	

 DPCM Decoder	

€ 

ˆ S n

DPCM encoder contains DPCM decoder except for γ−1
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DPCM and Quantization

Prediction Ŝn for a sample Sn is generated by linear filtering of reconstructed
samples S′n from the past

Ŝn =

K∑
i=1

hi S
′
n−i =

K∑
i=1

hi (Sn−i +Qn−i) = hT · (Sn−1 +Qn−1) (503)

with Qn = S′n − Sn being the quantization error signal

Prediction error variance (for zero-mean input) is given by

σ2
U = E

{
U2
n

}
= E

{
(Sn − Ŝn)2

}
= E

{
(Sn − hTSn−1 − hTQn−1)2

}
= E

{
S2
n

}
+ hTE

{
Sn−1S

T
n−1

}
h+ hTE

{
Qn−1Q

T
n−1

}
h (504)

−2hTE{SnSn−1} − 2hTE
{
SnQn−1

}
+ 2hTE

{
Sn−1Q

T
n−1

}
h

Defining Φ = E
{
Sn−1S

T
n−1

}
/σ2

S and φ = E{SnSn−1} /σ2
S we get

σ2
U = σ2

S

(
1 + hTΦ h− 2hTφ

)
(505)

+hTE
{
Qn−1Q

T
n−1

}
h− 2hTE

{
SnQn−1

}
+ 2hTE

{
Sn−1Q

T
n−1

}
h
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Predictive Coding Predictive Coding: DPCM

DPCM for a Gauss-Markov Source

Calculate R(D) for zero-mean Gauss-Markov process

Sn = Zn + ρ · Sn−1 (506)

Consider a one-tap linear prediction filter h = [h]

Normalized auto-correlation matrix Φ = [1] and cross-correlation φ = [ρ]

Prediction error variance

σ2
U = σ2

S

(
1 + h2 − 2 h ρ

)
+ h2E

{
Q2
n−1

}
−2hE{SnQn−1}+ 2h2E{Sn−1Qn−1} (507)

Using Sn = Zn + ρ · Sn−1, the second row in above equation becomes

−2hE{SnQn−1}+ 2h2E{Sn−1Qn−1}
= −2hE{ZnQn−1} − 2hρE{Sn−1Qn−1}+ 2h2E{Sn−1Qn−1}
= −2hE{ZnQn−1}+ 2h(h− ρ)E{Sn−1Qn−1} (508)

With setting h = ρ, we have

E{ZnQn−1} = 0 2h(h− ρ)E{Sn−1Qn−1} = 0 (509)
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DPCM for a Gauss-Markov Source

For h = ρ, expression for prediction error variance simplifies to

σ2
U = σ2

S

(
1− ρ2

)
+ ρ2E

{
Q2
n−1

}
(510)

Assume: Prediction error for Gaussian source has also Gaussian distribution

Model expression for quantization error D = E
{
Q2
n−1

}
by an operational

distortion rate function
D(R) = σ2

U · g(R) (511)

Expression for prediction error variance becomes dependent on rate

σ2
U = σ2

S ·
1− ρ2

1− g(R) ρ2
(512)

Operational distortion-rate function for DPCM of Gauss-Markov

D(R) = σ2
U · g(R) = σ2

S ·
1− ρ2

1− g(R) ρ2
· g(R) (513)
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Computation of DPCM Distortion-Rate Function

Operational distortion-rate function for DPCM and ECSQ for a
Gauss-Markov source

D(R) = σ2
U · g(R) = σ2

S ·
1− ρ2

1− g(R) ρ2
· g(R) (514)

Algorithm for designing ECSQ inside DPCM loop
1 Initialization with a small value of λ, set s′n = sn, ∀n and h = ρ
2 Create signal un using s′n and DCPM
3 Design ECSQ (α, β, γ) using signal un and the current value of λ by

minimizing D + λR
4 Conduct DPCM encoding/decoding using ECSQ (α, β, γ)
5 Measure σ2

U (R) as well as rate R and distortion D
6 Increase λ and start again with step 2

Algorithm shows problems at low bit rates: Instabilities
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Predictive Coding Predictive Coding: DPCM

Comparison of Theoretical and Experimental Results

0 1 2 3 4
0

5
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30
space-filling gain: 1.53 dB

distortion-rate
function D(R)

EC-Lloyd and DPCM

G
∞
P

=
7.2

1 dB

D(R) =
σ2
U (R)g(R)

EC-Lloyd (no prediction)

D(R) = σ2
S · g(R) bit rate [bit/sample]

SNR [dB]

For high rates and Gauss-Markov sources, shape and memory gain achievable

Space-filling gain can only be achieved using vector quantization

Theoretical model provides a useful description
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Predictive Coding Predictive Coding: DPCM

Comparison of Theoretical and Experimental Results

Prediction error variance σ2
U depends on bit rate

Theoretical model provides a useful description
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1−g(R) ρ2
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Predictive Coding Predictive Coding: DPCM

Adaptive Differential Pulse Code Modulation (ADPCM)

For quasi-stationary sources like speech, fixed predictor is not well suited

ADPCM: Adapt the predictor based on the recent signal characteristics

Forward adaptation: Send new predictor values (requires additional bit rate)
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Predictive Coding Predictive Coding: DPCM

Forward-Adaptive Prediction: Motion Compensation

Since predictor values are sent, extend prediction to vectors/blocks

Use statistical dependencies between two pictures

Prediction signal obtained by searching a region in a previously decoded
picture that best matches the block to be coded

Let s[x, y] represent intensity at location (x, y)

Let s′[x, y] represent intensity in a previously decoded picture at (x, y)

J = min
(dx,dy)

∑
x,y

(s[x, y]− s′[x− dx, y − dy])2 + λ ·R(dx, dy) (515)

Predicted signal is specified through motion vector (dx, dy)

R(dx, dy) represents the number of bits required for coding the motion vector

Prediction error u[x, y] is quantized (often using transform coding)

Bit rate is sum of motion vector and prediction residual bit rate
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Predictive Coding Predictive Coding: DPCM

Backward Adaptive DPCM

Backward adaptation: Use predictor computed from recently decoded signal

No additional bit rate
Error resilience issues
Accuracy of predictor
Decoder complexity
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Predictive Coding Predictive Coding: DPCM

Transmission Errors in DPCM

When transmission error occurs, DPCM causes error propagation

Example: Motion compensation in video coding

Try to conceal image parts that are in error

Code lost image parts without referencing concealed image parts helps but
reduces coding efficiency

Concealed image part

Intra block

Use ”clean” reference picture for motion compensation

Concealed image part
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Predictive Coding Chapter Summary

Chapter Summary

Prediction

Estimate random variable from already observed random variables

Optimal predictor: Conditional mean

Linear and affine prediction

Simple and efficient structure

Optimal predictor given by Wiener-Hopf equation

AR(m) processes: Optimal predictor has m coefficients

Optimal prediction error is orthogonal to input signal

Non-matched predictor can increase signal variance

Predictive quantization: DPCM

Combination of affine prediction and ECSQ is simple and efficient

Can exploit linear dependencies between samples

Forward and backward adaptation

Transmission errors cause error propagation
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Predictive Coding Exercises (Set F)

Exercise 20

Given is a stationary random process S = {Sn}.
We consider affine prediction of a random variable Sn given the N preceding
random variables Sn−1 = [Sn−1 Sn−2 · · · Sn−N ]T .

Derive all formulas (as given below) as function of the mean µs, the variance σ2
S ,

the N -th order autocovariance matrix CN and the autocovariance vector
c1 = E{(Sn − µS)(Sn−1 − µSeN )}, where eN is a N -dimensional vector with all
entries equal to 1.

(a) Derive the affine predictor that minimizes the mean squared prediction error.

(b) Derive expressions for the mean and the variance of the resulting prediction
error as well as for the mean squared error.

(c) Derive the affine predictor and the resulting mean, variance and mean squared
error for the special case N = 1, menaing that a random variable Sn is
predicted using the random variable Sn−1. The correlation coefficient
between successive random variables is ρ.
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Predictive Coding Exercises (Set F)

Exercise 21

In image and video coding, a sample Sn is often predicted by directly using a
previous sample Sn−1, i.e., by Ŝn = Sn−1.

Consider a zero-mean stationary process S = {Sn} with the first-order correlation
factor ρ.

(a) For what correlation factors ρ do we observe a prediction gain (the mean
squared prediction error is smaller than the second moment of the input)?

(b) For what correlation factors is the loss versus optimal linear prediction smaller
than 0.1 dB?
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Predictive Coding Exercises (Set F)

Exercise 22 - Part I

Consider prediction in images. Assume that an image can be considered as a
realization of a stationary 2-d process with mean µS and variance σ2

S .
We want to linearily predict a current sample based on up to three (already
coded) neigbouring samples: the sample left of the current sample, the sample
above the current sample, and the sample to the top-left of the current sample.
The correlation factor between two horizontally adjacent samples is ρH , the
correlation factor between two vertically adjacent samples is ρV , and the
correlation factor between two diagonally adjacent samples is ρD (same in both
directions).
The goal is to design linear predictors that minimize the mean squared prediction
error. The mean µS is subtracted before doing the prediction.

(a) Assume that ρH > ρV .
Compare optimal linear prediction using only the horizontally adjacent sample
and optimal linear prediction using both the horizontally and the vertically
adjacent sample.
Under which cicumstances is the prediction using both samples better than
the prediction using only the horizontally adjacent sample?
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Predictive Coding Exercises (Set F)

Exercise 22 - Part II

(b) Consider the special case ρH = ρV = ρ and ρD = ρ2.
Derive the prediction gain g = σ2

S/ε
2 for the optimal vertical predictors using

the sample to the left
the sample to the left and the sample above
the sample to the left, the sample above, and the sample to the top-left

What are the prediction gains in dB for ρ = 0.95?
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Predictive Coding Exercises (Set F)

Exercise 23 – Part I

Given is a stationary AR(2) process

Sn = Zn + α1 · Sn−1 + α2 · Sn−2

where {Zn} represents zero-mean white noise.
The AR parameters are α1 = 0.7 and α2 = 0.2.

(a) Determine the correlation factors ρ1 and ρ2, where ρ1 is the correlation factor
between adjacent samples Sn and Sn−1, and ρ2 is the correlation factor
between samples Sn and Sn−2 that are two sampling intervals apart.

(b) Derive the optimal linear predictor (minimizing the MSE) using the 2 previous
samples.
Determine the prediction gain in dB.

(c) Derive the optimal linear predictor (minimizing the MSE) using only the
directly preceeding sample.
What is the prediction gain in dB?.
What is the loss relative to an optimal prediction using the last two samples?
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Predictive Coding Exercises (Set F)

Exercise 23 – Part II

(d) Can the linear predictor using the directly preceeding sample, given by

Un = Sn − ρ1 · Sn−1.

be improved by adding a second prediction stage

Vn = Un − h · Un−1?

What is the optimal linear predictor for the second prediction stage?
What is the prediction gain achieved by the second prediction stage?
How big is the loss versus optimal linear prediction using the last two samples?
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Predictive Coding Exercises (Set F)

Exercise 24

Consider a zero-mean Gauss-Markov process with the correlation factor ρ = 0.9.
The Gauss-Markov source is coded using DPCM at high rates. The quantizer is
an entropy-contrained Lloyd quantizer with optimal entropy coding.

(a) Neglect the quantization and derive the optimal linear predictor (minimizing
the MSE) using the previous sample.
Determine the prediction gain.

(b) Use the predictor derived in (a) inside the DPCM loop.
Assume that the prediction error has a Gaussian distribution.
What is the approximate coding gain compared to ECSQ without prediction
at the rates R1 = 1 bit per sample, R2 = 2 bit per sample, R3 = 3 bit per
sample, R4 = 4 bit per sample, and R5 = 8 bit per sample?
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Transform Coding

Transform Coding
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Transform Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Structure of Transform Coding Systems
Orthogonal Block Transforms
Bit Allocation for Transform Coefficients
Karhunen Loéve Transform (KLT)
Signal Independent Transforms (Hadamard, FFT, DCT)

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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Transform Coding Introduction

Transform Coding – Introduction

Another concept for partially exploiting the memory gain

Used in virtually all lossy image and video coding applications

Samples of source s are grouped into vectors s of adjacent samples

Transform coding consists of the following steps
1 Linear analysis transform A, converting source vectors s into transform

coefficient vectors u = As
2 Scalar quantization of the transform coefficients u 7→ u′

3 Linear synthesis transform B, converting quantized transform coefficient
vectors u′ into decoded source vectors s′ = Bu′
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2D Transform:

Rotation by ϕ = 45◦

A =
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sinϕ cosϕ
cosϕ − sinϕ
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Transform Coding Introduction

Structure of Transform Coding Systems

BA s′s

u0

u1

uN−1

u′0

u′1

u′N−1

Q0

Q1

QN−1

analysis transform synthesis transformquantizers

Synthesis transform is typically inverse of analysis transform

Separate scalar quantizer Qn for each transform coefficient un
Vector quantization of all bands or some of them is also possible, but

Transforms are designed to have a decorrelating effect (memory gain)
Shape gain can be obtained by ECSQ
Space-filling gain is left as a possible additional gain for VQ

Combination of decorrelating transformation, scalar quantization and
entropy coding is highly efficient – in terms of rate-distortion performance
and complexity
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Transform Coding Introduction

Motivation of Transform Coding

Exploitation of statistical dependencies

Transform are typically designed in a way that, for typical input signals, the
signal energy is concentrated in a few transform coefficients

Coding of a few coefficients and many zero-valued coefficients can be very
efficient (e.g., using arithmetic coding, run-length coding)

Scalar quantization is more effective in transform domain

Efficient trade-off between coding efficiency & complexity

Vector Quantization: Searching through codebook for best matching vector

Combination of transform and scalar quantization typically results in a
substantial reduction in computational complexity

Suitable for quantization using perceptual criteria

In image & video coding, quantization in transform domain typically leads to
an improvement in subjective quality

In speech & audio coding, frequency bands might be used to simulate
processing of human ear

Reduce perceptually irrelevant content
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Transform Coding Introduction

Transform Encoder and Decoder

γA bs

u0

u1
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iN−1
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analysis transform entropy coderencoder mapping

encoder

Bγ−1 s′b
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entropy decoder synthesis transformdecoder mapping
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Transform Coding Orthogonal Block Transforms

Linear Block Transforms

Linear Block Transform

Each component of the N -dimensional output vector represents a linear
combination of the N components of the N -dimensional input vector

Can be written as matrix multiplication

Analysis transform
u = A · s (516)

Synthesis transform
s′ = B · u′ (517)

Vector interpretation: s′ is represented as a linear combination of column
vectors of B

s′ =

N−1∑
n=0

u′n · bn = u′0 · b0 + u′1 · b1 + · · ·+ u′N−1 · bN−1 (518)
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Transform Coding Orthogonal Block Transforms

Linear Block Transforms

Perfect Reconstruction Property

Consider case that no quantization is applied (u′ = u)

Optimal synthesis transform:
B = A−1 (519)

Reconstructed samples are equal to source samples

s′ = B u = B A s = A−1A s = s (520)

Optimal Synthesis Transform (in presence of quantization)

Optimality: Minimum MSE distortion among all synthesis transforms

B = A−1 is optimal if

A is invertible and produces independent transform coefficients
the component quantizers are centroidal quantizers

If above conditions are not fulfilled, a synthesis transform B 6= A−1 may
reduce the distortion
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Transform Coding Orthogonal Block Transforms

Orthogonal Block Transforms

Orthonormal Basis

An analysis transform A forms an orthonormal basis if

basis vectors (matrix rows) are orthogonal to each other
basis vectors have to length 1

The corresponding transform is called an orthogonal transform

The transform matrices are called unitary matrices

Unitary matrices with real entries are called orthogonal matrix

Inverse of unitary matrices: Conjugate transpose

A−1 = A† (for orthogonal matrices: A−1 = AT) (521)

Why are orthogonal transforms desirable?

MSE distortion can be minimized by independent scalar quantization of the
transform coefficients

Orthogonality of the basis vectors sufficient: Vector norms can be taken into
account in quantizer design
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Transform Coding Orthogonal Block Transforms

Properties of Orthogonal Block Transforms

Transform coding with orthogonal transform and perfect reconstruction
B = A−1 = A† preserves MSE distortion

dN (s, s′) =
1

N
(s− s′)† (s− s′)

=
1

N

(
A−1 u−Bu′)† (A−1 u−Bu′)

=
1

N

(
A† u−A† u′)† (A† u−A† u′)

=
1

N
(u− u′)† AA−1 (u− u′)

=
1

N
(u− u′)† (u− u′)

= dN (u,u′) (522)

Scalar quantization that minimizes MSE in transform domain also minimizes
MSE in original signal space

For the special case of orthogonal matrices: (· · · )† = (· · · )T

Heiko Schwarz Source Coding and Compression December 7, 2013 378 / 661



o

Transform Coding Orthogonal Block Transforms

Properties of Orthogonal Block Transforms

Covariance matrix of transform coefficients

CUU = E
{

(U − E{U})(U − E{U})T
}

= E
{
A (S − E{S})(S − E{S})TAT

}
= A CSS A

−1 (523)

Since the trace of a matrix is similarity-invariant,

tr(X) = tr(P X P−1), (524)

and the trace of an autocovariance matrix is the sum of the variances of the
vector components, we have

1

N

N−1∑
i=0

σ2
i = σ2

S . (525)

The arithmetic mean of the variances of the transform coefficients is
equal to the variances of the source
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Transform Coding Orthogonal Block Transforms

Geometrical Interpretation of Orthogonal Transforms

Inverse 2-d transform matrix (= transpose of forward transform matrix)

B =
[
b0 b1

]
=

1√
2

[
1 1
1 −1

]
= AT

Vector interpretation for 2-d example

s = u0 · b0 + u1 · b1[
s0

s1

]
= u0 ·

1√
2

[
1
1

]
+ u1 ·

1√
2

[
1
−1

]
[

4
3

]
= 3.5 ·

[
1
1

]
+ 0.5 ·

[
1
−1

]
yielding transform coefficients

u0 =
√

2 · 3.5 u1 =
√

2 · 0.5

s0

s1

s

b0

b1

u0 · b0

u1 · b1

An orthogonal transform is a rotation from the signal coordinate system into
the coordinate system of the basis functions
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Transform Coding Orthogonal Block Transforms

Transform Example for N = 2

Adjacent samples of Gauss-Markov source with different correlation factors ρ
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Transform Coding Orthogonal Block Transforms

Example for Waveforms (Gauss-Markov Source with ρ = 0.95)

Top: signal s[k]

Middle:
transform coefficient u0[k/2]
also called dc coefficient

Bottom:
transform coefficient u1[k/2]
also called ac coefficient

Number of transform
coefficients u0 is half the
number of samples s

Number of transform
coefficients u1 is half the
number of samples s
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Transform Coding Bit Allocation for Transform Coefficients

Scalar Quantization in Transform Domain

Consider Transform Coding with Orthogonal Transforms

direct coding transform coding transform coding

quantization cells quantization cells quantization cells

in transform domain in signal space

Quantization cells are
hyper-rectangles as in scalar quantization
but rotated and aligned with the transform basis vectors

Number of quantization cells with appreciable probabilities is reduced
=⇒ indicates improved coding efficiency for correlated sources
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Transform Coding Bit Allocation for Transform Coefficients

Bit Allocation for Transform Coefficients

Problem: Distribute bit rate R among the N transform coefficients such that
the resulting distortion D is minimized

min D(R) =
1

N

N∑
i=1

Di(Ri) subject to
1

N

N∑
i=1

Ri ≤ R (526)

with Di(Ri) being the oper. distortion-rate functions of the scalar quantizers

Approach: Minimize Lagrangian cost function: J = D + λR

∂

∂Ri

(
N∑
i=1

Di(Ri) + λ

N∑
i=1

Ri

)
=
∂Di(Ri)

∂Ri
+ λ

!
= 0 (527)

Solution: Pareto condition

∂Di(Ri)

∂Ri
= −λ = const (528)

Move bits from coefficients with small distortion reduction per bit to
coefficients with larger distortion reduction per bit
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Transform Coding Bit Allocation for Transform Coefficients

Bit Allocation for Transform Coefficients

Operational distortion-rate function of scalar quantizers can be written as

Di(Ri) = σ2
i · gi(Ri) (529)

Justified to assume that gi(Ri)
is a continuous strictly convex function and
has a continuous strictly increasing derivative g′i(Ri) with g′i(∞) = 0

Pareto condition becomes

−σ2
i · g′i(Ri) = λ (530)

If λ ≥ −σ2
i g
′
i(0), the quantizer for ui cannot be operated at the given slope

=⇒ Set the corresponding component rate to Ri = 0

Bit allocation rule

Ri =

{
0 : −σ2

i g
′
i(0) ≤ λ

ηi

(
− λ
σ2
i

)
: −σ2

i g
′
i(0) > λ

(531)

where ηi(·) denotes the inverse of the derivative g′i(·)
Similar to reverse water-filling for Gaussian random variables
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Transform Coding Bit Allocation for Transform Coefficients

Approximation for Gaussian Sources

Transform coefficients have also a Gaussian distribution

Experimentally found approximation for entropy-constrained scalar
quantization for Gaussian sources (a ≈ 0.952)

g(R) =
πe

6a
ln(a · 2−2R + 1) (532)

Use parameter

θ = λ
3 (a+ 1)

πe ln 2
with 0 ≤ θ ≤ σ2

max (533)

Bit allocation rule

Ri(θ) =

{
0 : θ ≥ σ2

i
1
2 log2

(
σ2
i

θ (a+ 1)− a
)

: θ < σ2
i

(534)

Resulting component distortions

Di(θ) =

{
σ2
i : θ ≥ σ2

i

− ε2 ln 2
a · σ2

i · log2

(
1− θ

σ2
i

a
a+1

)
: θ < σ2

i
(535)
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Transform Coding Bit Allocation for Transform Coefficients

High-Rate Approximation

Assumption: High-rate approximation valid for all component quantizers

High-rate approximation for distortion-rate function of component quantizers

Di(Ri) = ε2
i · σ2

i · 2−2Ri (536)

where ε2
i depends on transform coefficient distribution and quantizer

Pareto condition

∂

∂Ri
Di(Ri) = −2 ln 2 ε2

i σ
2
i 2−2Ri = −2 ln 2Di(Ri) = −λ = const (537)

states that all quantizers are operated at the same distortion

Bit allocation rule

Ri(D) =
1

2
log2

(
ε2
i σ

2
i

D

)
(538)

Overall operational rate-distorion function

R(D) =
1

N

N−1∑
i=0

Ri(D) =
1

2N

N−1∑
i=0

log2

(
σ2
i ε

2
i

D

)
(539)
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Transform Coding Bit Allocation for Transform Coefficients

High-Rate Approximation

Overall operational rate-distorion function

R(D) =
1

2N

N−1∑
i=0

log2

(
σ2
i ε

2
i

D

)
=

1

2
log2

(
ε̃2 σ̃2

D

)
(540)

with geometric means

σ̃2 =

(
N−1∏
i=0

σ2
i

)1
N

and ε̃2 =

(
N−1∏
i=0

ε2
i

)1
N

(541)

Overall distortion-rate function

D(R) = ε̃2 · σ̃2 · 2−2R (542)

For Gaussian sources (transform coefficients are also Gaussian) and
entropy-constrained scalar quantizers, we have ε2

i = ε2 = πe
6 , yielding

DG(R) =
πe

6
· σ̃2 · 2−2R (543)
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Transform Coding Bit Allocation for Transform Coefficients

Transform Coding Gain at High Rates

Transform coding gain is the ratio of the distortion for scalar quantization
and the distortion for transform coding

GT =
ε2
S · σ2

S · 2−2R

ε̃2 · σ̃2 · 2−2R
=
ε2
S · σ2

S

ε̃2 · σ̃2
(544)

with

σ2
S : variance of the input signal

ε2
S : factor of high-rate approximation for direct scalar quantization

High-rate transform coding gain for Gaussian sources

GT =
σ2
S

σ̃2
=

1
N

∑N−1
i=0 σ2

i

N

√∏N−1
i=0 σ2

i

(545)

Ratio of arithmetic and geometric mean of the transform coefficient variances

The high-rate transform coding gain for Gaussian sources is maximized if the
geometric mean is minimized (=⇒ Karhunen Loève Transform)
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Transform Coding Bit Allocation for Transform Coefficients

Example: Orthogonal Transform with N = 2

Input vector and transform matrix

s =

[
s0

s1

]
and A =

1√
2

[
1 1
1 −1

]
(546)

Transformation

u =

[
u0

u1

]
= A · s =

1√
2

[
1 1
1 −1

] [
s0

s1

]
(547)

Coefficients

u0 =
1√
2

(s0 + s1), u0 =
1√
2

(s0 − s1) (548)

Inverse transformation

A−1 = AT = A =
1√
2

[
1 1
1 −1

]
(549)
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Transform Coding Bit Allocation for Transform Coefficients

Example: Orthogonal Transform with N = 2

Variance of transform coefficients

σ2
0 = E

{
U2

0

}
= E

{
1

2
(S0 + S1)2

}
=

1

2

(
E
{
S2

0

}
+ E

{
S2

1

}
+ 2E{S0S1}

)
=

1

2

(
σ2
S + σ2

S + 2σ2
Sρ
)

= σ2
S(1 + ρ) (550)

σ2
1 = E

{
U2

1

}
= σ2

S(1− ρ) (551)

Cross-correlation of transform coefficients

E{U0U1} =
1

2
E
{

(S0 + S1) · (S0 − S1)
}

=
1

2
E
{(
S2

0 − S2
1

)}
= σ2

S − σ2
S = 0 (552)

Transform coding gain for Gaussian (assuming optimal bit allocation)

GT =
σ2
S√

σ2
0 + σ2

1

=
1√

1− ρ2
(553)
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Example: Analysis of Transform Coding for N = 2

Rate-distortion cost before transform

J (0) = 2(D + λR) (for 2 samples)

Rate-distortion cost after transform

J (1) = (D0 +D1) + λ(R0 +R1) (for both transform coefficients)

Gain in r-d cost due to transform at same rate (R0 +R1 = R)

∆J = J (0) − J (1) = 2D −D0 −D1 (554)

For Gaussian sources, input and output of transform have Gaussian pdf

With operational distortion-rate function for an entropy-constrained scalar
quantizer at high rates (D = ε2 · σ2 · 2−2R with ε2 = πe/6), we have

∆J = ε2σ2
S

(
2−2R+1 − (1 + ρ)2−2R0 − (1− ρ)2−2R1

)
(555)

By eliminating R1 using R1 = 2R−R0, we get

∆J = ε2σ2
S

(
2−2R+1 − (1 + ρ)2−2R0 − (1− ρ)2−2(2R−R0)

)
(556)

Heiko Schwarz Source Coding and Compression December 7, 2013 392 / 661



o

Transform Coding Bit Allocation for Transform Coefficients

Example: Analysis of Transform Coding for N = 2

Gain in rate-distortion cost due to transform

∆J = ε2σ2
S

(
2−2R+1 − (1 + ρ)2−2R0 − (1− ρ)2−2(2R−R0)

)
(557)

To maximize gain, we set

∂

∂R0
∆J = 2 ln 2 · (1 + ρ)2−2R0 − 2 ln 2 · (1− ρ)2−4R+2R0

!
= 0 (558)

yielding the bit allocation rule

R0 = R+
1

2
log2

√
1 + ρ

1− ρ (559)

Same expression is obtained by using the previously derived high rate bit
allocation rule

Ri =
1

2
log2

(
ε2 σ2

i

D

)
(560)

Operational high-rate distortion-rate function (Gaussian, ECSQ, N = 2)

D(R) =
πe

6
·
√

1− ρ2 · σ2
S · 2−2R (561)
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General Bit Allocation for Transform Coefficients

For Gaussian sources, the following points need to be considered:

High-rate approximations are not valid for low bit rates; better
approximations should be used for low rates

For low rates, Pareto conditions cannot be fulfilled for all transform
coefficients, since the component rates Ri must not be less then 0

Solution:

Use generalized approximation of Di(Ri) for components quantizers
Set components rates Ri to zero for all transform coefficients, for which
the Pareto condition ∂

∂Ri
D(Ri) = −λ cannot be fullfilled for Ri ≥ 0

Distribute rate among remaining coefficients

For non-Gaussian sources, the following needs to be considered in addition

The transform coefficients have different (non-Gaussian) distributions
(except for large transform sizes)

Using the same quantizer design for all transform coefficients with
Di(Ri) = σ2

i g(Ri) is suboptimal
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Transform Coding Karhunen Loève Transform

Karhunen Loève Transform (KLT)

Karhunen Loève Transform

Orthogonal transform that decorrelates the input vectors
Transform matrix depends on the source

Autocorrelation matrix of input vectors s

RSS = E
{
SST

}
(562)

Autocorrelation matrix of transform coefficient vectors u

RUU = E
{
UUT

}
= E

{
(AS)(AS)T

}
= A · E

{
SST

}
·AT

= ARSSA
T (563)

By multiplying with A−1 = AT from the front, we get

RSS ·AT = AT ·RUU (564)

To get uncorrelated transform coefficients, we need to obtain a diagonal
autocorrelation matrix RUU for the transform coefficients
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Transform Coding Karhunen Loève Transform

Karhunen Loève Transform (KLT)

Expression for autocorrelation matrices

RSS ·AT = AT ·RUU (565)

RUU is a diagonal matrix if the eigenvector equation

RSS · bi = ξi · bi (566)

is fulfilled for all basis vectors bi (column vectors of AT, row vectors of A)

The transform matrix A decorrelates the input vectors if its rows are equal to
the unit-norm eigenvectors vi of RSS

AKLT =
[
v0 v1 · · · vN−1

]T
(567)

The resulting autocorrelation matrix RUU is a diagonal matrix with the
eigenvalues of RSS on its main diagonal

RUU =


ξ0 0 · · · 0
0 ξ1 · · · 0
...

...
. . .

...
0 0 · · · ξN−1

 (568)
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Transform Coding Karhunen Loève Transform

Optimality of KLT for Gaussian Sources

Transform coding with orthogonal N×N transform matrix A and B = AT

Scalar quantization using scaled quantizers

D(R,Ak) =

N−1∑
i=0

σ2
i (Ak) · g(Ri) (569)

with σ2
i (Ak) being variance of i-th transform coefficient and Ak being the

transform matrix

Consider an arbitrary orthogonal transform matrix A0 and an arbitrary bit
allocation given by the vector r = [R0, · · · , RN−1]T with

∑N−1
i=0 Ri = R

Starting with arbitrary orthogonal matrix A0, apply iterative algorithm that
generates a series of orthonormal transform matrices {Ak}, k = 1, 2, ...

Iteration Ak+1 = JkAk consists of Jacobi rotation and re-ordering
=⇒ Transform matrix approaches a KLT matrix

Can show that for all Ak: D(R,Ak+1) ≤ D(R,Ak+1)
=⇒ KLT is optimal transform for Gaussian sources (minimizes MSE)
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Transform Coding Karhunen Loève Transform

Asymp. High-Rate Performance of KLT for Gaussian Sources

Transform coefficient variances σ2
i are equal to the eigenvalues ξi of RSS

High-rate approximation for Gaussian source and optimal ECSQ

D(R) =
πe

6
· σ̃2 · 2−2R =

πe

6
· ξ̃ · 2−2R

=
πe

6
· 2 1

N

∑N−1
i=0 log2 ξi · 2−2R (570)

For N →∞, we can apply the theorem of Szegö and Grenander for infinite
Toeplitz matrices: If all eigenvalues ξi of an infinite autocorrelation matrix
are finite and G(ξi) is any continuous function over all eigenvalues,

lim
N→∞

1

N

N−1∑
i=0

G(ξi) =
1

2π

∫ π

−π
G(Φ(ω))dω (571)

Resulting distortion-rate function for KLT of infinite size for high rates

D∞KLT(R) =
πe

6
· 2 1

2π

∫ π
−π log2 ΦSS(ω)·dω · 2−2R (572)
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Asymp. High-Rate Performance of KLT for Gaussian Sources

Asymptotic distortion-rate function for KLT of infinite size for high rates

D∞KLT(R) =
πe

6
· 2 1

2π

∫ π
−π log2 ΦSS(ω)·dω · 2−2R (573)

Information distortion-rate function (fundamental bound) is by a factor
ε2 = πe/6 smaller

D(R) = 2
1

2π

∫ π
−π log2 ΦSS(ω)·dω · 2−2R (574)

Asymptotic transform gain (N →∞) at high rates

G∞T =
ε2σ2

S2−2R

D∞KLT(R)
=

1
2π

∫ π
−π ΦSS(ω)dω

2
1

2π

∫ π
−π log2 ΦSS(ω)dω

(575)

Asymptotic transform gain (N →∞) at high rates is identical to the
asymptotic prediction gain at high rates
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High-Rate KLT Transform Gain for Gauss-Markov Sources

Operational distortion-rate function for KLT of size N , ECSQ, and optimum
bit allocation for Gauss-Markov sources with correlation factor ρ

DN (R) =
πe

6
· σ2

S · (1− ρ2)1−1/N · 2−2R (576)

G∞T = 7.21 dB

transform size N

10 log10
DN (R)
D1(R) [dB]

ρ = 0.9
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Transform Coding Karhunen Loève Transform

Operat. Distortion-Rate Functions for Gauss-Markov

Distortion-rate curves for coding a first-order Gauss-Markov source with
correlation factor ρ = 0.9 and different transform sizes N
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Heiko Schwarz Source Coding and Compression December 7, 2013 401 / 661



o

Transform Coding Karhunen Loève Transform

KLT Basis Functions for Gauss-Markov Sources and Size N = 8
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Walsh-Hadamard Transform

Very simple orthogonal transform (only additions & final scaling)

For transform sizes N that are positive integer power of 2

AN =
1√
2

[
AN/2 AN/2
AN/2 −AN/2

]
with A1 = [1]. (577)

Transform matrix for N = 8

A8 =
1

2
√

2
·



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


(578)

Piecewise-constant basis vectors

Image & video coding: Produces subjectively disturbing artifacts when
combined with strong quantization
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Discrete Fourier Transform (DFT)

Discrete version of the Fourier transform

Forward Transform

u[k] =
1√
N

N−1∑
n=0

s[n] · e−j 2πkn
N (579)

Inverse Transform

s[n] =
1√
N

N−1∑
k=0

u[k] · ej 2πkn
N (580)

DFT is an orthonormal transform (specified by a unitary transform matrix)

Produces complex transform coefficients

For real inputs, it obeys the symmetry u[k] = u∗[N − k], so that N real
samples are mapped onto N real values

FFT is a fast algorithm for DFT computation, uses sparse matrix factorization

Implies periodic signal extension: Differences between left and right signal
boundary reduces rate of convergence of Fourier series

Strong quantization =⇒ Significant high-frequent artifacts
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Transform Coding Signal Independent Transforms

Discrete Fourier Transform vs. Discrete Cosine Transform

(a) Input time-domain signal

(b) Time-domain replica in case of DFT

(c) Time-domain replica in case of DCT-II
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Derivation of DCT Type II

Reduce quantization errors of DFT by introducing mirror symmetry and
applying a DFT of approximately double size

Signal with mirror symmetry

s∗[n] =

{
s[n− 1/2] : 0 ≤ n < N
s[2N − n− 3/2] : N ≤ n < 2N

(581)

Transform coefficients (orthonormal: divide u∗[0] by
√

2)

u∗[k] =
1√
2N

2N−1∑
i=0

s∗[i]e−j
2πkn
2N

=
1√
2N

N−1∑
n=0

s[n− 1/2]
(
e−j

π
N
kn + e−j

π
N
k(2N−n−1)

)
=

1√
2N

N−1∑
n=0

s[n]
(
e−j

π
N
k(n+ 1

2 ) + ej
π
N
k(n+ 1

2 )
)

=

√
2

N

N−1∑
n=0

s[n] cos

(
π

N
k

(
n+

1

2

))
(582)

Heiko Schwarz Source Coding and Compression December 7, 2013 406 / 661



o

Transform Coding Signal Independent Transforms

Discrete Cosine Transform (DCT)

Implicit periodicity of DFT leads to loss in coding efficiency

This can be reduced by introducing mirror symmetry at the boundaries and
applying a DFT of approximately double size

Due to mirror symmetry, imaginary sine terms get eliminated and only cosine
terms remain

Most common DCT is the so-called DCT-II (mirror symmetry with sample
repetitions at both sides: n = − 1

2 )

DCT and IDCT Type-II are given by

u[k] = αk

N−1∑
n=0

s[n] · cos

[
k ·
(
n+

1

2

)
· π
N

]
(583)

s[n] =

N−1∑
k=0

αk · u[k] · cos

[
k ·
(
n+

1

2

)
· π
N

]
(584)

where α0 =
√

1
N and αn =

√
2
N for n 6= 0

Heiko Schwarz Source Coding and Compression December 7, 2013 407 / 661



o

Transform Coding Signal Independent Transforms

Comparison of DCT and KLT

Correlation matrix of a first-order Markov processes can be written as

RSS = σ2
S ·


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 (585)

DCT is a good approximation of the eigenvectors of RSS

DCT basis vectors approach the basis functions of the KLT
for first-order Markov processes with ρ→ 1

DCT does not depend on input signal

Fast algorithms for computing forward and inverse transform

Justification for wide usage of DCT (or integer approximations thereof)
in image and video coding:
JPEG, H.261, H.262/MPEG-2, H.263, MPEG-4, H.264/AVC, H.265/HEVC

Heiko Schwarz Source Coding and Compression December 7, 2013 408 / 661



o

Transform Coding Signal Independent Transforms

KLT Convergence Towards DCT for ρ→ 1
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Transform Coding Signal Independent Transforms

Two-dimensional Transforms

2-D linear transform:
Input image is represented as a linear combination of basis images

An orthonormal transform is separable and symmetric, if the transform of a
signal block s of size N ×N can be expressed as,

u = A · s ·AT (586)

where A is the transformation matrix and u is the matrix of transform
coefficients, both of size N ×N .

The inverse transform is
s = AT · s ·A (587)

Great practical importance:
Transform requires 2 matrix multiplications of size N ×N instead one
multiplication of a vector of size 1×N2 with a matrix of size N2 ×N2

Reduction of the complexity from O(N4) to O(N3)
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2-dimensional DCT Example
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column-wise DCT

1-d DCT is applied to each column of an image block

Notice the energy concentration in the first row (DC coefficients)
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2-dimensional DCT Example
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final result

For convenience, column-wise DCT result is repeated on left side

1-d DCT is applied to each row of the intermediate result

Notice the energy concentration in the first coefficient
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Transform Coding Signal Independent Transforms

Entropy Coding of Transform Coefficients

AC coefficients are very likely equal to zero (for moderate quantization)

For 2-d, ordering of the transform coefficients by zig-zag (or similar) scan

Example for zig-zag scanning in case of a 2-d transform

185  3  1  1 -3  2 -1  0 

  1  1 -1  0 -1  0  0  1 

  0  0  1  0 -1  0  0  0 

  1  1  0 -1  0  0  0 -1 

  0  0  1  0  0  0 -1  0 

  0  0  0  0  0  0  0  0 

  0  0  0  0  0  0  0  0 

  0  0  0  0  0  0  0  0

Huffman code for events {number of leading zeros, coefficient value} or
events {end-of-block, number of leading zeros, coefficient value}

Arithmetic coding: For example, use probabilities that particular coefficient is
unequal to zero when quantizing with a particular step size
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Transform Coding Chapter Summary

Chapter Summary

Orthogonal block transform

Orthogonal transform: Rotation of coordinate system in signal space

Purpose of transform: Decorrelation, energy concentration
=⇒ Align quantization cells with primary axis of joint pdf

KLT achieves optimum decorrelation, but is signal dependent

DCT shows reduced blocking artifacts compared to DFT

For Gauss-Markov and ρ→∞: DCT approaches KLT

Bit allocation and transform coding gain

For Gaussian sources: Bit allocation proportional to logarithm of variances

For high rates: Optimum bit allocation yields equal component distortion

Larger transform size increases gain for Gauss-Markov source

Application of transform coding

Widely used in image and video coding:
DCT (or approximation) + quantization + (zig-zag) scan + entropy coding
=⇒ JPEG, H.262/MPEG-2, H.263, MPEG-4, H.264/AVC, H.265/HEVC
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Transform Coding Exercises (Set F)

Exercise 25

Consider a zero-mean Gauss-Markov process with variance σ2
S and correlation

coefficient ρ. The source is coded using a transform coding system consisting of a
N -dimensional KLT, optimal bit allocation and optimal entropy-constrained scalar
quantizers with optimal entropy coding.

Show that the high-rate approximation of the operational distortion-rate function
is given by

D(R) =
π e

6
· σ2

S · (1− ρ2)
N−1
N · 2−2R
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Transform Coding Exercises (Set F)

Exercise 26

In the video coding standard ITU-T Rec. H.264 the following forward transform is
used (more accurately, only the inverse transform is specified in the standard, but
the given transform is used in most actual encoder implementation),

A =


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1


How large is the high-rate transform coding gain (in dB) for a zero-mean
Gauss-Markov process with the correlation factor ρ = 0.9?

By what amount (in dB) can the high-rate transform coding gain be increased if
the transform is replaced by a KLT?

NOTE: The basis functions of the given transform are orthogonal to each other,
but they don’t have the same norm.
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Transform Coding Exercises (Set F)

Exercise 27 – Part 1/2

Given is a zero-mean Gaussian process with the autocovariance matrix for N = 4

CSS = σ2
S


1.00 0.95 0.92 0.88
0.95 1.00 0.95 0.92
0.92 0.95 1.00 0.95
0.88 0.92 0.95 1.00


Consider transform coding with the Hadamard transform given by

A =
1

4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


The scalar quantizers for the transform coeff. have 5 operation points given by

Ri = 0 =⇒ Di = σ2
i

Ri = 1 =⇒ Di = 0.32σ2
i

Ri = 2 =⇒ Di = 0.09σ2
i

Ri = 3 =⇒ Di = 0.02σ2
i

Ri = 4 =⇒ Di = 0.01σ2
i
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o

Transform Coding Exercises (Set F)

Exercise 27 – Part 2/2

For each transform coefficients, any of the 5 operation points can be chosen.

Derive the optimal bit allocation (i.e., the component rates Ri for i = 0, 1, 2, 3)
for the overall rate of R = 1 bit per sample.

What distortion D and SNR is achieved for this rate?

How big is the transform coding gain? Is it larger than, smaller than, or equal to
the transform coding gain for high rates (the above given operation points are
good approximations for optimal entropy-constrained quantizers for Gaussian
sources and can be considered as valid for the comparison)?
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o

Transform Coding Exercises (Set F)

Exercise 28

Consider transform coding with an orthogonal transform of a zero-mean Gaussian
source with variance σ2

S . The used scalar quantizers have the operational
distortion rate function

Di(Ri) = σ2
i g(Ri)

where g(R) is some not further specified function.

We don’t use an optimal bit allocation, but assign the same rate to all transform
coefficients.

Does the transform coding still provide a gain in comparison to simple scalar
quantization with the given quantizer, assuming that the Gaussian source is not
iid?
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o

Transform Coding Exercises (Set F)

Exercise 29

Consider a zero-mean Gauss-Markov process with variance σ2
S = 1 and correlation

coefficient ρ = 0.9. As transform a KLT of size 3 is used, the resulting transform
coefficient variances are

σ2
0 = 2.7407, σ2

1 = 0.1900, σ2
2 = 0.0693

Consider high-rate quantization with optimal entropy-constrained scalar
quantizers.

Derive the high-rate operational distortion rate function. What is the optimal
high-rate bit allocation scheme for a given overall rate R?

Determine the component rates, the overall distortion and the SNR for a given
overall bit rate R of 4 bit per sample.

Determine the high-rate transform coding gain.
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PartII:

Application in Image and
Video Coding
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o

Still Image Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Representation of Images and Video
JPEG
Intra-Picture Coding in MPEG-2 Video
Intra-Picture Coding in H.263 and MPEG-2 Visual
Intra-Picture Coding in H.264/AVC
Intra-Picture Coding in H.265/HEVC

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)
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o

Still Image Coding Introduction

Still Image Coding / Intra-Picture Coding – Overview

Still Image Coding

Exchange, transmission and storage of images

Used in virtually all digital cameras and picture editing applications

JPEG: Most widely used image compression standard (based on DCT)

JPEG-2000: Wavelet-based image compression (not discussed in lecture)

JPEG-XR: Several improvements over JPEG (not discussed in lecture)

Intra-Picture Coding for Video

Intra-picture coding: Some pictures of a video sequence need to be coded without
referring to other picture inside the video sequence

First picture of a video sequence has to be intra-picture coded

Intra pictures in regular intervals (e.g., 1s) are required for enabling random access

Typically, regularly inserted intra pictures consume large amount of bit rate

H.262 | MPEG-2 Video / H.263 / MPEG-4 Visual: Conceptually similar to JPEG

H.264 | MPEG-4 AVC: Additional coding tools yielding improved coding efficiency

H.265 | MPEG-H HEVC: Increased flexibility and improved coding efficiency
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Still Image Coding Representation of Images and Video

Representation of
Images and Video
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o

Still Image Coding Representation of Images and Video

Digital Images and Video

Image

2-d function s(x, y) relating light intensity s to spatial coordinates (x, y)

Digital image

Representation of a continuous image at discrete coordinates [x, y]

Amplitudes s[x, y] have finite alphabet, typically determined by the used bit depth

Digital gray-level image of size M ×N can be represented using a matrix notation
s[0, 0] s[1, 0] · · · s[M − 1, 0]
s[0, 1] s[1, 1] · · · s[M − 1, 1]

...
...

. . .
...

s[0, N − 1] s[1, N − 1] · · · s[M − 1, N − 1]


Typically characterized by image size M ×N and bit depth

Color images are typically composed of 3 sample arrays (for different color components)

Digital video

Sequence of digital images captured at successive time instances

Typically characterized by frame rate (in addition to image size and bit depth)
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o

Still Image Coding Representation of Images and Video

Spatial Resolution

Number of samples (M ×N) for discrete matrix representation

320× 240 samples 160× 120 samples

80× 60 samples 40× 30 samples
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o

Still Image Coding Representation of Images and Video

Gray-Level Resolution / Bit Depth

Number of gray levels for image representation (typically determined by bit depth)

256 gray levels (8 bit) 64 gray levels (6 bit)

16 gray levels (4 bit) 4 gray levels (2 bit)
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o

Still Image Coding Representation of Images and Video

Representation of Color Images

Color components
Require at least 3 color components (trichromatic vision)
RGB typically used as reference color space
Need to specify color of RGB primaries in CIE XYZ reference space

BT.709 RGB parameters
primary x y

red 0.6400 0.3300
green 0.3000 0.6000
blue 0.1500 0.0600
white D65 0.3127 0.3290
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o

Still Image Coding Representation of Images and Video

YCbCr Color Space

Definition of YCbCr color space

More correct name is Y’CbCr, since Y’ is a gamma-adjusted luminance component

Not an absolute color space, but a different representation for RGB data

Transform of gamma-adjusted and normalized RGB components r′, g′ and b′

with a range of 0..1

Typically used transform for 8-bit components Y , Cb and Cr

Y ′ = Round(219 · y′ + 16)
Cb = Round(224 · pb′ + 128)
Cr = Round(224 · pr′ + 128)

with

y′ = KR · r′ + (1−KR−KB) · g′ +KB · b′
pb′ = 0.5 · (b′−y′)/(1−KB)
pr′ = 0.5 · (r′−y′)/(1−KR)

The coefficients KR and KB are specified by application standards

ITU-R Rec. BT.709 specifies KR = 0.2126 and KB = 0.0722

Y ′ is called luma component, Cb and Cr are called chroma components
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o

Still Image Coding Representation of Images and Video

Advantages of YCbCr Color Representation

Properties of the YCbCr color representation

Similar color decorrelation as in human visual system:

Y ′ component is related to brightness
Cb component represents a yellow-blue difference signal
Cr component represents a red-green difference signal

Coding errors are introduced in perceptual meaningful way

Effectiveness for coding of images and video experimentally verified

color image Y ′ component Cb component Cr component
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o

Still Image Coding Representation of Images and Video

Subsampling of Chroma Components

Y channel Cb channel Cr channel

Visual importance of luma and chroma components

YCbCr color space roughly approximates the color decorrelation
in the human visual system

Human visual system is more sensitive to details in luma (brightness) channel
than to details in chroma channels

Chroma channels can be downsampled for saving bit rate

Chroma downsampling by a factor of 2 in horizontal or both spatial directions

Location of chroma samples relative to luma samples has to be specified
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o

Still Image Coding Representation of Images and Video

Demonstration of Luma/Chroma Perception

Compare luma and chroma perception

Selective low-pass filtering for luma
or chroma components

Use low-pass filter (1,4,6,4,1)/16

Order of presentation

1 Original luma and chroma components

2 Low-pass filtered luma component but original chroma components

3 Original luma and chroma components (repeated)

4 Original luma component but low-pass filtered chroma components
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o

Still Image Coding Representation of Images and Video

Demonstration: Original Picture
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Still Image Coding Representation of Images and Video

Demonstration: Filtered Luma Component
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Still Image Coding Representation of Images and Video

Demonstration: Original Picture (Repeated)
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Still Image Coding Representation of Images and Video

Demonstration: Filtered Chroma Components
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Still Image Coding Representation of Images and Video

Chroma Sampling Formats for Image and Video Coding
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Still Image Coding JPEG

JPEG
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o

Still Image Coding JPEG

JPEG – Overview

Joint Photographic Experts Group (JPEG)

Standard is named after the group which created it

Joint committee between ITU-T (formerly CCITT) and ISO/IEC JTC 1

Standard “Digital Compression and Coding of Continuous-Tone Still Images”

Officially ITU-T Rec. T.81 and ISO/IEC 10918-1

Commonly referred to as JPEG

Specifies compression for gray-level and color images

Work commenced in 1986, standard published in 1992

Applications of JPEG

Storage format used in virtually all digital cameras (except for “raw” sensor data)

Most pictures in the Internet are JPEG pictures

Motion-JPEG is de facto standard for digital video editing
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Still Image Coding JPEG

The Scope of Image and Video Coding Standardization

What is standardized?

Data format including constraints for the data

Decoding result to be produced by a conforming decoder

⇒ Provides interoperability between different devices

⇒ Permits optimization beyond the obvious

⇒ Permits complexity reduction for implementability

⇒ Provides no guarantee of quality
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Still Image Coding JPEG

JPEG: Basic Codec Structure

Encoder and decoder structure for each color component
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Still Image Coding JPEG

JPEG: Partitioning of Color Components into 8×8 Blocks

Color components are coded independently of each other

Color components are partitioned into 8×8 blocks (padding at borders)

The 8×8 blocks are coded using transform coding
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Still Image Coding JPEG

Two-dimensional Transform for Image Compression

Separable and symmetric 2-d orthogonal block transform

2-d linear transform: Each input block is represented as a linear combination
of 2-d basis functions (or basis blocks)

Separable and symmetric 2-d orthogonal block transform:
Transform of an N×N block s can be written as

u = A · s ·AT (588)

where A is the N×N transform matrix and u is the N×N block of transform
coefficients

Inverse of separable and symmetric 2-d orthogonal block transform is given by

s′ = AT · u′ ·A (589)

Great practical importance:
Separable transform requires 2 matrix multiplications of size N×N instead of one
multiplication of a vector of size 1×N2 with a matrix of size N2×N2

=⇒ Complexity reduction from O(N4) to O(N3)
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o

Still Image Coding JPEG

2-d Transform used in JPEG

2-d block transform in JPEG

Separable DCT of type II

8×8 transform matrix A consisting of
elements aik, with i, k = 0, · · · , 7,
given by

aik = αi cos
π (2k + 1) i

16
(590)

with

αi =
1

4

{
1 : i = 0√

2 : i > 0
(591)

Transform can be implemented using a
fast butterfly algorithm

Transform specification in JPEG

Ideal forward and backward transform are given in informative clause

Specification contains normative accuracy requirements

Heiko Schwarz Source Coding and Compression December 7, 2013 444 / 661



o

Still Image Coding JPEG

2-d DCT Example – Step 1: Vertical Transform

Example for a 16×16 DCT

Step 1: Column-wise DCT on image block yielding intermediate block of
transform coefficients

Notice the energy concentration in the first row (DC coefficients)
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o

Still Image Coding JPEG

2-d DCT Example – Step 2: Horizontal Transform

Example for a 16×16 DCT

Step 2: Row-wise DCT on intermediate block of transform coefficients
yielding the final block of DCT coefficients

Notice the energy concentration in the DC coefficient (top-left)
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o

Still Image Coding JPEG

Quantization in JPEG

JPEG specifies uniform reconstruction quantizers for the transform coefficients

Inverse quantization (scaling) in decoder is specified by

t′ik = ∆ik · qik (592)

with qik : Quantization index for coefficient at location (i, k) inside block
∆i,k : Quantization step size for coefficient at location (i, k)
t′i,k : Reconstructed transform coefficient at location (i, k)

No normative encoding procedure, but informative quantization rule

qik = round

(
tik
∆ik

)
(ti,k: original transform coefficient) (593)

Standard specifies accuracy requirements for combination of DCT and quantization

=⇒ Leaves freedom for encoder designers

Separate quantization step sizes can be selected for each coefficient location (i, k)
and color component

=⇒ Quantization tables have to be transmitted as side information (no defaults)
=⇒ Additional freedom for encoder optimization
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Still Image Coding JPEG

Quantization Tables in JPEG

Quantization tables

Determine rate and distortion (among other parameters)

Need to be transmitted (no default tables in JPEG)

Example tables for YCbCr format are specified in Annex K of standard
(empirically derived based on psychovisual threshold experiments)

luma blocks chroma blocks

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99
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Still Image Coding JPEG

Entropy Coding in JPEG Baseline

Entropy coding of transform coefficient levels (quantization indices)

Different concepts for DC and AC levels

DC levels: Differential coding using codeword tables

AC levels: Run-level coding of scanned coefficients

Coding of DC transform coefficient levels

DC level is predicted by previous DC level as predictor

Difference to predictor is coded using VLC and FLC

Category C is coded using VLC

=⇒ Specifies range of values
=⇒ Specifies number of following bits (for FLC)

FLC specifies actual value of DIFF inside category C

=⇒ If DIFF > 0, low-order bits of DIFF
=⇒ If DIFF < 0, low-order bits of DIFF− 1

VLC table for category needs to be transmitted

=⇒ Increases side information (no default table)
=⇒ Allows adaptation to actual statistics
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o

Still Image Coding JPEG

Example VLC Table for Coding DC Difference Category

Example VLC table for coding category C

Range of DIFF values is specified in standard

Codeword assignment has to be transmitted

Example shows recommended table for luma DC (Annex K of JPEG)

Category C Range of DIFF value Example codeword
0 0 00
1 -1, 1 010
2 -3, -2, 2, 3 011
3 -7..-4, 4..7 100
4 -15..-8, 8..15 101
5 -31..-16, 16..31 110
6 -63..-32, 32..63 1110
7 -127..-64, 64..127 11110
8 -255..-128, 128..255 111110
9 -511..-256, 256..511 1111110

10 -1023..-512, 512..1023 11111110
11 -2047..-1024, 1024..2047 111111110
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o

Still Image Coding JPEG

Entropy Coding of AC Transform Coefficient Levels

Representation of AC levels

Convert into sequence using a zig-zag scan

AC coefficients are likely to be quantized to zero
(in particular those at high-frequency locations)

Successive runs of zeros are represented using a run
(number of consecutive levels equal to zero)

Non-zero AC levels are represented by a category and
a value inside the category (same as for DC levels)

Coding of AC levels

AC levels are coded using a combination of VLC and FLC

Variable-length code table is used for coding events {run,category}
VLC table includes a special symbol (EOB) for signaling the end-of-block
(all remaining AC levels are equal to zero)

Fixed-length code is used for coding the exact value inside a category
(number of bits is given by category) – same as for DC difference levels

VLC table has to be transmitted (no default table)

Heiko Schwarz Source Coding and Compression December 7, 2013 451 / 661



o

Still Image Coding JPEG

Example VLC Table for Run-Category Coding of AC Levels

Example for VLC table
Standard defines ranges for categories (same as for DC, but no categories 0 and 11)
Codeword assignment has to be transmitted
Example shows first entries of recommended table for luma AC (Annex K of JPEG)

run/category codeword
EOB 1010
0/1 00
0/2 01
0/3 100
0/4 1011
0/5 11010
0/6 1111000
0/7 11111000
0/8 1111110110
0/9 1111111110000010

0/10 1111111110000011
1/1 1100
1/2 11011
1/3 1111001
1/4 111110110
1/5 11111110110
1/6 1111111110000100
1/7 1111111110000101
1/8 1111111110000110
1/9 1111111110000111

1/10 1111111110001000

run/category codeword
2/1 11100
2/2 11111001
2/3 1111110111
2/4 111111110100
2/5 1111111110001001
2/6 1111111110001010
2/7 1111111110001011
2/8 1111111110001100
2/9 1111111110001101

2/10 1111111110001110
3/1 111010
3/2 111110111
3/3 111111110101
3/4 1111111110001111
3/5 1111111110010000
3/6 1111111110010001
3/7 1111111110010010
3/8 1111111110010011
3/9 1111111110010100

3/10 1111111110010101
· · · · · ·
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Still Image Coding JPEG

Example: JPEG Transform Coefficient Level Coding

Example for an 8×8 luma block:

Last DC level: DC(N − 1) = 178

Use recommended luma tables

Coding of DC transform coefficient level

Prediction difference: DIFF = 185− 178 = 7

Category C = 3: Codeword “100”

Fixed-length code (lowest 3 bits of “7”): “111”

Final bit representation (6 bit): “100111”

transform coefficient levels

Coding of AC transform coefficient levels

Zig-zag scanning and conversion into (run,level) pairs yields

(0, 3) (0, 1) (2, 1) (1,−1) (6,−3) (0,−1) (0,−2) (0,−1) (EOB)

Representation as (run,category) [FLC bits] sequence

(0, 2)[11] (0, 1)[1] (2, 1)[1] (1, 1)[0] (6, 2)[00] (0, 1)[0] (0, 2)[01] (0, 1)[0] (EOB)

Bit sequence: VLC bits [FLC bits] (in total: 46 bits for 63 AC levels)

01 [11] 00 [1] 11100 [1] 1100 [0] 111111110110 [00] 00 [0] 01 [01] 00 [0] 1010
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Still Image Coding JPEG

JPEG Compression Example – Original (YCbCr 4:2:0, 12 bpp)
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Still Image Coding JPEG

JPEG Compression Example – 1:10 Compression (1.2 bpp)
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Still Image Coding JPEG

JPEG Compression Example – 1:25 Compression (0.48 bpp)
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Still Image Coding JPEG

JPEG Compression Example – 1:50 Compression (0.24 bpp)
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Still Image Coding JPEG

JPEG Compression Example – 1:100 Compression (0.12 bpp)
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Still Image Coding JPEG

JPEG Compression Example – 1:200 Compression (0.06 bpp)
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Still Image Coding JPEG

Summary of JPEG

JPEG Baseline

Minimum of capabilities (required for all DCT-based JPEG codecs)

Source image: 1-4 color components with 8-bit per sample

Sequential processing of 8×8 blocks

Transform: Separable 8×8 discrete cosine transform (DCT) of type II

Quantizer: Scalar uniform reconstruction quantizer (using quantization table)

DC coding: Prediction and combination of VLC and FLC

AC coding: Zig-zag scan and run-level coding (combination of VLC & FLC)

VLC coding: 2 DC tables (category) & 2 AC tables (run/category)

Extended JPEG features

Extended bit depth

Adaptive binary arithmetic coding

Progressive and hierarchical coding

Lossless coding mode

Extended file formats (e.g., EXIF)
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Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Intra-Picture Coding in

H.262 | MPEG-2 Video
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Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Intra-Picture Coding in H.262 | MPEG-2 Video

H.262 | MPEG-2 Video

Video coding standard jointly developed by ITU-T and ISO/IEC JTC 1

Official name: ITU-T Rec. H.262 and ISO/IEC 13818-2

Standard was finalized in 1994

Still widely used in digital television and the DVD-Video optical disc format

Three pictures types: I (intra), P (predictive) and B (bi-directional)

Includes tools for interlaced video

Most important conformance point: Main Profile

Color format: YCbCr 4:2:0
Bit depth: 8 bit per sample

Intra-picture coding in H.262 | MPEG-2 Video

Conceptually very similar to JPEG Baseline

Details and actual syntax are different

Fixed variable-length entropy coding tables
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Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Macroblocks and Blocks in H.262 | MPEG-2 Video

Picture partitioning into macroblocks

Picture is partitioned into fixed-size
macroblocks, which consist of 16×16
luma samples and the corresponding
areas in the chroma components

In 4:2:0 chroma sampling format, a
macroblock corresponds to

one 16×16 luma block
two 8×8 chroma blocks

Coding of macroblocks

Different coding modes, also referred
to as macroblock modes

Intra picture: 2 coding modes

Intra
Intra+Q (quantizer change)

Intra mode: Transform coding for all
six 8×8 blocks of a macroblock
(4 luma and 2 chroma blocks)
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Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Coding of 8×8 Intra Blocks in H.262 | MPEG-2 Video

Transform coding of 8×8 blocks
Orthogonal block transform + scalar quantization + entropy coding

Very similar to JPEG (but some differences in details)

Orthogonal block transform
2-d discrete coding transform (DCT) – same as in JPEG

Scalar quantization
Quantization step size is specified by a quantization matrix and a quantization
parameter (scaling for all coefficients, can be modified on macroblock basis)

Entropy coding of transform coefficient levels
DC coefficient: Differential coding similar to JPEG

AC coefficients: Zig-zag scan and run-level coding with EOB symbol
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Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Quantization in H.262 | MPEG-2 Video

Standard specifies only construction of transform coefficients from levels

Inverse quantization of intra DC coefficients (intra dc precision in range 8..11)

t′00 = q00 · 23−intra dc precision (594)

Inverse quantization of AC coefficients in intra blocks

t′ik = sgn(qik) ·
⌊
|qik| · wik ·QP

16

⌋
(595)

with qik : Quantization index for coefficient at location (i, k) inside block
wi,k : Entry of quantization matrix for coefficient at location (i, k)
QP : Quantization parameter (also called “quantizer scale”)
t′i,k : Reconstructed transform coefficient at location (i, k)

Inverse quantization is followed by clipping to range [−2048, 2047] and,
thereafter, the so-called mismatch control operation

t′77 =


t′77 : s is odd
t′77 − 1 : s is even and t′77 is odd
t′77 + 1 : s is even and t′77 is even

with s =

7∑
i=0

7∑
k=0

t′ik (596)
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Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Quantization Matrices in H.262 | MPEG-2 Video

Quantization matrices
Quantization matrices define variation of quantizer step sizes among frequencies
=⇒ Can be used for psychovisual optimization (to some extend)
Quantization parameter QP is used for scaling the quantization matrices
=⇒ Operation point can be modified on macroblock basis with a few bits
For 4:2:0 data, two matrices are used: one for intra and one for non-intra
Default quantization matrices can be replaced by user-defined matrices

default matrix for intra blocks default matrix for non-intra blocks

8 16 19 22 26 27 29 34

16 16 22 24 27 29 34 37

19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40

22 26 27 29 32 35 40 48

26 27 29 32 35 40 48 58

26 27 29 34 38 46 56 69

27 29 35 38 46 56 69 83

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16
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Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Coding of Transform Coefficients Levels for Intra 8×8 Blocks

DC transform coefficient level in intra blocks

Very similar to JPEG

Prediction using last coded DC level (reset at start of slice or non-intra MB)

Difference is coded by a category (called dct dc size) a fixed-length code

Entropy coding table is fixed in standard (cannot be modified)

AC transform coefficient levels

Levels of a block are converted into vector using a zig-zag scan (same as in JPEG)

Vector of levels is coded using run-level code

Entropy coding table for most frequent combinations of run and level
(actual levels including sign, not categories as in JPEG)
Includes end-of-block (EOB) symbol
Includes escape symbol for less likely combinations, for which the actual run
and level are transmitted with 6 and 12 bit, respectively

Entropy coding tables are fixed in standard (cannot be modified)

For intra, one of two defined tables can be selected on a picture basis
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Encoder Control for Intra Pictures in H.262 | MPEG-2 Video

What parameters can be chosen in encoder?
On sequence/picture level: Quantization matrix, intra vlc table, intra DC precision

On macroblock level: Quantization parameter QP

On block level: Transform coefficient levels

=⇒ Transform coefficient levels have largest impact on coding efficiency

Do the parameters of different blocks influence each other?
Only last DC coefficient is used for prediction

Typically very small impact on coding efficiency

=⇒ Interdependencies between blocks can be neglected

How can the selection of transform coefficient levels be optimized?
Selection determines distortion and rate!

Rounding to next level minimizes distortion, but typically produces a large rate

For an operation point given by a Lagrange parameter λ, the combined cost
measure D + λ ·R should be minimized

Not straightforward due to run-level coding

=⇒ Need to consider dependencies in coding of successive levels

=⇒ Fixed decision levels cannot be optimal
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Example: Impact of Considering Rate in Quantization

Quantization example with ∆ = 10 and λ = 10

Consider quantization of the following vector of transform coefficients

Rounding to nearest quantization level according to q = round(c/∆) yields

=⇒ Sequence of (run,level) values: (0,4)(0,2)(0,2)(1,1)(3,-1)(EOB)

=⇒ Bit sequence: (00001100)(01000)(01000)(0110)(001111)(10)

=⇒ Distortion D = 87, rate R = 30 =⇒ J = D + λ ·R = 387

Alternative quantization (considering rate by minimizing J = D + λ ·R)

=⇒ Sequence of (run,level) values: (0,4)(0,2)(0,2)(1,1)(EOB)

=⇒ Bit sequence: (00001100)(01000)(01000)(0110)(10)

=⇒ Distortion D = 107, rate R = 24 =⇒ J = D + λ ·R = 347 (< 387)
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Rate-Distortion Optimized Quantization (RDOQ)

General idea of rate-distortion optimized quantization for run-level coding

Evaluate “all possible” vectors of transform coefficient levels

Choose vector that minimizes J = D + λ ·R, with

D: Distortion for block (can be measured in transform domain)
R: Rate for transmitting levels using given entropy coding tables
λ: Lagrange parameter, e.g., given as function of quantization parameter QP

=⇒ Very complex: Require restriction for levels and suitable algorithm

Select reasonable set of potential levels for each coefficient

Following observations can be made (considering absolute levels)

Levels greater than the level obtained by mathematically correct rounding
don’t need to be considered (larger distortion and larger rate)
Levels that are significantly smaller than the level obtained by mathematically
correct rounding don’t need to be considered (very large distortion)

Good compromise is obtained by following set of 1-3 levels (absolute values)

Level q0 obtained by mathematically correct rounding, q0 = round(c/∆)
Level q1 obtained by rounding towards zero, q1 = bc/∆c
If q1 > 1, level q2 = q1 − 1
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RDOQ Algorithm for Run-Level Coding

Start with first position k = 0 in scanning order

For all potential levels {q0} determine

distortion D0 = (c0 − q0 ·∆)2

for non-zero levels q0, rate R0 using run-level coding tables

Among all non-zero levels q0, keep only the one that minimizes J0 = D0 + λ ·R0

At most two candidate vectors q0 = [q0] are considered for the further steps,
one with q0 = 0 and one with q0 6= 0

For each of the remaining positions k in scanning order

Combine all potential levels {qk} for current position k with the selected candidate
vectors qk−1 to new candidate vectors qk and determine

distortion Dk = Dk−1 + (ck − qk ·∆)2

for non-zero levels qk, rate Rk using run-level coding tables

Among all vectors qk with the last level qk unequal to 0, discard all vectors except
the one that minimizes Dk + λ ·Rk

After last scanning position k

Determined the final cost J = D + λ ·R for all remaining candidate vectors q
(including EOB symbol) and choose the one that minimizes J
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RDOQ Example

Simple RDOQ example using quantization step size ∆ = 10 and λ = 10
Consider transform coefficient vector of 9 coefficients

Coefficient “36” at position k = 0 with potential levels {4, 3, 2}:
⇒ [4]: D = 42 = 16, R = 8 → J = 96
⇒ [3]: D = 62 = 36, R = 6 → J = 96 [discard]
⇒ [2]: D = 162 = 256, R = 5 → J = 306 [discard]

Coefficient “18” at position k = 1 with potential levels {2, 1, 0}:
⇒ [4,2]: D = 16 + 22 = 20, R = 8 + 5 = 13 → J = 150
⇒ [4,1]: D = 16 + 82 = 80, R = 8 + 3 = 11 → J = 190 [discard]
⇒ [4,0]: D = 16 + 182 = 340, R = 8 (does not include last zero)

Coefficient “23” at position k = 2 with potential levels {2, 1}:
⇒ [4, 2,2]: D = 20 + 32 = 29, R = 13 + 5 = 18 → J = 209
⇒ [4, 2,1]: D = 20 + 132 = 189, R = 13 + 3 = 16 → J = 349 [discard]
⇒ [4, 0,2]: D = 340 + 32 = 349, R = 8 + 7 = 15 → J = 499 [discard]
⇒ [4, 0,1]: D = 340 + 132 = 509, R = 8 + 4 = 12 → J = 629 [discard]

Coefficient “3” at position k = 3 with potential levels {0}:
⇒ [4, 2, 2,0]: D = 29 + 32 = 38, R = 18 (without trailing zeros)

Heiko Schwarz Source Coding and Compression December 7, 2013 472 / 661



o

Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

RDOQ Example (continued)

Coefficient “12” at position k = 4 with potential levels {1, 0}:
⇒ [4, 2, 2, 0,1]: D = 38 + 22 = 42, R = 18 + 4 = 22 → J = 262
⇒ [4, 2, 2, 0,0]: D = 38 + 122 = 182, R = 18 (without trailing zeros)

Coefficient “-4” at position k = 5 with potential levels {0}:
⇒ [4, 2, 2, 0, 1,0]: D = 42 + 42 = 58, R = 22 (without trailing zeros)
⇒ [4, 2, 2, 0, 0,0]: D = 182 + 42 = 198, R = 18 (without trailing zeros)

Coefficient “-3” at position k = 6 with potential levels {0}:
⇒ [4, 2, 2, 0, 1, 0,0]: D = 58 + 32 = 67, R = 22 (without trailing zeros)
⇒ [4, 2, 2, 0, 0, 0,0]: D = 198 + 32 = 207, R = 18 (without trailing zeros)

Coefficient “2” at position k = 7 with potential levels {0}:
⇒ [4, 2, 2, 0, 1, 0, 0,0]: D = 67 + 22 = 71, R = 22 (without trailing zeros)
⇒ [4, 2, 2, 0, 0, 0, 0,0]: D = 207 + 22 = 211, R = 18 (without trailing zeros)

Last coefficients “-6” with potential levels {−1, 0} (including 2 bits for EOB):
⇒ [4, 2, 2, 0, 1, 0, 0, 0,−1]: D = 71 + 42 = 87, R = 22 + 8 = 30 → J = 387
⇒ [4, 2, 2, 0, 1, 0, 0, 0, 0]: D = 71 + 62 = 107, R = 22 + 2 = 24 → J = 347
⇒ [4, 2, 2, 0, 0, 0, 0, 0,−1]: D = 211 + 42 = 227, R = 18 + 9 = 27 → J = 497
⇒ [4, 2, 2, 0, 0, 0, 0, 0, 0]: D = 211 + 62 = 247, R = 18 + 2 = 20 → J = 447

=⇒ Selected transform coefficient levels: [4, 2, 2, 0, 1, 0, 0, 0, 0] with J = 347

=⇒ For comparison, rounding would yield: [4, 2, 2, 0, 1, 0, 0, 0,−1] with J = 387
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Experimental Analysis of RDOQ for Intra-Picture Coding

Coding experiment with H.262 | MPEG-2 Video comparing

Encoder with simple quantization using mathematically correct rounding

Encoder using rate-distortion optimized quantization

Coding conditions

6 video conferencing sequences with a resolution of 1280× 720

6 more complex video sequences with a resolution of 1920× 1080

10 pictures of each sequence have been coded (intra only)

Flat quantization matrices (since quality is measured using PSNR)

Same quantization parameter for all macroblocks

Bitstreams with different quantization parameters

PSNR and rate have been measured

Lagrange parameter λ has been coupled to quantization step size ∆ using the
experimentally determined relationship

λ = const ·∆2
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Quantization Comparison – Sequence “Johnny”
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Quantization Comparison – Sequence “Cactus”
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Quantization Comparison – Summary

Bit-rate savings of RDOQ versus simple quantization

Bit-rate saving at a PSNR value is obtained by interpolating the r-d curves

Average bit-rate savings are obtained by averaging the savings for 100 PSNR values

Average bit-rate saving for all sequences: 9%

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

ra
te

 s
av

in
gs

 v
s.

 S
im

pl
e

 Q
ua

nt
iz

at
io

n

Y-PSNR [dB]

Johnny, 1280x720, 60Hz

RD-opt. Quantization

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

ra
te

 s
av

in
gs

 v
s.

 S
im

pl
e

 Q
ua

nt
iz

at
io

n

Y-PSNR [dB]

Cactus, 1920x1080, 50Hz

RD-opt. Quantization

Heiko Schwarz Source Coding and Compression December 7, 2013 477 / 661



o

Still Image Coding Intra-Picture Coding in H.262 | MPEG-2 Video

Summary of Intra-Picture Coding in H.262 | MPEG-2 Video

Intra-picture coding in H.262 | MPEG-2 Video

Video coding standard of ITU-T and ISO/IEC JTC 1

Still widely used in digital television and DVD-Video

Intra-picture coding is very similar to JPEG Baseline

Picture partitioning in macroblocks and blocks

Scalar quantization of transform coefficients

Quantization matrices are combined with quantization parameter

Run-level coding for transform coefficients

Rate-distortion optimized quantization

Quantization with fixed decision levels cannot be optimal due to
dependencies in run-level entropy coding

Actual rate for coding transform coefficient levels need to be considered

Optimal quantization can be achieved by a trellis-like procedure

Rate-distortion optimized quantization yields average bit-rate savings of
about 10% relative to simple rounding (for intra-only coding)
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Intra-Picture Coding in

H.263 and MPEG-4 Visual
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ITU-T Recommendation H.263 – Overview

ITU-T Recommendation H.263

Video coding standard of ITU-T

Developed by Visual Coding Experts Group (VCEG – ITU-T SG16/WP3/Q6)

Primarily designed for low bit-rate video conferencing

Example applications:
Video conferencing
Was used for Flash Video content
RealVideo codec (before RealVideo 8) was based on H.263

First version (1995)
Very similar structure as H.262 | MPEG-2 Video
Several improvements relative to H.262 | MPEG-2 Video
For intra: Run-level-last coding and optimized coding tables

Second version H.263+ (1998)
Improvements and new features
For intra: AC level prediction, adaptive scans, specialized quantization and
entropy coding tables for intra blocks

Third version H.263++ (2000)
Multiple reference pictures for motion-compensated coding
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Intra-Picture Coding in H.263 Baseline

Basic design for intra-picture coding – similar to H.262 | MPEG-2 Video
Partitioning into 16×16 macroblocks as in H.262 | MPEG-2 Video

Transform coding of 8×8 blocks (DCT + scalar quantization + entropy coding)

Orthogonal block transform
Same separable 8×8 DCT as in H.262 | MPEG-2 Video and JPEG

Scalar quantization of transform coefficients (only reconstruction is specified)
Step size determined by quantization parameter QP (can be modified on MB basis)

DC coefficient (uniform reconstruction quantizer)

t′00 = 8 · q00 (597)

AC coefficients (uniform reconstruction quantizer with extra-wide deadzone)

t′ik =


0 : qik = 0
sgn(qik) ·QP · (2 · |qik|+ 1) : qik 6= 0 and QP is odd
sgn(qik) ·QP · (2 · |qik|+ 1)− 1 : qik 6= 0 and QP is even

(598)

=⇒ Reconstructed levels are always odd-valued numbers (except zero)
=⇒ Has been found to prevent accumulation of IDCT mismatches (for inter)
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Coding of Transform Coefficient Levels in H.263 Baseline

Coded block pattern (CBP)

Signal which 8×8 blocks of a macroblock contain non-zero levels (AC levels)

Concept was also used in H.262 | MPEG-2 Video, but only for inter macroblocks

Required for run-level-last coding of AC levels

In H.263, split into two components:

CBPC (two bits for the chroma blocks): Coded together with MB type
CBPY (four bits for the luma blocks): Coded as separate codeword

MB type CBPC codeword
Intra 00 1
Intra 01 001
Intra 10 010
Intra 11 011
Intra+Q 00 0001
Intra+Q 01 0000 01
Intra+Q 10 0000 10
Intra+Q 11 0000 11
stuffing – 0000 0000 1

CBPY codeword
0000 0011
0001 0010 1
0010 0010 0
0011 1001
0100 0001 1
0101 0111
0110 0000 10
0111 1011

CBPY codeword
1000 0001 0
1001 0000 11
1010 0101
1011 1010
1100 0100
1101 1000
1110 0110
1111 11

Coding of DC transform coefficient level

No prediction of DC coefficient (in contrast to JPEG and H.262 | MPEG-2 Video)

Fixed-length code: 8 bit per DC level
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Coding of AC Transform Coefficient Levels in H.263 Baseline

Coding of AC transform coefficient levels
Convert matrix of AC levels to vector using the zig-zag scan
Vector of AC levels is coded using run-level-last code
Entropy coding table for most common combinations of

Run: Number of preceding levels equal to zero
Level: Value of the next non-zero level
Last: Flag indicating if the non-zero level is the last non-zero level in block

Entropy coding table includes an escape symbol for less likely combinations, for
which the “run”, “level” and “last” are coded using fixed-length codes (6+8+1 bit)
Entropy coding tables have been optimized for low rates

last run level codeword (s = sign)
0 0 ±1 10s
0 0 ±2 1111 s
0 0 ±3 0101 01s
0 0 ±4 0010 111s
0 0 ±5 0001 1111 s
0 0 ±6 0001 0010 1s
0 0 ±7 0001 0010 0s
0 0 ±8 0000 1000 01s
0 0 ±9 0000 1000 00s
0 0 ±10 0000 0000 111s
0 0 ±11 0000 0000 110s
0 0 ±12 0000 0100 000s

last run level codeword (s = sign)
· · · · · · · · · · · ·

1 31 ±1 0000 0100 110s
1 32 ±1 0000 0100 111s
1 33 ±1 0000 0101 1000 s
1 34 ±1 0000 0101 1001 s
1 35 ±1 0000 0101 1010 s
1 36 ±1 0000 0101 1011 s
1 37 ±1 0000 0101 1100 s
1 38 ±1 0000 0101 1101 s
1 39 ±1 0000 0101 1110 s
1 40 ±1 0000 0101 1111 s

escape 0000 011
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Advanced Intra Coding Mode in Annex I of H.263+

Advanced intra-picture coding mode (in optional Annex I) specifies

Adaptive prediction of transform coefficients in intra blocks

Adaptive scanning of transform coefficient levels (depending on prediction)

Modified inverse quantization for intra

Separate entropy coding table for intra blocks (optimized for intra)

Adaptive prediction and scanning

Predict part of the transform coefficients using reconstructed transform coefficients
of neighboring blocks of same color component

Quantization and entropy coding of prediction residuals tik − t̂ik

t′ik = t̂ik +Q−1(qik) (Q−1: inverse quantization) (599)

3 prediction modes (signaled at macroblock level)

DC prediction: Predict DC using left and above neighboring block

Vertical prediction: Predict first row of coefficients using above block
=⇒ Particularly suitable for vertical structures

Horizontal prediction: Predict first column of coefficients using left block
=⇒ Particularly suitable for horizontal structures
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Prediction Modes for Intra Blocks in Advanced Intra Coding

Prediction of transform coefficients: 3 modes signaled at macroblock level

Modified quantization for intra macroblocks

Use same quantization for all coefficients (including DC coefficient)

Uniform reconstruction quantizer without extra-wide deadzone and
without mismatch control (only important for inter macroblocks)

t′ik = 2 ·QP · qik, ∀i, k = 0..7 (600)
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Entropy Coding in Advanced Intra Coding Mode

Scanning pattern is chosen based on prediction mode

Goal: Concentrate zero levels at end of scanning pattern

Non-zero coefficient distribution is depending on prediction mode

DC prediction: Conventional zig-zag scan
Vertical prediction: Horizontal scan (suitable for vertical structures)
Horizontal prediction: Vertical scan (suitable for horizontal structures)

Coding of vector of transform coefficient levels

No separate coding of DC coefficient =⇒ included in run-level-last code

Entropy coding table for run-level-last code optimized for intra statistics
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Further Extensions in H.263 for Improving Intra Coding

Annex E: Syntax-based arithmetic coding

Specifies non-adaptive arithmetic coding for syntax elements

Rarely used in practice

Annex J: Deblocking filter mode

Specifies deblocking filter for reducing block-edge artifacts

Strength of smoothing filter is controlled by quantization parameter

Most useful for coding of following inter pictures, but also improves
quality of intra pictures at low rates

Annex T: Modified quantization mode

Improves ability to control bit rate (finer steps for modifying QP)

Extends range of representable transform coefficient values

Improves chroma fidelity by choosing smaller quantization step size for
chroma than for luma (particularly for low rates)
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Intra-Picture Coding in MPEG-4 Visual

International standard ISO/IEC 14496-2 (MPEG-4 Visual)

Video coding standard of Moving Pictures Experts Group (MPEG)

Includes H.263 Baseline decoder, contains several extensions

Was used in digital cameras, DivX, ...

Coding of intra macroblocks

Prediction of transform coefficients (similar to H.263 Annex I)

DC level is always predicted from left or above block
(direction is determined by differences of neighboring DC levels)
First row/column of ACs can be optionally predicted using same prediction
direction as for DC (usage is signaled at macroblock level)

Two methods for quantization

MPEG-style: Quantization as in MPEG-2 Video (including weighting matrix)
H263-style: Quantization as in H.263 Baseline

Scanning of transform coefficients

3 scans: Zig-zag, horizontal, vertical (chosen based on prediction mode)

Coding of vector of transform coefficient levels

Coded block pattern and run-level-last coding
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Encoder Control for Intra Coding in H.263 and MPEG-4 Visual

Increased degree of freedom relative to H.262 | MPEG-2 Video

In addition to transform coefficient levels, the method for transform coefficient
selection can be selected on macroblock level

H.263 (Annex I): DC, vertical or horizontal prediction mode

MPEG-4 Visual: DC or DC and AC prediction

Rate-distortion optimized encoder control

Determine bitstream b so that the distortion D(s, s′) between original picture s
and reconstructed picture s′ is minimized given a particular target rate R ≤ Rtarget

With Bc being the set of conforming bitstreams with R ≤ Rtarget, we can write

b∗ = arg min
b∈Bc

D
(
s, s′(b)

)
(601)

=⇒ Not feasible due to huge parameter space
=⇒ Split into smaller optimization problems by partially ignoring dependencies

Consider block of samples sk (e.g., picture or macroblock) and optimize with
respect to coding parameters pk (e.g., modes and transform coefficient levels)

min
pk

D
(
sk, s

′
k(pk)

)
subject to R(pk) ≤ Rc (602)
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Rate-distortion optimized encoder control

Lagrangian encoder control

Constrained optimization problem for a block of samples sk

min
pk

D
(
sk, s

′
k(pk)

)
subject to R(pk) ≤ Rc (603)

can be reformulated as unconstrained optimization problem

min
pk

D
(
sk, s

′
k(pk)

)
+ λ ·R(pk) (604)

Consider partition of sk into a number of subsets sk,i (e.g. macroblocks)

If coding parameters pk,i are independent of each other and an additive distortion
measure is used, we can write the optimization problem as∑

i

min
pk,i

D
(
sk,i, s

′
k,i(pk,i)

)
+ λ ·R(pk,i) (605)

=⇒ Independent selection of coding parameters pk,i

For coding decisions in image and video coding

Coding decisions are typically not independent (e.g., due to prediction)
For practical applicability: Consider past decisions, but ignore impact on future
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Lagrangian Encoder Control in Image and Video Coding

Application of Lagrangian encoder control

Can be applied to basically all decisions in an encoder

Quantization: Select vector q of transform coefficient levels according to

q∗ = arg min
q

D(q) + λ ·R(q) (606)

with D(q): SSD distortion for choosing transform coefficient level vector q
R(q) : Number of bits required for representing q

=⇒ Rate-distortion optimized quantization (as considered for run-level coding)

Mode decision: Select coding mode c for a macroblock or block

c∗ = arg min
c

D(c) + λ ·R(c) (607)

with D(c): SSD distortion for choosing coding mode c for the block
R(c) : Number of bits for block when coded with mode c

=⇒ Can be applied for selecting intra prediction mode

Motion search: Will be considered later in lecture
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Comparison of H.263 and MPEG-4 Visual with MPEG-2 Video

Comparison of coding efficiency for intra-picture coding

Selection of all features that contribute to coding efficiency

H.262 | MPEG-2 Video conforming to Main profile
H.263+ with advanced intra coding, deblocking filter, modified quantization
MPEG-4 Visual with MPEG-style quantization

Apply same level of encoder optimization for fair comparison

Best possible coding efficiency for given syntax
Ignore constraints such as real-time operation

=⇒ Use rate-distortion optimized quantization for all standards
=⇒ Apply rate-distortion optimized mode decision where applicable

General coding conditions

Encode 10 pictures of 12 video sequences (6 in 720p, 6 in 1080p)
Flat quantization matrices (quality is measured using PSNR)
Same quantization parameter for all macroblocks
Select Lagrangian parameter according to

λ = const ·∆2 (with experimentally determined factor) (608)
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Intra Coding Comparison – Sequence “Johnny”
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Intra Coding Comparison – Sequence “Cactus”
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Intra Coding Comparison – Summary

Bit-rate savings of H.263 and MPEG-4 Visual versus H.262 | MPEG-2 Video

Bit-rate saving at a PSNR value is obtained by interpolating the r-d curves

Average bit-rate savings are obtained by averaging the savings for 100 PSNR values

Average bit-rate saving for all sequences

H.263+ versus H.262 | MPEG-2 Video: 29%
MPEG-4 Visual versus H.262 | MPEG-2 Video: 25%

Highest savings are obtained for low bit rates
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Summary of Intra-Picture Coding in H.263 and MPEG-2 Visual

Intra-picture coding in H.263+

Transform coding using 8×8 DCT

Prediction of DC and, partly, AC coefficients

Coded block pattern

Adaptive scanning of transform coefficient levels

Scalar quantization

Run-level-last coding of transform coefficient levels

Optional deblocking filter

Intra-picture coding in MPEG-4 Visual

Similar tools as in advanced intra coding mode of H.263+ (Annex I)

Additionally includes quantization weighting matrices

Rate-distortion optimized encoder control

Split overall optimization problem into smaller problems

Encoder decision by minimizing D + λ ·R
⇒ Rate-distortion optimized quantization (RDOQ)

⇒ Rate-distortion optimized mode decision
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Intra-Picture Coding in

H.264 | MPEG-4 AVC
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H.264 | MPEG-4 AVC – Overview

ITU-T Rec. H.264 | ISO/IEC 14496-10 (MPEG-4 Advanced Video Coding)

Video coding standard jointly developed by ITU-T VCEG and ISO/IEC MPEG

Widely used today in many application spaces
Digital television, blu-ray optical disc, digital cameras, mobile phones, video
streaming, video conferencing
Supported in more than 1 billion devices
Every second bit in the Internet is part of a H.264 | MPEG-4 AVC bitstream

Version 1 (2003):
Three profiles: Baseline, Main, Extended (4:2:0, 8 bit)

Fidelity range extensions (2005)
Improvements for large picture sizes, other chroma formats, higher bit depth
High, High 10, High 4:2:2, High 4:4:4 profiles (removed later)
Later: Addition of High 4:4:4 Predictive and intra-only profiles

Scalable video coding extension (2007)
Extension for scalable video coding (SVC)

Multiview video coding extension (2009)
Extension for multiview video (MVC)
Used for 3d-blu-ray discs
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Intra-Picture Coding in H.264 | MPEG-4 AVC

Main features of intra-picture coding

Spatial intra prediction with multiple prediction modes

Transform coding with 4×4 integer transform

Optional 8×8 integer transform (High profile)

Scalar quantization

Two entropy coding methods:

Context-adaptive variable length coding (CAVLC)
Context-adaptive binary arithmetic coding (CABAC) – Main/High profile

Deblocking filter (conceptually similar to Annex J of H.263)

Picture partitioning and intra coding modes

Pictures are partitioned into 16×16 macroblocks

4 intra coding modes are supported (selection on MB level)

Intra-4×4
Intra-8×8 (High profile)
Intra-16×16
Intra-PCM (direct coding of samples)
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Coding of Intra-4×4 macroblocks

Spatial prediction of blocks

DC, horizontal, vertical prediction of transform coefficients (as in H.263,
MPEG-4 Visual) can similarly also be realized in spatial domain

Prediction in spatial domain offers more possibilities

Coding of luma component

16×16 luma block is partitioned into 16 4×4 blocks

4×4 blocks are spatially predicted

9 intra prediction modes are supported

Prediction error of 4×4 blocks is transform-coded

Coding of chroma components

Both 8×8 chroma blocks are spatially predicted

4 intra prediction modes are supported

Prediction error is coded using transform coding

4×4 transform and second level transform of DCs
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Spatial Intra Prediction for 4×4 Blocks

Spatial intra prediction

Predict block using already coded neighboring samples

DC prediction (mean value) and 8 directional prediction modes

Coding order and boundary conditions

Blocks are coded in z-scan order

Samples used for prediction have to be
“available” (already reconstructed)

Not all modes are available for all blocks

Samples “E”, “F”, “G” and “H” can be
replaced with sample “D”
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Illustration of Intra Prediction Modes
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Efficiency of Intra Prediction – Sequence “Johnny”
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Efficiency of Intra Prediction – Sequence “Cactus”
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Transform Coding of 4×4 Blocks

Separable 4×4 integer transform
Orthogonal block transform with integer approximation of DCT

u4×4 = A4×4 · s4×4 ·AT
4×4 with A4×4 =


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

 (609)

Inverse is specified by exact integer operations

=⇒ No accumulation of transform mismatches

Easy implementation (only additions and bit shift operations)

Basis vectors have different norms

=⇒ Compensated by modifying the quantizer step size accordingly

Scalar quantization of transform coefficients
Uniformly distributed reconstruction levels

Logarithmic quantization step size control (∆ ≈ α · 2QP/6)

Smaller quantization step sizes for chroma (as in Annex T of H.263)

Support for quantization weighting matrices (High profile)

Quantization parameter can change at macroblock level
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Coding of Transform Coefficient Levels

Context-adaptive variable length coding (CAVLC)

Coded block pattern (for all six 8×8 block) using VLC table

Zig-zag scan for mapping matrix into vector

Syntax element “coeff token” for 4×4 blocks

Specifies number of non-zero coefficients and number of trailing ones
Chosen VLC table depends on number of non-zero coefficients in already
coded neighboring blocks

Additionally code “runs” and “levels” as well as signs for trailing ones

Context-adaptive binary arithmetic coding (CABAC) [Main, High profile]

Binary arithmetic coding of all low-level syntax elements

Coded block pattern (flag for each of the six 8×8 blocks)

Flag for 4×4 blocks indicating whether non-zero levels are present

Coding of a significance map

“significance flag” indicating whether level is non-zero
if non-zero, “last flag” indicating whether last non-zero level

Coding of absolute levels (minus 1) and signs

Probability models are adapted to statistics during encoding and decoding
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Intra-16×16 and Intra-8×8 Macroblocks

Intra-16×16 macroblock mode

Prediction of 16×16 luma block

Four prediction modes: DC, horizontal, vertical, planar

4×4 transform of all sixteen 4×4 blocks

Additional 4×4 Hadamard transform of DC coefficients

DC block is treated separately in entropy coding

Similar concept with 2×2 Hadamard transform of DC coefficients is also used
for chroma blocks (for all intra coding modes)

Intra-8×8 macroblock mode (High profile)

Prediction of 8×8 blocks of luma component

Same prediction modes as for Intra-4×4 (but extended to larger block size)

Reference samples are low-pass filtered before they are used for prediction

8×8 integer transform for the four luma sub-blocks

Entropy coding is extended to 8×8 transform blocks
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Coding Efficiency of Intra Modes – Sequence “Johnny”
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Coding Efficiency of Intra Modes – Sequence “Cactus”
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Coding Efficiency Comparison with Older Standards

Comparison of coding efficiency for intra-picture coding
Selection of all features that contribute to coding efficiency

H.262 | MPEG-2 Video conforming to Main profile
H.263+ with advanced intra coding, deblocking filter, modified quantization
MPEG-4 Visual with MPEG-style quantization
H.264 | MPEG-4 AVC High profile with CABAC

Apply same level of encoder optimization for fair comparison
Best possible coding efficiency for given syntax
Ignore constraints such as real-time operation

=⇒ Use rate-distortion optimized quantization for all standards
=⇒ Apply rate-distortion optimized mode decision where applicable

General coding conditions
Encode 10 pictures of 12 video sequences (6 in 720p, 6 in 1080p)
Flat quantization matrices (quality is measured using PSNR)
Same quantization parameter for all macroblocks
Select Lagrangian parameter according to

λ = const ·∆2 (with experimentally determined factor) (610)
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Intra Coding Comparison – Sequence “Johnny”
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Intra Coding Comparison – Sequence “Cactus”
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Intra Coding Comparison – Summary

Bit-rate savings of H.264 | MPEG-4 AVC versus older video coding standards

Bit-rate saving at a PSNR value is obtained by interpolating the r-d curves

Average bit-rate savings are obtained by averaging the savings for 100 PSNR values

Highest savings are obtained for low bit rates

Average bit-rate saving for all sequences are summarized below

average bit rate savings relative to . . .

codec H.263+ MPEG-4 MPEG-2

H.264 / AVC 21.1 % 28.2 % 45.6 %

H.263+ 9.7 % 32.5 %

MPEG-4 26.3 %
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Summary of Intra-Picture Coding in H.264 | MPEG-4 AVC

Intra-picture coding in H.264 | MPEG-4 AVC

Four intra macroblock modes
Intra-4×4, Intra-8×8, Intra-16×16: Prediction & transform coding
Intra-PCM: Direct coding of samples

Intra prediction in spatial domain using neighboring samples
Intra-4×4 and Intra-8×8: Eight directional modes & DC prediction
Intra-16×16 and chroma: Four intra prediction modes

Transform: Integer approximation of DCT
Intra-4×4: Transform of 4×4 blocks
Intra-8×8: Transform of 8×8 blocks
Intra-16×16 and chroma: Transform of 4×4 blocks + DC transform

Scalar quantization
Uniform reconstruction quantizer (with optional weighting matrices)
Norms of basis vectors are taken into account in quantization

Two methods for entropy coding
Context-adaptive variable length coding (CAVLC)
Context-adaptive binary arithmetic coding (CABAC)

Deblocking filter
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Intra-Picture Coding in

H.265 | MPEG-H HEVC
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H.265 | MPEG-H HEVC – Overview

ITU-T Rec. H.265 | ISO/IEC 23008-2 (MPEG-H High Efficiency Video Coding)

Jointly developed by ITU-T VCEG and ISO/IEC MPEG

Last video coding standard with focus on coding of high-resolution video

Significantly increased coding efficiency, particularly for high-resolution video

First version was finalized in January 2013

First version specifies three profiles

Main profile (4:2:0 chroma format, 8 bit per sample)

Main 10 profile (4:2:0 chroma format, 10 bit per sample)

Main Still Picture profile (intra-only coding subset of Main profile)

Extensions are under development

Fidelity range extension (other chroma samplings, higher bit depth)

Scalable video coding extension

Multiview video coding extension

Multiview video plus depth coding extension
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Main Features of H.265 | MPEG-H HEVC

Main improvements relative to H.264 | MPEG-4 AVC

Larger block sizes for transform coding and motion compensation

Increased flexibility for partitioning a picture into blocks

Improved interpolation filters and motion vector coding

Increased number of intra prediction modes

Improved coding of transform coefficient levels

Additional in-loop filter: Sample-adaptive offset filter

Intra-Picture Coding in H.265 | MPEG-H HEVC

Spatial intra prediction and transform coding of prediction residual

Increased number of intra prediction modes compared to H.264/AVC

Larger transform sizes

More flexible partitioning of a picture

Improved coding of transform coefficient levels (for larger blocks)

Deblocking filter and additional sample-adaptive offset filter
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Picture Partitioning in H.265 | MPEG-H HEVC

Picture partitioning into coding tree blocks

Coding tree blocks (CTBs): Fixed size of
16×16, 32×32 or 64×64 luma samples

Size of CTBs chosen by encoder

Luma and chroma CTBs together with syntax
are called coding tree unit (CTU)

Partitioning of coding tree blocks

Quad-tree partitioning into coding blocks (CBs)

Luma and chroma CBs together with syntax are
called coding unit (CU)

Maximum CU size: Size of the CTB

Minimum CU size: Selected by encoder, but
equal to or larger than 8×8 luma samples

Coding mode (intra or inter) is chosen for CU

CU is similar to macroblock in older standards

Coding order: Z-scan
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Example: Picture Partitioning into Coding Units

Example for picture partitioning into coding units

Picture with 2560×1600 luma samples of HEVC test sequence “Traffic”

Quadtree-based partitioning into coding unit represents a simple scheme for locally
adapting the block sizes to the image structure
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Intra Coding of Coding Units in H.265 | MPEG-H HEVC

Partitioning of a CB into transform blocks (TBs)

Nested quad-tree partitioning

TB corresponds to a single block transform

Min. and max. TB size are selected by encoder

Supported transforms: 4×4, 8×8, 16×16, 32×32

Luma and chroma TBs together with syntax form
a transform unit (TU)

Special case: Chroma 4×4 blocks are not split

Intra prediction and mode signaling

One or four luma intra prediction
modes per coding unit

One chroma prediction mode per CU

Actual intra prediction is performed
transform block by transform block

=⇒ Improved prediction accuracy
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Spatial Intra Prediction of Transform Blocks

Prediction of luma transform blocks

Spatial intra prediction using
neighboring samples of already
coded blocks

33 directional prediction modes

Additionally:
DC and planar prediction

Reference sample smoothing
depending on block size and
prediction direction

Prediction of chroma transform blocks

Same prediction mechanism as for luma

Prediction mode can be selected among the following:

Planar, DC, horizontal, vertical prediction mode
Same prediction modes as for associated luma block
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Number of Intra Prediction Modes – Sequence “Johnny”
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Number of Intra Prediction Modes – Sequence “Cactus”
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Transform and Quantization in H.265 | MPEG-H HEVC

Separable 2-d transform

2-d block transform of the size of the transform block

Separable integer approximation of discrete cosine transform (DCT)

Basis function have approximately the same norm

Supported transform sizes: 4×4, 8×8, 16×16, 32×32

All transform sizes are specified by single 32×32 integer matrix

Exception: 4×4 luma TBs of intra-picture predicted CUs

Separable integer approximation of discrete sine transform (DST)
Better fits the statistical properties that the residual amplitudes tend to
increase with increasing distance from reference samples

Quantization

Same uniform reconstruction level quantizer as in H.264 | MPEG-4 AVC

Quantization step size controlled by quantization parameter (QP)

Approximately logarithmic mapping between QP and step size

Quantization scaling matrices are supported
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Block Sizes for Prediction and Transform – Sequence “Johnny”
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Block Sizes for Prediction and Transform – Sequence “Cactus”
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Entropy Coding of Transform Coefficient Levels

Only a single entropy coding method

Context-adaptive binary arithmetic coding (CABAC)

Core algorithm of CABAC is unchanged relative to H.264 | MPEG-4 AVC

Coding of transform coefficient levels

Coded block flag for transform block

x and y coordinate of last significant
level in scanning order

Significance flags for 4×4 sub-blocks

Significance map for 4×4 sub-blocks

Absolute levels and signs

Adaptive coefficient scanning

For 4×4 and 8×8 TB in intra CUs,
scan depends on intra prediction mode
(horizontal, vertical, diagonal)

For all other blocks: Diagonal scan

0,0 0,7

7,0

0,0 0,7

7,0

0,0 0,7

7,0
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In-Loop Filtering

Deblocking filter
Adaptive filter for reducing block edge boundaries

Similar adaptation of boundary filter strength as in H.264 | MPEG-4 AVC

Applied on 8×8 sample grid

Sample adaptive offset (SAO)
Conditional adding of an offset to samples (offset are transmitted)

Selected on region basis: Either not used or applied in one of two modes
Mode 1: Band offset filtering

Offset depends on sample value
Split amplitude range into 32 bands
Offset values are transmitted for four
consecutive bands

Mode 2: Edge offset filtering

Choose one of 4 gradient directions
Classify sample into one of 5 categories
based on neighbouring samples
Offset values are transmitted for 4 of
these sample classes
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Coding Efficiency Comparison with Prior Standards

Comparison of coding efficiency for intra-picture coding
Selection of all features that contribute to coding efficiency

H.262 | MPEG-2 Video conforming to Main profile
H.263+ with advanced intra coding, deblocking filter, modified quantization
MPEG-4 Visual with MPEG-style quantization
H.264 | MPEG-4 AVC High profile with CABAC
H.265 | MPEG-H HEVC Main profile

Apply same level of encoder optimization for fair comparison
Best possible coding efficiency for given syntax
Ignore constraints such as real-time operation

=⇒ Use rate-distortion optimized quantization for all standards
=⇒ Apply rate-distortion optimized mode decision where applicable

General coding conditions
Encode 10 pictures of 12 video sequences (6 in 720p, 6 in 1080p)
Flat quantization matrices (quality is measured using PSNR)
Same quantization parameter for all macroblocks
Select Lagrangian parameter according to

λ = const ·∆2 (with experimentally determined factor) (611)
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Intra Coding Comparison – Sequence “Johnny”
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Intra Coding Comparison – Sequence “Cactus”
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Intra Coding Comparison – Summary

Bit-rate savings of H.265 | MPEG-H HEVC versus older video coding standards

Bit-rate saving at a PSNR value is obtained by interpolating the r-d curves

Average bit-rate savings are obtained by averaging the savings for 100 PSNR values

Highest savings are obtained for low bit rates

Average bit-rate saving for all sequences are summarized below

average bit rate savings relative to . . .

codec H.264 / AVC H.263+ MPEG-4 MPEG-2

H.265 / HEVC 25.1 % 40.3 % 45.2 % 57.9 %

H.264 / AVC 20.7 % 27.7 % 45.0 %

H.263+ 9.5 % 31.9 %

MPEG-4 25.9 %
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Intra Coding Efficiency versus JPEG Baseline

Coding efficiency comparison using available reference software versions
Bit-rate savings relative to JPEG Baseline for JPEG test images

Y' Cb Cr Y'CbCr

H.265/HEVC 44% 46% 46% 44%

H.264/AVC 33% 36% 36% 33%

VP8 24% 25% 26% 26%

VP-Next 31% 32% 32% 32%

JPEG 2000 28% 28% 28% 28%

JPEG XR 19% 17% 18% 19%

WebP 17% 14% 14% 19%
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31% 32% 32% 32%

28% 28% 28% 28%

19%
17% 18%

19%
17%

14% 14%

19%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

A
V

ER
A

G
E 

B
IT

 R
A

TE
 S

A
V

N
G

S 
(B

D
-R

A
TE

)

BD-rate performance relative to JPEG
H.265/HEVC H.264/AVC VP8 VP-Next JPEG 2000 JPEG XR WebP

[Nguyen, et. al., 2012]
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Subjective Quality: Original (1024×704 samples, 4:2:0)
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Subjective Quality (1:50 Compression): H.262 | MPEG-2 Video
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Subjective Quality (1:50 Compression): H.263+
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Subjective Quality (1:50 Compression): H.264/AVC
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Subjective Quality (1:50 Compression): H.265/HEVC
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Still Image Coding Intra-Picture Coding in H.265 | MPEG-H HEVC

Summary of Intra-Picture Coding in H.265 | MPEG-H HEVC

Intra-picture coding in H.265 | MPEG-H HEVC

Partitioning of a picture

Partitioning into fixed-size coding tree blocks (typically 64×64 luma samples)
Quadtree-based partitioning into coding blocks and transform blocks

Spatial intra prediction

35 spatial intra prediction modes (35 directional modes)
Intra prediction is applied on transform blocks basis

Transform and quantization

Integer approximation of DCT (special case: DST)
Supported transform sizes: 4×4, 8×8, 16×16, 32×32
Scalar quantizer with uniformly distributed reconstruction levels

Entropy coding of transform coefficient levels

Coded block flags
Significance map: Last significant coefficient,
significance flag for 4×4 sub-blocks, significance flags for levels
Absolute levels and signs

In-loop filter: Deblocking and SAO filter
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Hybrid Video Coding

Outline

Part I: Source Coding Fundamentals

Probability, Random Variables and Random Processes

Lossless Source Coding

Rate-Distortion Theory

Quantization

Predictive Coding

Transform Coding

Part II: Application in Image and Video Coding

Still Image Coding / Intra-Picture Coding

Hybrid Video Coding (From MPEG-2 Video to H.265/HEVC)

Motion-compensated Prediction & Hybrid Video Coding
Encoder Control
Video Coding Standards
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Motion-Compensated Prediction

and Hybrid Video Coding
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Similarities between Successive Pictures in a Video Sequence

Z
Z
Z
Z
Z
Z~t
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

General Idea of Hybrid Video Coding

“It has been customary in the past to transmit successive
complete images of the transmitted picture. [· · · ]
In accordance with this invention, this difficulty is avoided
by transmitting only the difference between successive
images of the object.”
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Principle of Motion-Compensated Prediction

Prediction for luma signal s[x, y, t] within the moving object:

ŝ[x, y, t] = s′(x− dx, y − dy, t−∆t) (612)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Motion-Compensated Hybrid Video Coding

Hybrid video coding

Combination of two techniques:

Motion-compensated prediction
Transform coding of prediction error

All ITU-T and ISO/IEC video coding standards follow that principle

Motion-compensated prediction

Key technique for video coding

Substantial bit rate reduction compared to intra-picture coding

Practical hybrid video coding

Not all parts of a picture can be efficiently predicted from a reference picture

Not all changes between pictures are caused by motion
Some parts can be occluded in reference picture
Complicated motion cannot be well compensated by used motion model

For some parts, motion-compensated prediction could reduce coding efficiency

Practical hybrid video coders allow to switch between motion-compensated
prediction and intra-picture prediction
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Structure of a Motion-Compensated Hybrid Video Encoder
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Structure of a Motion-Compensated Hybrid Video Decoder
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Example for Motion-Compensated Prediction
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Design of Motion-Compensated Hybrid Codecs

Accuracy of motion parameters
Full-sample or sub-sample accurate motion vectors (or motion parameters)
For sub-sample accuracy, an interpolation filter is required

Motion models for describing the motion inside a region
Simplest model: Translational motion =⇒ Used in all video coding standards
Higher-order parametric motion models (e.g., affine motion model)

Selection of regions with constant motion (using same motion model)
In principle, regions can have arbitrary shape =⇒ Need to transmit partitioning
In today’s coding standards: Square or rectangular blocks (fixed or variable size)

Selection of reference picture
Always use previously coded/decoded picture
Select one picture out of a set of previously coded/decoded pictures

Number of motion hypotheses
Predict a region in a current frame using a single motion hypothesis,
i.e., one reference picture with one motion vector (or motion parameter set)
Weighted prediction of multiple motion hypotheses
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Theoretical Performance Analysis of Hybrid Video Coding

Goal of analysis

Approximate analysis of efficiency of motion-compensated video coding

Approximate analysis of impact of displacement vector accuracy

Models for performance analysis

Very simple signal model

Consider coding at high bit rates

Assume r-d optimal intra-picture coding using Gaussian model

No consideration of bit rate for motion parameters

Further reading (papers include extended models)

[1] B. Girod, “The Efficiency of Motion-Compensating Prediction for Hybrid Coding of Video
Sequences,” IEEE Journal on Selected Areas in Communications, vol. SAC-5, no. 7,
pp. 1140-1154, Aug. 1987.

[2] B. Girod, “Motion-Compensating Prediction with Fractional-Pel Accuracy,” IEEE Trans.
on Communications, vol. 41, no. 4, pp. 604-612, Apr. 1993.

[3] B. Girod, “Efficiency Analysis of Multihypothesis Motion-Compensated Prediction for
Video Coding,” IEEE Trans. on Image Processing, vol. 9, no. 2, pp. 173-183, Feb. 2000.
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Model for Performance Analysis of Hybrid Video Coding
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Model for Temporal Dependencies in Video Sequences

Continuous signal model

Displaced signal with additive white noise

st(x, y) = st−1(x− dx, y − dy) + n∗(x, y)

Motion-compensated prediction

ŝt(x, y) = s′t−1(x−mx, y −my)

High-rate approx.: s′t−1(x, y) = st−1(x, y)

ŝt(x, y) = st−1(x− dx −∆x, y − dy −∆y)

= st(x−∆x, y −∆y)− n(x, y)

with n(x, y) = n∗(x−∆x, y −∆y) being the
shifted noise term (same statistical properties)

Resulting prediction error signal for current frame (omitting time index t)

u(x, y) = s(x, y)− ŝ(x, y) = s(x, y)− s(x−∆x, y −∆y) + n(x, y)

= s(x, y) ∗
(
δ(x, y)− δ(x−∆x, y −∆y)

)
+ n(x, y) (613)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Approximation of Rate-Distortion Functions

Gaussian model for signal s(x, y) and prediction error u(x, y)

Signal s(x, y): Gaussian model provides reasonable approximation

Prediction error u(x, y): Gaussian model provides upper bound for r-d function

Remember: Rate-distortion function R(D) for 1-d Gaussian process s(x) with
power spectral density Φss(ω) is given by parametric formulation

D(θ) =
1

2π

∫ π

−π
min (θ,Φss(ω)) dω (614)

R(θ) =
1

2π

∫ π

−π
max

(
0,

1

2
log2

Φss(ω)

θ

)
dω (615)

Extension to 2-d signal s(x, y) with power spectral density Φss(ωx, ωy)

D(θ) =
1

4π2

∫ π

−π

∫ π

−π
min (θ,Φss(ωx, ωy)) dωx dωy (616)

R(θ) =
1

4π2

∫ π

−π

∫ π

−π
max

(
0,

1

2
log2

Φss(ωx, ωy)

θ

)
dωx dωy (617)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Conditional Power Spectral Density of Prediction Error

Power spectral density for given displacement error ∆ = [∆x,∆y]T

Prediction error signal

u(x, y) = s(x, y) ∗
(
δ(x, y)− δ(x−∆x, y −∆y)

)
+ n(x, y)

= s(x, y) ∗ f(x, y) + n(x, y) = v(x, y) + n(x, y) (618)

Use vector notation ω = [ωx, ωy]T and ∆ = [∆x,∆y]T

Power spectral density Φuu(ω |∆) for given displacement error ∆

Φuu(ω |∆) = Φvv(ω |∆) + Φnn(ω)

= Φss(ω) · F (ω) · F ∗(ω) + Φnn(ω)

= Φss(ω) ·
(

1− e−jω∆T
)(

1− ejω∆T
)

+ Φnn(ω)

= 2 · Φss(ω) ·

(
1− e−jω∆T

+ ejω∆T

2

)
+ Φnn(ω)

= 2 · Φss(ω) ·
(
1− cos(ω∆)

)
+ Φnn(ω)

= 2 · Φss(ω) ·
(

1−<
{
e−jω∆

})
+ Φnn(ω) (619)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Power Spectral Density of Prediction Error

Power spectral density Φuu(ω) depends on displacement error pdf

Power spectral density Φuu(ω) of prediction error

Φuu(ω) = E{Φuu(ω |∆)}

= 2 · Φss(ω) ·
(

1−<
{
E
{
e−jω∆

}})
+ Φnn(ω)

= 2 · Φss(ω) · (1−<{P (ω)}) + Φnn(ω) (620)

The spectrum P (ω) is the Fourier transform of the probability density
function f∆(∆) for the displacement error

P (ω) = E
{
e−jω∆

}
=

∞∫
−∞

∞∫
−∞

f∆(∆) e−jω∆ d∆

=

∞∫
−∞

∞∫
−∞

f∆(∆x,∆y) e−j(ωx∆x+ωy∆y) d∆x d∆y (621)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Model for Distribution of Displacement Error

Motion estimate with given maximum accuracy

Maximum displacement error is given by motion vector accuracy

∆max = 2−(1+β) (622)

with β = 0 : Integer-sample accurate motion vectors

β = 1 : Half-sample accurate motion vectors

β = 2 : Quarter-sample accurate motion vectors

Displacement error components are uniformly distributed inside [−∆max,∆max]

f∆(∆x,∆y) =

{
1
4

∆−2
max : |∆x| ≤ ∆max and |∆y| ≤ ∆max

0 : otherwise
(623)

Resulting spectrum P (ωx, ωy)

P (ωx, ωy) =
1

4 ·∆2
max

∆max∫
−∆max

∆max∫
−∆max

e−jωx∆x · e−jωy∆y d∆x d∆y

= sinc
(
∆max · ωx

)
· sinc

(
∆max · ωy

)
= sinc

(
2−(1+β) · ωx

)
· sinc

(
2−(1+β) · ωy

)
(624)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Model for Image Signal

Model based on assumption of autocorrelation function Rss(∆x,∆y)
Isotropic autocorrelation function (for typical image signals: % ≈ 0.9)

Rss(∆x,∆y) = E{s(x, y) · s(x−∆x, y −∆y)} = σ2
s · %

√
∆2
x+∆2

y (625)

Power spectral density Φss(ωx, ωy) for image signal

Φss(ωx, ωy) =

∞∫
−∞

∞∫
−∞

Rss(∆x,∆y) · e−j(ωx∆x+ωy∆y) d∆x d∆y

= K · σ2
s ·
(

1 +
ω2
x + ω2

y

(ln %)2

)− 3
2

(626)

Consider band-limited image signal (sampled at Nyquist rate)

Φss(ωx, ωy) =

 K · σ2
s ·
(

1 +
ω2
x+ω2

y

(ln %)2

)− 3
2

: |ωx| ≤ π and |ωy | ≤ π

0 : otherwise

(627)

where the constant K has to be determined by

σ2
s =

1

4π2

π∫
−π

π∫
−π

Φss(ωx, ωy) dωx dωy (628)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Complete Model for Power Spectral Density of Prediction Error

Apply models for displacement error pdf and image signal

Remember

Φuu(ωx, ωy) = 2 · Φss(ωx, ωy) · (1−<{P (ωx, ωy)}) + Φnn(ωx, ωy) (629)

Assume constant noise n(x, y) inside [−π, π]× [−π, π]

Φnn(ωx, ωy) = σ2
n = Θ · σ2

s (630)

with Θ being the ratio of noise and signal power

Inserting the models for Φss(ωx, ωy), Φnn(ωx, ωy) and P (ωx, ωy) yields the
normalized power spectral density inside interval [−π, π]× [−π, π]

Φuu(ωx, ωy)

σ2
s

= K ·
(

1 +
ω2
x + ω2

y

(ln %)2

)− 3
2

·(
1− sinc(2−(1+β) · ωx) · sinc(2−(1+β) · ωx)

)
+ Θ (631)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Power Spectral Densities for 1-D Signal with % = 0.8
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

High-Rate Performance of MCP for 2-d Signals with % = 0.9
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Impact of Displacement Accuracy and Noise at High Rates
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Interpretation of Theoretical Results

Theoretical analysis showed

Motion-compensated prediction typically improves coding efficiency

Efficiency of motion-compensated prediction increases with
increasing accuracy of displacement vectors

Accuracy increase is mainly useful for video signals with low noise

Motion-compensated prediction in practice

Bit rate required for transmitting displacement vectors increases with increasing
displacement vector accuracy

=⇒ There is an “optimal“ displacement vector accuracy for a given noise level
=⇒ For typical sequences, an accuracy higher than quarter-sample displacements

does not provide noticeable coding efficiency gains
(for low noise data: eight-sample accuracy can provide gain)

Interpolation filters are required for sub-sample accurate MCP

=⇒ Interpolation filters have a significant impact on coding efficiency
=⇒ More accurate interpolation filters require higher complexity
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Displacement Vector Accuracy in Video Coding Standards

H.262 | MPEG-2 Video, H.263 and MPEG-4 Visual (Version 1)
Half-sample accurate displacement vectors
Prediction signal at half-sample positions is obtained by bi-linear interpolation

Advanced Simple profile of MPEG-4 Visual
Quarter-sample accurate displacement vectors
Prediction signal at half-sample positions: Separable 8-tap FIR filter
Prediction signal at quarter-sample positions: Bi-linear interpolation of integer- and
half-sample positions

H.264 | MPEG-4 AVC
Quarter-sample accurate displacement vectors
Prediction signal at half-sample positions: Separable 6-tap FIR filter
Prediction signal at quarter-sample positions: Averaging of two integer- and
half-sample positions

H.265 | MPEG-H HEVC
Quarter-sample accurate displacement vectors
Prediction signal at half- and quarter sample positions: Separable 8- and 7-tap FIR
filter (depending on sub-sample shift)
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Experimental Analysis of MCP and Displacement Accuracy

Comparison of different codecs

HEVC intra-only coding

HEVC inter coding (quarter-sample accuracy)

modified HEVC with half-sample accuracy (adapted motion vector coding)

modified HEVC with integer-sample accuracy (adapted motion vector coding)

Configuration

12 test sequences

6 sequences in 720p with video conferencing content
6 sequences in 1080p with entertainment content

Only the first picture is intra-picture coded (except for intra-only coding)

Picture are coded in display order (IPPP coding structure)

Previous picture is used as reference picture

Intra blocks are allowed in inter-picture coded frames

Fixed quantization parameter

All codecs are based on same HEVC encoder version

Lagrangian encoder control
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Efficiency of Motion-Compensated Prediction – “Johnny”
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Efficiency of Motion-Compensated Prediction – “Cactus”
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Efficiency of Motion-Compensated Prediction – Summary

Comparison of HEVC intra-picture coding and HEVC-based motion-compensated
coding with different motion vector accuracy

Bit-rate saving at a PSNR value is obtained by interpolating the r-d curves

Average bit-rate savings are obtained by averaging the savings for 100 PSNR values

Average bit-rate savings for all sequences are summarized below

average bit rate savings relative to . . .

codec version half-sample integer-sample intra-picture

quarter-sample 10.3 % 29.9 % 77.7 %

half-sample 22.8 % 75.6 %

integer-sample 69.7 %
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Motion Models for Motion-Compensated Prediction

Translational motion in image plane

Motion of a region is described by 2-d displacement vector d = [dx, dy]T

d(x, y) = d = const (632)

Used in all video coding standards of ITU-T and ISO/IEC

Can only describe small amount of “real motion”

Higher order motion models

Motion in image plane is caused by motion in 3-d space

Assuming reasonable restrictions for the motion in 3-d space (e.g. rigid body
motion), motion in image plane can be described by a parametric model

d(x, y) = f(a, x, y) with a being a constant parameter vector (633)

Advantage of higher order motion models

=⇒ Better approximation of “real motion” than translational model

Disadvantages of higher order motion models

=⇒ Increased bit rate for transmitting motion parameters
=⇒ Increased complexity and decreased robustness of motion estimation
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Models for Projection of 3-D Space onto Image Plane

Projection of 3-d world onto 2-d image plane by camera lens

Perspective projection: Neglecting image distortions and blurring

Orthographic projection: All rays are parallel to image plane (valid for Z >> f)

perspective projection model orthographic projection model
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Perspective Motion Model

Perspective model for motion in image plane

Mathematical model for motion field d = [dx, dy]T inside a region

dx(x, y) =
a0 + a1 · x+ a2 · y
1 + c1 · x+ c2 · y

(634)

dy(x, y) =
b0 + b1 · x+ b2 · y
1 + c1 · x+ c2 · y

(635)

Assumptions / restrictions:

Rotation and scaling of rigid body in 3-d space, but no translation

Translation, rotation and scaling of a plane in 3-d space

Advantage:

Corresponds to perspective projection model

Disadvantage:

Hyperbolic model is non-linear with respect to motion parameters
Difficult to estimate
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Orthographic Motion Models

Motion models with different degrees of freedom
Translational model: Translation parallel to image plane (or in image plane)[

dx
dy

]
=

[
a0

b0

]
(636)

4-parameter model: Translation, zoom and rotation in image plane[
dx
dy

]
=

[
a0 + a1 · x+ a2 · y
b0 − a2 · x+ a1 · y

]
(637)

Affine model: Translation and rotation of a plane in 3-d space[
dx
dy

]
=

[
a0 + a1 · x+ a2 · y
b0 + b1 · x+ b2 · y

]
(638)

Parabolic model: Includes approximation of perspective distortions[
dx
dy

]
=

[
a0 + a1 · x+ a2 · y + a3 · x2 + a4 · y2 + a5 · xy
b0 + b1 · x+ b2 · y + b3 · x2 + b4 · y2 + b5 · xy

]
(639)

Orthographic models are linear with respect to parameters (easier to estimate)

Can be interpreted as Taylor expansions of perspective motion model
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Illustration of Impact of Affine Parameters
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Illustration of Impact of Parabolic Parameters
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Illustration of Impact of Perspective Parameters
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Hybrid Video Coding Motion-Compensated Prediction & Hybrid Video Coding

Usage of Higher Order Motion Models for Video Coding

Video coding standards of ITU-T and ISO/IEC

All standards use simple translational motion model

Exception: MPEG-4 Visual supports also affine and perspective model
for global motion compensation (single motion model for background)

Difficult to estimate suitable motion parameters for background
Rarely used in practice

Scientific papers

Higher-order motion models for background motion (or large regions)

Higher-order motion models for block motion

Example [Lakshman, et al, 2010]

Switching between translational and affine motion model on block basis
On average, bit rate savings of 1-2% compared to translational mode
Maximum bit rate savings of about 4%
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Picture Partitioning for Motion-Compensated Prediction

Partitioning into fixed-size square blocks

Partitioning does not need to be transmitted

Low flexibility

H.262 | MPEG-2 Video:

One motion vector per 16×16 macroblocks

Partitioning into variable-size square blocks

Partitioning has to be transmitted

Simple approach: Quadtree partitioning

Increased flexibility

H.263 and MPEG-4 Visual:

16×16 or 8×8 blocks for MCP

H.264 | MPEG-4 AVC:

16×16 to 4×4 blocks + non-square blocks

H.265 | MPEG-H HEVC:

64×64 to 8×8 blocks + non-square blocks
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Non-Square Blocks for Motion-Compensated Prediction

Partitioning into variable-size rectangular blocks

Typically combined with quadtree-based partitioning into square blocks

Square blocks can also be partitioned into 2 rectangular blocks

Flexibility is further increased (side information rate is also increased)

H.264 | MPEG-4 AVC:

Symmetric vertical and horizontal subdivision (for 16×16 and 8×8 blocks)

H.265 | MPEG-H HEVC:

Symmetric and asymmetric subdivisions (for 64×64 to 8×8/16×16 blocks)

Partitioning into non-square blocks for
H.264/AVC (for 16×16 and 8×8)

Partitioning into non-square blocks for
H.265/HEVC (for 64×64 to 8×8/16×16)
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Impact of Block Sizes for Motion-Compensated Prediction

Framework for analysis

HEVC codec with partially disabling certain block sizes

IPPP coding structure with quarter-sample accurate motion vectors

Previous frame is used as reference frame

Side effect of restricting block sizes for MCP

Impact on applicable transform sizes

Transforms are not applied across coding unit boundaries in HEVC

Experiment 1: Exclude effect of different transform sizes

The same 4×4 transform coding is applied for all coding units, independently
of the block sizes used for motion-compensated prediction

Experiment 2: Combined effect of block sizes for prediction and transform coding

No restriction of transform sizes beyond that given by HEVC syntax
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Block Sizes for MCP (4×4 Transform) – Sequence “Johnny”
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64x64

all square blocks

all blocks

Bit rate savings:
all squares vs 16×16: 37.3%
all blocks vs all squares: 3.8%
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Block Sizes for MCP (4×4 Transform) – Sequence “Cactus”
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Bit rate savings:
all squares vs 16×16: 21.9%
all blocks vs all squares: 1.3%
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Without Restricting Transform Coding – Sequence “Johnny”
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Additional rate savings:
for 16×16: 17.2%
for 64×64: 33.5%
for all blocks: 19.6%
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Without Restricting Transform Coding – Sequence “Cactus”
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64x64 (T4x4)

64x64 (RQT)

all blocks (T4x4)

all blocks (RQT)

Additional rate savings:
for 16×16: 18.4%
for 64×64: 27.3%
for all blocks: 18.3%
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Selection of Reference Picture for MCP

Multiple reference pictures

Motion-compensated prediction is not restricted to use previous decoded picture

Multiple decoded pictures can be hold in a reference picture buffer

Employed reference picture is indicated by coding an index ∆

Side information rate is increased, but prediction may be improved

Can exploit effects such as scene cuts, aliasing and uncovered background

Concept is supported in H.263++, H.264/AVC and H.265/HEVC
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Number of Reference Pictures – Sequence “Johnny”
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1 reference picture
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4 reference pictures

8 reference pictures

Bit rate savings:
2 vs 1 ref. pic.: 5.1%
4 vs 1 ref. pic.: 8.5%
8 vs 1 ref. pic.: 9.9%
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Number of Reference Pictures – Sequence “Cactus”
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Cactus, 1920x1080, 50Hz
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Bit rate savings:
2 vs 1 ref. pic.: 3.0%
4 vs 1 ref. pic.: 5.8%
8 vs 1 ref. pic.: 7.8%
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Number of Motion Hypotheses

Multi-hypotheses motion-compensated prediction
Average (or weighted average) of multiple motion-compensated prediction signals

Typically combined with multiple reference pictures

Side information rate is increased, but prediction may be improved

Multi-hypotheses prediction in video coding standards
Restricted to two motion hypotheses

Block-based switching between 1 and 2 hypotheses

MPEG-2, MPEG-4: Restricted two “bi-directional” prediction

H.263++, H.264/AVC, H.265/HEVC: Generalized B slices
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Two Motion Hypotheses (Bi-Prediction) – Sequence “Johnny”
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Bit rate savings:
for 1 ref. pic.: 7.4%
for 2 ref. pic.: 9.2%
for 4 ref. pic.: 10.6%
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Two Motion Hypotheses (Bi-Prediction) – Sequence “Cactus”
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Bit rate savings:
for 1 ref. pic.: 4.8%
for 2 ref. pic.: 5.4%
for 4 ref. pic.: 6.0%
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Summary on Motion-Comp. Prediction & Hybrid Video Coding

Motion-compensated prediction: Exploiting similarities between pictures

Hybrid video coding
Motion-compensated prediction with transform coding of prediction error

Concept used in all ITU-T and ISO/IEC video coding standards

Theoretical analysis of MCP using simple models
Motion-compensated prediction improves coding efficiency

Sub-sample accurate motion vectors improve coding efficiency

Design aspects for motion-compensated prediction
Accuracy of displacement vector: Integer-, half, quarter-sample accuracy

Motion models: Translational, affine, perspective

Regions with constant motion: Fixed and variable block sizes

Selection of reference picture: Multiple reference pictures

Number of motion hypotheses: Bi-prediction

Motion-compensated prediction in newest standard H.265/HEVC
Variable block sizes from 64×64 to 8×4/4×8

Translational motion with quarter-sample accurate vectors

Multiple reference pictures and up to 2 motion hypotheses
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Encoder Control
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Hybrid Video Coding Encoder Control

Review of Lagrangian Encoder Control

Optimal bitstream for given set of constraints (bit rate, delay, etc.)

With Bc being the set of conforming bitstreams b that fulfill all given constraints,
the optimal bitstream is given by

b∗ = arg min
b∈Bc

D
(
s, s′(b)

)
(640)

where s and s′ are the original and reconstructed video, respectively

The optimization is not feasible due to huge parameter space

=⇒ Split into smaller optimization problems by partially ignoring dependencies

Lagrangian encoder control

Consider coding of set of samples sk (e.g. picture, macroblock) and optimized with
respect to coding parameters pk (e.g. coding modes, motion vectors)

min
pk

D
(
sk, s

′
k(pk)

)
subject to R(pk) ≤ Rc (641)

Reformulate constraint optimization problem as unconstrained problem

min
pk

D
(
sk, s

′
k(pk)

)
+ λ ·R(pk) (642)
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Determination of Coding Parameters for Subsets

Determination of coding parameters for smaller units
Consider partition of sk into smaller subsets sk,i (e.g. smaller blocks)

For independent coding decisions and additive distortion measures, we have∑
i

(
min
pk,i

D
(
sk,i, s

′
k,i(pk,i)

)
+ λ ·R(pk,i)

)
(643)

=⇒ Independent selection of coding parameters pk,i for each subset

Coding decisions in image and video coding
Coding decisions are typically not independent (e.g. due to prediction)

For practical applicability: Partially ignore dependencies

=⇒ Consider past decisions (correct predictors for samples and coding parameters)
=⇒ Ignore impact on future decisions

Typically used distortion measures

D
(
s, s′

)
=
∑
i

∣∣si − s′i ∣∣β (644)

with β = 1: Sum of absolute differences (SAD)
β = 2: Sum of squared differences (SSD)
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Application of Lagrange Optimization in Video Coding

Quantization of the transform coefficients of a block
Select vector q of transform coefficient levels according to

q∗ = arg min
q

D(q) + λ ·R(q) (645)

with D(q): SSD distortion for choosing transform coefficient level vector q
R(q) : Number of bits required for representing q

=⇒ Rate-distortion optimized quantization (as discussed for run-level coding)
=⇒ Discussed algorithm considers dependencies inside a block
=⇒ Can be adapted to other coding schemes for transform coefficient levels

Mode decision (e.g. macroblock mode, intra prediction mode, block partitioning)
Select coding mode c for a block

c∗ = arg min
c

D(c) + λ ·R(c) (646)

with D(c): SSD distortion for choosing coding mode c for the block
R(c) : Number of bits for block when coded with mode c

=⇒ Considers quantization for both distortion D and rate R
=⇒ If applicable, coding parameters for sub-blocks have to determined in

advanced (e.g., for tree-based partitioning)
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Mode Decision for Hierarchical Block Structures

Exhaustive evaluation of all partitionings

Evaluate blocks in depth-first order

Example: Two quadtree levels for a 16×16 block

(1) Select best partitioning for first 8×8 block A

(2) Select best partitioning for second 8×8 block B

(3) Select best partitioning for third 8×8 block C

(4) Select best partitioning for fourth 8×8 block D

(5) Choose between 16×16 block and sub-division

Note: Predictors are set according to prior decisions

Fast mode decision strategies for Hierarchical Structures
Terminate decision process as soon as a “quality criterion” is met

Distortion (or Lagrangian cost) less than a threshold
Number of significant transform coefficients less than a threshold

Example: Top-down approach
(1) Evaluate 16×16 block and stop if quality criterion is met

(2) Evaluate first 8×8 block and check quality criterion

=⇒ Check 4×4 partitioning only if quality criterion is not met

(3) Proceed with next 8×8 block, etc.
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Lagrange Optimization for Choosing Motion Vectors

Straightforward application of Lagrange optimization

Treat each motion vector m = [mx,my]T out of a considered set M of motion
vectors as a coding mode and apply mode decision process

m∗ = arg min
m∈M

D(m) + λm ·R(m) (647)

with D(m): SSD distortion for choosing motion vector m for the block
R(m) : Number of bits for block when coded using motion vector m

=⇒ Considering quantization for each possible motion vector is way too complex

Practical rate-distortion optimization for motion vector selection

Assume that transmitted residual is equal to zero (important case in practice)

Use the Lagrange minimization with less complex cost measure

R(m) is the rate for coding only the motion vector m

D(m) is the distortion between original and prediction signal D(s, ŝ)

As distortion measure, the SAD distortion is typically used in practice

=⇒ The Lagrange parameter is different than for mode decision and quantization

=⇒ The choice λm =
√
λ is typically used in this case
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Importance of Rate-Constrained Decisions for Modes & Motion

Distortion D of reconstructed signal is influence by two factors
Side information rate Rm: Increasing Rm improves prediction and reduces distortion

Rate for residual signal Ru: Increasing Ru reduces distortion

Optimal rate allocation: Minimization of J = D(Rm, Ru) + λ · (Rm +Ru)

∂
∂Ru

J = 0 =⇒ ∂
∂Ru

D = −λ

∂
∂Rm

J = 0 =⇒ ∂
∂Rm

D = −λ

 =⇒ ∂

∂Rm
D =

∂

∂Ru
D (648)

Prediction error variance σ2
u

can be influenced by

Number of intra pred. modes

Block sizes for intra prediction

Block sizes for motion comp.

Accuracy of motion vectors

Number of reference pictures

Number of motion hypotheses

Choice of motion model
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Estimation of Translational Motion: Block Matching

Principle of block matching

Subdivide current frame into blocks

Determine one displacement vector
for each block

Find best match in reference frame by
minimizing Lagrange cost D + λ ·R

Distortion measures for block matching

Typically: SAD distortion

Alternative measures:

SSD distortion
SAD in transform domain
cross correlation

Difficulty in determination of displacement parameters by block matching

It is not feasible to evaluate all “possible motion vectors” (there are too many)

=⇒ Require intelligent search strategies (testing only most likely motion vectors)
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Illustration of the Block Matching Algorithm

The measurement window is
compared with different

shifted blocks in the
reference frame and the best

match is determined

The considered block of
samples in the current frame
is selected as a measurement

window
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Cost Measures Values inside a Search Window

Example: Cost measure values inside a search window
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Search Strategies: Exhaustive Search

Exhaustive search

Evaluate all possible motion
vectors (displacements) inside
a rectangular search window

Computationally very complex

Highly regular, parallelizable

Selection of search window

Often centered around zero
motion vector

Can also be centered around
motion vector predictor

Size can be adapted during
encoding of a picture

Size can be increased under
certain circumstances
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Hybrid Video Coding Encoder Control

Search Strategies: Methods for Complexity Reduction

Complexity of block matching

Evaluation of complex error measure for many candidates

Two approaches for reducing encoder complexity

Complexity of error measure

Fast approximations

Early termination

Exclusion of candidates

Number of search candidates

Skip unlikely areas in search

Adaptively increase or
decrease distance between
search candidates

Combine both approaches

Choose starting point and search order that maximizes likelihood for efficient
approximations, early terminations and excluding candidates
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Search Strategies: Fast Approximations

Basic approach: Stop search if match is “good enough”

Distortion measure D is less than a threshold

Lagrange cost D + λ ·R is less than a threshold

Practical method in video conferencing (static background)

Evaluate zero vector and stop search if the match is good enough
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Search Strategies: Early Termination

Compare partial cost measures

Partial distortion measure DK for block size Bx×By, with K = 1 . . . By

DK(mx,my) =

K−1∑
y=0

Bx−1∑
x=0

∣∣st(x, y)− s′t−1(x−mx, y −my)
∣∣β (649)

Compare partial cost measure with previously determined minimum cost Jmin

Early termination without loss

Stop if: DK(mx,my) + λm ·R(mx,my) ≥ Jmin (650)

Early termination with possible loss (but higher speedup)

Stop if: DK(mx,my) + λm ·R(mx,my) ≥ α(K) · Jmin (651)

Example for weighting function: a(K) =

√
K

By
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Search Strategies: Early Exclusion of Candidates

Speed-up for block comparison

Triangle inequality for samples in a block B (here, for SAD)

∑
k∈B

∣∣sk − ŝk∣∣ ≥
∣∣∣∣∣∑
k∈B

(sk − ŝk)

∣∣∣∣∣ =

∣∣∣∣∣
(∑
k∈B

sk

)
−
(∑
k∈B

ŝk

)∣∣∣∣∣ (652)

Basic strategy
1 Compute sum of samples values for all block locations in reference frame

(sliding window average can be calculated in a very easy way)

2 Compute sum of samples values for current block

3 Omit complete distortion calculation if difference between sums of samples
values yields larger cost measure than previous minimum

Combination with variable size prediction blocks (H.264/AVC, H.265/HEVC)

Start with computation of sample sums for the smallest supported block size

Sums for larger blocks are obtained by adding up the sums for smaller blocks

=⇒ Increases speed-up for nested block sizes as found in modern video codecs
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Search Strategies: 2-D Logarithmic Search

2-d logarithmic search [Jain, Jain, 1981]

Iterative comparison of the cost
measures at 5 points (corners and
center) of a diamond-shaped pattern

Move pattern so that pattern in
centered around best match

No more than 3 new candidates

Logarithmic refinement of search
pattern (4 new candidates) if

Best match is in center of pattern

Or best match is at the border of
the search range

Motion search is terminated if

Best match is in center of pattern
And smallest pattern size is used
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Search Strategies: Diamond Search

Diamond search [Li, Zeng, Liou, 1994] and [Zhu, Ma, 1997]

Iterative search with 9 points of a diamond pattern

Similar search strategy as 2-d logarithmic search

Start with large
diamond pattern
at motion vector
(0,0) or at a pre-
dicted vector

If best match is
in the center of
a large diamond,
proceed with a
smaller diamond

If best match does not lie
in the center of the dia-
mond pattern, center next
diamond pattern at the
best match
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Hybrid Video Coding Encoder Control

Search Strategies: Hierarchical Block Matching

Hierarchical block matching

Start with dyadically downsampled pictures

Refine motion vectors from one hierarchy level to the next
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Search Strategies: Choosing of Start Point

Non-adaptive choices of start point

Use motion vector (0,0) as start point of motion search

=⇒ Suitable for applications like video conferencing
=⇒ Problematic if large motions occur in video sequence

Use motion vector predictor as start point for motion search

=⇒ Typically results in faster termination of motion search

Adaptive choice of start point

General idea: Motion of a block is similar
to at least one of the neighboring blocks

First evaluate the motion vectors of the
already estimated neighboring blocks

Example: Blocks A, B, C and D
Candidates can also include a temporally
predicted motion vector

Choose best match among the candidates
as start point of the motion search
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Hybrid Video Coding Encoder Control

Estimation of Sub-Sample Accurate Motion Vectors

Sub-sample accurate motion vectors

Motion vectors are often not
restricted to integer-sample
accurate displacements

Typical sub-sample accuracies:
Half- and quarter-sample

Estimation of sub-sample shifts

Typical: Iterative sub-sample
refinement using best
integer-sample displacement

Test 8 half-sample candidates
around best integer-sample match
Test 8 quarter-sample candidates
around best half-sample match

Requires interpolation of sample
values at sub-sample locations
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Hybrid Video Coding Encoder Control

Estimation of Higher-Order Motion Parameters

Linear approximation of prediction error signal

Interpolated reconstructed reference picture is denoted by s′ref(x, y)

Assume: Estimate d̂ = [d̂x, d̂y]T of displacement vector d = [dx, dy]T is given

Assume: Displacement errors ∆dx = dx−d̂x and ∆dy = dy−d̂y are small

Prediction error for a sample location (x, y) can be approximated by

u[x, y] = s[x, y]− s′ref(x− dx, y − dy)

= s[x, y]− s′ref(x− d̂x −∆dx, y − d̂y −∆dy)

= s[x, y]− s′ref(x̂−∆dx, x̂−∆dy)

≈ s[x, y]− s′ref(x̂, ŷ) +
∂s′ref

∂x
(x̂, ŷ) ·∆dx +

∂s′ref

∂y
(x̂, ŷ) ·∆dy (653)

with

(x̂, ŷ) : Predicted reference sample location (x− d̂x, y − d̂y)

∂s′ref

∂x
: Gradient in x direction of interpolated reference picture s′ref(x, y)

∂s′ref

∂y
: Gradient in y direction of interpolated reference picture s′ref(x, y)

Heiko Schwarz Source Coding and Compression December 7, 2013 610 / 661



o
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Linear Parametric Motion Models

Consider motion models that are linear with respect to the motion parameters

Displacement vector field can be expressed using a matrix multiplication[
dx(x, y)
dy(x, y)

]
= B(x, y) · a (654)

Example: Affine motion model

[
dx(x, y)
dy(x, y)

]
=

[
1 x y 0 0 0
0 0 0 1 x y

]
·


a0
a1
a2
a3
a4
a5

 (655)

Prediction error for a location x = [x, y]T can be written as

u[x] = s[x]− s′ref(x̂) +
∂s′ref

∂x
(x̂) ·B(x) ·∆a (656)

with
∂s′ref

∂x
=

[
∂s′ref

∂x

∂s′ref

∂y

]
and x̂ = x−B(x) · â (657)
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Minimizing SSD Distortion for Linear Motion Models

SSD distortion using linear approximation for small displacement errors

SSD distortion for a region R with unique parametric motion

D(∆a) =
∑
x∈R

(
s[x]− s′ref(x̂) +

∂s′ref

∂x
(x̂) ·B(x) ·∆a

)2

(658)

Minimization with respect to parameter update ∆a yields a linear equation system

∂D(∆a)

∂∆a
= 0 =⇒ G(â) ·∆a = g(â) (659)

with the matrix G(â) and the vector g(â) being given by

G(â) =
∑
x∈R

B(x)T

(
∂s′ref

∂x
(x̂)

)T(
∂s′ref

∂x
(x̂)

)
B(x) (660)

g(â) = −
∑
x∈R

B(x)T

(
∂s′ref

∂x
(x̂)

)T (
s[x]− s′ref(x̂)

)
(661)

Can be solved by conventional methods, e.g. Gauss algorithm
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Hybrid Video Coding Encoder Control

Iterative Estimation of Motion Parameters

Iterative algorithm for parameter estimation of linear models and SSD distortion
1 Initialize parameter estimate â, e.g. with zero vector

2 Determine matrix G(â) and vector g(â)

3 Determine parameter update ∆a by solving the linear equation system

G(â) ·∆a = g(â)

4 Update parameter estimate
â = â+ ∆s

5 Repeat the last three steps until algorithm converges

Difficulties

Approximation only valid for small parameter errors ∆a

=⇒ Initialize translational part with block matching result

Aperture problem: Estimate â has a large relative error when the smallest
eigenvalue of the gradient matrix G is small

=⇒ Block has to contain large gradients in both directions for a reliable estimate
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Hybrid Video Coding Encoder Control

Motion Estimation for Multi-Hypotheses Prediction

Motion estimation for multiple motion vectors

Need to estimate multiple motion vectors
(typically for different reference pictures)
for a block in current frame

Independent estimation is sub-optimal

Estimation in product space is too complex

Independent estimation of motion hypotheses is not optimal
Example: SSD distortion for bi-prediction

DBi =
∑
x,y

(
s[x, y]− 1

2

(
ŝ1[x, y] + ŝ2[x, y]

))2

=
1

4

∑
x,y

((
s[x, y]− ŝ1[x, y]

)
+
(
s[x, y]− ŝ2[x, y]

))2

=
1

4
D1 +

1

4
D2 +

1

2

∑
x,y

(
s[x, y]− ŝ1[x, y]

)(
s[x, y]− ŝ2[x, y]

)
(662)

=⇒ Minimization of D1 and D2 does not minimize DBi
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Hybrid Video Coding Encoder Control

Iterative Motion Estimation for Multi-Hypotheses Prediction

Iterative motion estimation for multiple motion hypotheses

Example: Bi-prediction with the following assumptions

Motion vector for one hypothesis is given and yields prediction signal ŝ1[x, y]

Want to estimate motion vector [m
(2)
x ,m

(2)
y ]T for the second hypothesis

Distortion for bi-prediction can be written as

DBi =
∑
x,y

∣∣∣∣s[x, y]−
1

2

(
ŝ1[x, y] + s

(2)
ref

(
x−m(2)

x , y −m(2)
y

))∣∣∣∣β
=

1

2β
·
∑
x,y

∣∣∣(2 · s[x, y]− ŝ1[x, y])− s(2)
ref

(
x−m(2)

x , y −m(2)
y

)∣∣∣β
=

1

2β
·
∑
x,y

∣∣∣s∗[x, y]− s(2)
ref

(
x−m(2)

x , y −m(2)
y

)∣∣∣β (663)

=⇒ Conventional motion search, but with modified original signal s∗[x, y]

Iterative algorithm for bi-prediction
1 Independent estimation of first motion hypothesis
2 Conditional estimation of second/first motion hypothesis (alternately)
3 Repeat last step until convergence

Algorithm can be extended to more than two hypotheses
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Hybrid Video Coding Encoder Control

Summary on Encoder Control

Lagrangian encoder control

Minimization of cost function D + λ ·R
In video coding: Need to partially neglect interdependencies

Applications in video coding
Rate-distortion optimized quantization
Rate-distortion optimized mode decision
Rate-distortion optimized motion estimation

Motion estimation

Translational motion: Block matching
Early termination of distortion calculation
Fast search strategies

Higher-Order motion models
Iterative differential motion search for linear motion models
Initialization with block matching result

Motion estimation for multi-hypotheses prediction
Iterative motion search
Alternatively refinement of motion hypotheses
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Hybrid Video Coding Video Coding Standards

Video Coding Standards
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Hybrid Video Coding Video Coding Standards

Basic Coding Approach: Hybrid Video Coding

H.261, H.262/MPEG-2, H.263, MPEG-4, H.264/AVC, H.265/HEVC
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Hybrid Video Coding Video Coding Standards

Specification of Video Coding Standards

Video coding standards specify bitstream syntax and decoding result
Enables interoperability between devices of different manufactures
Leaves room for optimization (but does not guarantee any quality)
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Hybrid Video Coding Video Coding Standards

Application Areas of Video Coding Standards

digital television SD: 1.5 . . . 6 Mbps MPEG-2,
broadcasting HD: 5 . . . 20 Mbps H.264/AVC

DVD-Video 5 . . . 20 Mbps MPEG-2
Blu-ray disc up to 40 Mbps MPEG-2, H.264/AVC, VC-1

Internet video 100 . . . 2000 kbps H.264/AVC or
streaming proprietary codecs

video telephony 20 . . . 2000 kbps H.263,
video conferencing H.264/AVC (incl. SVC extension)

video over 3G 100 . . . 500 kbps H.263, MPEG-4,
wireless networks H.264/AVC

Note: H.265/HEVC is expected to be used in a significant number of application areas
in near future
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Hierarchical Bitstream Syntax
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Hybrid Video Coding Video Coding Standards

H.262 | MPEG-2 Video

(ITU-T Rec. H.262 | ISO/IEC 13818-2)
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Hybrid Video Coding Video Coding Standards

Pictures Types in H.262 | MPEG-2 Video

H.262 | MPEG-2 Video supports 3 pictures types:

I picture: Intra-only coding (random access point)

P picture: Predicted using previous I/P picture

B picture: Predicted using previous I/P and next I/P picture
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Hybrid Video Coding Video Coding Standards

Picture Partitioning using Macroblocks

Partitioning of pictures into macroblocks

Partitioning into fixed-size macroblocks

Macroblock in 4:2:0 chroma format:

one 16×16 luma block
two 8×8 chroma blocks

Slices: Consecutive MBs inside an MB row

For each macroblock, a coding mode can be selected
Supported coding modes depends on picture type
Supported modes are summarized below
(without mentioning the modes which additionally support a quantizer change)

I picture P picture B picture
Intra Intra Intra

P-Skip B-Skip
No MC, coded Fwd, not coded
MC, not coded Fwd, coded
MC, coded Bwd, not coded

Bwd, coded
Interp, not coded
Interp, coded
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Macroblock Coding Modes in I and P Pictures

Intra coding mode in H.262 | MPEG-2 Video (brief review)

Transform coding of 8×8 blocks with separable DCT and scalar quantization

DC coefficient: Coding of difference to DC coefficient of previous block

AC coefficients: Zig-zag scan and run-level coding with EOB symbol

Inter-picture macroblock coding modes in P pictures

Motion-compensated prediction using the previous I/P picture

One motion vector for the entire macroblock

Residual is transmitted using transform coding (similar to Intra)

Transform coding of 8×8 blocks using separable DCT and scalar quantization
Coded block pattern (VLC code indicating non-zero transform blocks)
Zig-zag scan and run-level coding (different table than for Intra)

Special modes indicating that the motion vector and/or residual is zero

coding mode motion vector residual signal
P-Skip inferred to be zero inferred to be zero
No MC, coded inferred to be zero transmitted
MC, not coded transmitted inferred to be zero
MC, coded transmitted transmitted
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Coding of Motion Vectors and Sub-Sample Interpolation

Coding of motion vectors

Motion vector are transmitted with an
accuracy of a half-luma sample

Differential coding using the motion
vector of the left macroblock as predictor

Predictor is reset at beginning of a slice

Motion vectors can only reference blocks
inside the picture area

Sub-sample interpolation

Samples at the integer grid are directly
copied from the reference frame

Bi-linear interpolation is used for
sub-sample locations

For chroma

Motion vector are first rounded to
half-chroma sample precision
Then, bi-linear interpolation is used
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Motion-Compensated Prediction in B Pictures

Two reference pictures
Previous I/P picture in display order

Next I/P picture in display order
(but preceding in coding order)

Three types of prediction
Forward: Using previous I/P picture

Backward: Using next I/P picture

Bi-directional: Average of forward and
backward prediction signal

Inter-picture macroblock coding
modes in B pictures

One or two motion hypotheses

One motion vector per hypothesis

Coding mode signals type of
prediction and if residual is zero

B-Skip: Same motion hypotheses
as macroblock to the left

coding mode prediction resiudal
B-Skip inferred (left) not coded
Fwd, not coded forward not coded
Fwd, coded forward coded
Bwd, not coded backward not coded
Bwd, coded backward coded
Interp, not coded bi-directional not coded
Interp, coded bi-directional coded
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Hybrid Video Coding Video Coding Standards

ITU-Rec. H.263
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Overview of Main Syntax Features in ITU-Rec. H.263

Main syntax features are similar to that of H.262 | MPEG-2 Video

3 pictures types: I, P and B pictures (B pictures enabled by optional Annex O)

Macroblock coding modes: Intra & Inter (motion-compensated prediction)

Transform coding of intra or residual signal

8×8 DCT and scalar quantization

Main improvements relative to H.262 | MPEG-2 Video

3-d run-level-last coding for transform coefficient levels

Component-wise median prediction for motion vectors

Annex D: Motion vectors outside picture boundaries

Annex F: Motion-compensated prediction with 8×8 blocks

Annex I: Prediction of intra AC coefficient and adaptive scanning

Annex J: Deblocking filter inside motion compensation loop

Annex U: Multiple reference pictures
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Improvements for Residual Coding and Intra Coding

Coding of the residual signal for a macroblock

Same 8×8 DCT as in H.262 | MPEG-2 Video

Scalar quantization (no support of quantization weighting matrices)

Run-level-last coding of transform coefficient levels (instead of run-level coding)

Advanced intra coding mode (Annex I)

8×8 DCT and scalar quantization

Prediction of DC and AC coefficients
(signaled at macroblock level)

DC prediction
Vertical prediction
Horizontal prediction

Adaptive scanning of transform
coefficient levels

Determined by chosen
intra prediction mode

Run-level-last coding of transform
coefficient levels
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Improvements for Motion-Compensated Prediction

Motion vectors outside picture boundaries
Specified in optional Annex D

Motion vectors can reference blocks outside
the picture area (not supported in MPEG-2)

Outside areas are filled with corresponding
border samples

Variable block size motion compensation
Supported in P pictures (optional Annex F)

Inter-16×16: One motion vector per macroblock

Inter-8×8: Four motion vectors per macroblock

Multiple reference pictures (optional Annex U)
Transmit reference picture index
in addition to motion vector

Management of reference picture buffer

Sliding window operation
Explicit commands
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Further Improvements compared to H.262 | MPEG-2 Video

Motion vector coding

Slices can cover multiple rows of macroblocks

Motion vectors are predicted by the component-wise
median of 3 neighboring motion vectors

m̂x = median
(
m(A)
x , m(B)

x , m(C)
x

)
m̂y = median

(
m(A)
y , m(B)

y , m(C)
y

)
B pictures: Separate predictor for forward and
backward prediction

Optional deblocking filter (Annex J)

Deblocking filter for reducing block-edge artifacts

Strength of smoothing filter is controlled by quantization parameter

Improves subjective quality of current picture

Improves “quality” of motion-compensated prediction signal of following pictures
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MPEG-4 Visual

(ISO/IEC 14496-2)
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Overview of Coding Tools in MPEG-4 Visual

Similar features as MPEG-2 Video or H.263

I, P and B pictures and 16×16 macroblocks

Intra and residual coding: 8×8 DCT, scalar quantization and run-level-last coding

Intra coding

Prediction of transform coefficients and adaptive scanning (similar to H.263)

DC is always predicted, prediction of AC coefficients can be selected on MB basis

Motion-compensated prediction

Support of Inter-16×16 and Inter-8×8 mode

Component-wise median prediction of motion vectors

No support of multiple reference pictures

Quarter-sample accurate motion vectors (Advanced Simple profile)

Half-sample interpolation: 8-tap filter
Quarter-sample interpolation: Bi-linear interpolation of half-sample grid

Global motion compensation (rarely supported)

Perspective or affine motion model for background of picture
Prediction signal for macroblock is generated by warping
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H.264 | MPEG-4 AVC

(ITU-T Rec. H.264 | ISO/IEC 14496-10)
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Overview of Main Syntax Features in H.264 | MPEG-4 AVC

Commonalities with prior coding standards

I, P and B pictures (actually I, P and B slices in H.264 | MPEG-4 AVC)

16×16 macroblocks supporting different coding modes

Intra coding, uni-directional prediction or bi-prediction

Motion vector coding with component-wise median prediction

Transform coding with scalar quantization of residual signal

Main improvements relative to prior standards

Decoupling of picture type, coding order and display order

Spatial intra prediction

Multiple reference pictures (more general than Annex U of H.263)

More flexible partitioning of a macroblock for motion compensation

Adaptive selection of transform size (High profile)

Improved coding of transform coefficient levels

Optional context-adaptive binary arithmetic coding (High profile)

Deblocking filter (improved relative to Annex J of H.263)
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Intra Coding and Residual Coding in H.264 | MPEG-4 AVC

Review of intra coding

Spatial intra prediction & transform coding of residual signal

Intra-4×4: Prediction and transform of 4×4 blocks (9 prediction modes)

Intra-8×8: Prediction and transform of 8×8 blocks (9 prediction modes)

Intra-16×16: Prediction of 16×16 block (4 prediction modes),
transform of 4×4 blocks and second level Hadamard transform

Intra-PCM: Direct coding of samples (fallback for high rates)

Transform coding of prediction residuals

Transform coding using 4×4 or 8×8 transform and scalar quantization

Transform selection on macroblock basis (if no MC blocks smaller than 8×8)

Transforms are integer approximations of DCT

Inverse transform is specified by exact integer operations

No accumulation of inverse transform mismatches
Encoder does not need to insert frequent intra updates

Improved coding of transform coefficient levels (as discussed for intra)

Context-adaptive variable length coding (CAVLC)
Context-adaptive binary arithmetic coding (CABAC)
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Improvements of Motion-Compensated Prediction

Flexible macroblock partitioning
4 inter coding modes with block sizes
of 16×16, 16×8, 8×16 and 8×8

For Inter-8×8 mode, sub-macroblock
mode is transmitted for each 8×8 block

Sub-macroblock mode indicates usage
of 8×8, 8×4, 4×8 or 4×4 blocks

Multiple reference pictures

Reference picture index is transmitted for each 16×16, 16×8, 8×16 or 8×8 block

Reference picture buffer is managed by sliding window operation or
explicit picture management commands (MMCO commands)

Arbitrary construction of reference picture list using the available reference pictures

Motion-compensated prediction in B slices

Two reference lists (list 0 and list 1) can be arbitrarily constructed

Prediction type (list 0, list 1 or bi-prediction) is transmitted for 16×16, 16×8,
8×16 blocks and 8×8 sub-macroblocks
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Motion Vector Coding and Sub-Sample Interpolation

Motion vector accuracy and sub-sample interpolation

Motion vector accuracy: Quarter luma sample

Sub-sample interpolation for luma

Separable 6-tap filter for half-sample locations
Quarter-sample locations: Averaging two samples
at integer and half-sample locations

Sub-sample interpolation for chroma: Bi-linear

Coding of motion vectors

Differential coding using a predictor

Independent prediction per reference list

In general: Component-wise median of the
motion vectors of 3 neighboring blocks

Some special conditions based on available
motion vectors and reference picture indexes

Special predictors: Inter-16×8 and Inter-8×16
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Decoupling of Picture Type, Coding and Display Order

Generalization of dependencies between pictures
A picture can consist of slices with different slice coding types (I, P, B)

Each picture can be used as reference picture (as indicated in bitstream)

Flexible coding order and construction of reference picture lists

=⇒ Allows new types of prediction structures
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Performance of Hierarchical Prediction Structures
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Subjective Quality Using Hierarchical Prediction Structures

Example: Sequence “Football” (CIF, 30Hz) at about 500 kbit/s

Comparison of subjective quality

Frame #206: Frame with highest QP (low PSNR) in hierarchical structure

conventional IBBP Hierarchical B with GOP 16

Heiko Schwarz Source Coding and Compression December 7, 2013 642 / 661



o

Hybrid Video Coding Video Coding Standards

Deblocking filter

Illustration of the filtering operation at block boundaries

Filtering of p0 and q0 if all of the
following conditions are fulfilled

|p0 − q0| < α(QP)

|p1 − p0| < β(QP)

|q1 − q0| < β(QP)

where

α(QP) and β(QP) increase with QP
α(QP) is larger than β(QP)

The sample p1 is additionally filtered if

|p2 − p0| < β(QP)

The sample q1 is additionally filtered if

|q2 − q0| < β(QP)
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Subjective Quality Improvement due to Deblocking Filtering

Example: Highly compressed decoded picture

without deblocking filter with deblocking filter
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H.265 | MPEG-H HEVC

(ITU-T Rec. H.265 | ISO/IEC 23008-2)
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Overview of Main Syntax Features in H.265 | MPEG-H HEVC

Commonalities with H.264 | MPEG-4 AVC

I, P and B slices and similar high-level syntax concepts

Conceptually similar reference picture buffer management

Conceptually similar construction of reference picture lists

Spatial intra prediction

Transform coding of residual with scalar quantization

Inverse transform specification by exact integer operations

Quarter-sample accurate motion vectors

Deblocking filter inside motion compensation loop

Main improvements relative to H.264 | MPEG-4 AVC

Larger transform sizes and more flexible partitioning for transform coding

Larger block sizes and more flexible partitioning for motion compensated prediction

Larger number of spatial intra prediction modes

Improved sub-sample interpolation filters

Improved motion parameter coding

Improved transform coefficient coding (particularly for larger transform blocks)

Optional sample-adaptive offset filter inside motion compensation loop
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Picture Partitioning, Residual and Intra Coding

Picture partitioning into coding units
Picture partitioning into fixed-size coding tree units
(CTUs) of 64×64, 32×32 or 16×16 luma samples

Quadtree partitioning of CTUs into coding units (CUs)

Coding units can be coded in Intra or Inter mode

Residual coding of Inter CUs
Quadtree partitioning of CUs into transform units (TUs)

Transform coding of TUs with scalar quantization

Transform sizes: 32×32, 16×16, 8×8 and 4×4

Coding of transform coeff. levels based on 4×4 blocks

Context-adaptive arithmetic coding (CABAC)

Coding of Intra CUs
Spatial intra prediction of TUs

Transmission of 1 or 4 intra prediction modes per CU

35 intra prediction modes supported

Same residual coding as for Inter CUs
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Improvements for Motion-Compensated Prediction

Partitioning of a CU for MCP

Up to 8 possibilities for the partitioning of
a CU into prediction units (PUs)

Splitting into 4 blocks only for
smallest CU size
Asymmetric partitionings only for
CUs larger than 16×16

Selection of prediction type (list 0, list 1
or bi-prediction), reference picture(s) and
motion vectors per PU

Motion vector accuracy and sample interpolation

Quarter-luma sample precision motion vectors

Sub-sample interpolation for luma:

Separable 7- or 8-tap filters for all sub-sample positions

Sub-sample interpolation for chroma:

Separable 4-tap filters
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Coding of Motion Parameters: Merge Mode

Coding of prediction units in merge mode

No transmission of prediction type, reference index or motion vector

Prediction parameters are inferred from an already coded block

Construction of a candidate list with up to five candidates:

Up to four spatially neighboring blocks
Up to one candidate derived from a co-located block in a reference picture

Transmission of an index into the candidate list
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Coding of Motion Parameters: AMVP mode

Advanced motion vector prediction

The following parameters are transmitted for PUs not coded in merge mode

Prediction type (list 0, list 1 or bi-prediction)
Per reference list: Reference index, motion vector difference, predictor index

Motion vector predictor can be chosen between 3 predictors

Motion vector of 2 spatially neighboring blocks
A motion vector derived from co-located block in a reference picture
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Coding Efficiency Comparison

of Video Coding Standards
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Coding Efficiency for Low-Delay Applications

Encoding constraints

Bitstream characteristics suitable for low-delay applications

Targeted application area: Video conferencing

Constraint: Pictures are coded in display order

Investigated coding standards (best available configuration)

MPEG-2 Main profile (IPPP coding structure)

MPEG-4 Advanced Simple profile (IPPP coding structure)

H.263 Conversational High Compression profile (IPPP coding structure)

H.264/AVC High profile (low-delay GOP4 with P pictures)

H.265/HEVC Main profile (low-delay GOP4 with B pictures)

Encoder control

Same Lagrangian encoder optimization for all encoders

Same motion search strategy
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Hybrid Video Coding Video Coding Standards

Coding Efficiency for Low Delay: Example R-D Curves
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Hybrid Video Coding Video Coding Standards

Coding Efficiency for Low Delay: Example Rate Savings
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Hybrid Video Coding Video Coding Standards

Coding Efficiency for Low Delay: Summary

Average bit rate savings

Averaged over covered PSNR range

Averaged over test set of 6 video conferencing sequences

average bit rate savings relative to . . .

codec version H.264/AVC H.263 CHC MPEG-4 ASP MPEG-2 MP

H.265/HEVC 40.3 % 67.9 % 72.3 % 80.1 %

H.264/AVC 46.8 % 54.1 % 67.0 %

H.263 CHC 13.2 % 37.4 %

MPEG-4 ASP 27.8 %
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Hybrid Video Coding Video Coding Standards

Coding Efficiency for Entertainment Applications

Encoding constraints

Bitstream characteristics suitable for applications requiring random access

Targeted application area: Broadcast, streaming, optical discs

Constraint: Random access about every second (no delay constraint)

Investigated coding standards (best available configuration)

MPEG-2 Main profile (IBBBP coding structure)

MPEG-4 Advanced Simple profile (IBBBP coding structure)

H.263 High Latency profile (IBBBP coding structure)

H.264/AVC High profile (hierarchical B pictures with GOP8)

H.265/HEVC Main profile (hierarchical B pictures with GOP8)

Encoder control

Same Lagrangian encoder optimization for all encoders

Same motion search strategy
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Hybrid Video Coding Video Coding Standards

Coding Efficiency for Random Access: Example R-D Curves

Heiko Schwarz Source Coding and Compression December 7, 2013 657 / 661



o

Hybrid Video Coding Video Coding Standards

Coding Efficiency for Random Access: Example Rate Savings
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Hybrid Video Coding Video Coding Standards

Coding Efficiency for Random Access: Summary

Average bit rate savings

Averaged over covered PSNR range

Averaged over test set of 9 video sequences

average bit rate savings relative to . . .

codec version H.264/AVC MPEG-4 ASP H.263 HLP MPEG-2 MP

H.265/HEVC 35.4 % 63.7 % 65.1 % 70.8 %

H.264/AVC 44.5 % 46.6 % 55.4 %

MPEG-4 ASP 3.9 19.7 %

H.263 HLP 16.2 %
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Hybrid Video Coding Video Coding Standards

Subjective Comparison of H.264/AVC and H.265/HEVC
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o

Hybrid Video Coding Video Coding Standards

Summary on Video Coding Standards

Video coding standards

All standards follow the hybrid video coding design

Continuous improvement of coding efficiency

To a large extend enabled by complexity increases

Key features for improving the coding efficiency

Accuracy of motion vectors

Interpolation filters

Coding of motion vectors

Partitioning for motion compensation, intra prediction and transform coding

Spatial intra prediction

Coding of transform coefficient levels

Entropy coding

In-loop filtering

Generalization of supported prediction structures
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