Exercises with solutions (Set A)

1. Given is a stationary discrete Markov process with the alphabet $\mathcal{A}=\left\{a_{0}, a_{1}, a_{2}\right\}$ and the conditional pmfs listed in the table below

a	a_{0}	a_{1}	a_{2}
$p\left(a \mid a_{0}\right)$	0.90	0.05	0.05
$p\left(a \mid a_{1}\right)$	0.15	0.80	0.05
$p\left(a \mid a_{2}\right)$	0.25	0.15	0.60
$p(a)$			

Determine the marginal $\operatorname{pmf} p(a)$.

Solution:

Lets consider the probability mass $p\left(a_{0}\right)$. It has to fulfill the following condition:

$$
\begin{aligned}
p\left(a_{0}\right) & =p\left(a_{0}, a_{0}\right)+p\left(a_{0}, a_{1}\right)+p\left(a_{0}, a_{2}\right) \\
& =p\left(a_{0} \mid a_{0}\right) \cdot p\left(a_{0}\right)+p\left(a_{0} \mid a_{1}\right) \cdot p\left(a_{1}\right)+p\left(a_{0} \mid a_{2}\right) \cdot p\left(a_{2}\right) \\
0 & =\left(p\left(a_{0} \mid a_{0}\right)-1\right) \cdot p\left(a_{0}\right)+p\left(a_{0} \mid a_{1}\right) \cdot p\left(a_{1}\right)+p\left(a_{0} \mid a_{2}\right) \cdot p\left(a_{2}\right)
\end{aligned}
$$

Similarly, by considering $p\left(a_{1}\right)$ and $p\left(a_{2}\right)$, we obtain

$$
\begin{aligned}
& 0=p\left(a_{1} \mid a_{0}\right) \cdot p\left(a_{0}\right)+\left(p\left(a_{1} \mid a_{1}\right)-1\right) \cdot p\left(a_{1}\right)+p\left(a_{1} \mid a_{2}\right) \cdot p\left(a_{2}\right) \\
& 0=p\left(a_{2} \mid a_{0}\right) \cdot p\left(a_{0}\right)+p\left(a_{2} \mid a_{1}\right) \cdot p\left(a_{1}\right)+\left(p\left(a_{2} \mid a_{2}\right)-1\right) \cdot p\left(a_{2}\right)
\end{aligned}
$$

Inserting the given conditional probability masses yields the following linear equation system:

$$
\begin{aligned}
-0.1 \cdot p\left(a_{0}\right)+0.15 \cdot p\left(a_{1}\right)+0.25 \cdot p\left(a_{2}\right) & =0 \\
0.05 \cdot p\left(a_{0}\right)-0.20 \cdot p\left(a_{1}\right)+0.15 \cdot p\left(a_{2}\right) & =0 \\
0.05 \cdot p\left(a_{0}\right)+0.05 \cdot p\left(a_{1}\right)-0.40 \cdot p\left(a_{2}\right) & =0
\end{aligned}
$$

After one stage of the Gauss algorithm, we obtain

$$
\begin{aligned}
-0.25 \cdot p\left(a_{1}\right)+0.55 \cdot p\left(a_{2}\right) & =0 \\
0.25 \cdot p\left(a_{1}\right)-0.55 \cdot p\left(a_{2}\right) & =0
\end{aligned}
$$

Both equations are linearly dependent, but we obtained the condition

$$
0.25 \cdot p\left(a_{1}\right)=0.55 \cdot p\left(a_{2}\right)
$$

which yields

$$
p\left(a_{1}\right)=\frac{11}{5} \cdot p\left(a_{2}\right)
$$

Using the first equation of the original equation system, we obtain

$$
\begin{aligned}
0.1 \cdot p\left(a_{0}\right) & =0.15 \cdot p\left(a_{1}\right)+0.25 \cdot p\left(a_{2}\right) \\
p\left(a_{0}\right) & =\frac{3}{2} \cdot p\left(a_{1}\right)+\frac{5}{2} \cdot p\left(a_{2}\right) \\
p\left(a_{0}\right) & =\frac{3}{2} \cdot \frac{11}{5} \cdot p\left(a_{2}\right)+\frac{5}{2} \cdot p\left(a_{2}\right) \\
p\left(a_{0}\right) & =\frac{33}{10} \cdot p\left(a_{2}\right)+\frac{25}{10} \cdot p\left(a_{2}\right) \\
p\left(a_{0}\right) & =\frac{58}{10} \cdot p\left(a_{2}\right) \\
p\left(a_{0}\right) & =\frac{29}{5} \cdot p\left(a_{2}\right)
\end{aligned}
$$

We know that the pmf has to fulfill the condition

$$
p\left(a_{0}\right)+p\left(a_{1}\right)+p\left(a_{2}\right)=1
$$

which yields

$$
\begin{aligned}
\frac{29}{5} \cdot p\left(a_{2}\right)+\frac{11}{5} \cdot p\left(a_{2}\right)+p\left(a_{2}\right) & =1 \\
\frac{29+11+5}{5} \cdot p\left(a_{2}\right) & =1 \\
\frac{45}{5} \cdot p\left(a_{2}\right) & =1 \\
p\left(a_{2}\right) & =\frac{1}{9}
\end{aligned}
$$

Inserting into the found expression for $p\left(a_{1}\right)$ and $p\left(a_{0}\right)$ yields

$$
\begin{aligned}
& p\left(a_{1}\right)=\frac{11}{5} \cdot p\left(a_{2}\right)=\frac{11}{5} \cdot \frac{1}{9}=\frac{11}{45} \\
& p\left(a_{0}\right)=\frac{29}{5} \cdot p\left(a_{2}\right)=\frac{29}{5} \cdot \frac{1}{9}=\frac{29}{45}
\end{aligned}
$$

Hence, the marginal pmf is given by

$$
\begin{aligned}
& p\left(a_{0}\right)=\frac{29}{45}=0.6 \overline{4} \\
& p\left(a_{1}\right)=\frac{11}{45}=0.2 \overline{4} \\
& p\left(a_{2}\right)=\frac{1}{9}=0 . \overline{1}
\end{aligned}
$$

2. Investigate the relationship between independence and correlation.
(a) Two random variables X and Y are said to be correlated if and only if their covariance $C_{X Y}$ is not equal to 0 .
Can two independent random variables X and Y be correlated?

Solution:

Without loss of generality, we assume that the statistical properties of the random variables X and Y are given by the joint probability density function $f_{X Y}(x, y)$ and marginal probability density functions $f_{X}(x)$ and $f_{Y}(y)$. Note that for a discrete random variable X with alphabet \mathcal{A}, the pdf $f_{X}(x)$ can be written using the probability mass function $p_{X}(a)$ and the Dirac delta function $\delta(x)$,

$$
f_{X}(x)=\sum_{a \in \mathcal{A}} p_{X}(a) \cdot \delta(x-a)
$$

Similarly, a joint pdf $f_{X Y}(x, y)$ can be constructed using the Dirac delta function if either or both random variables X and Y are discrete random variables.
Two random variables X and Y are independent if and only if the joint pdf is equal to the product of the marginal pdfs, $\forall x, y \in \mathbb{R}$, $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$. For the covariance $C_{X Y}$ of two independent random variables X and Y, we then obtain

$$
\begin{aligned}
C_{X Y} & =E\{(X-E\{X\})(Y-E\{Y\})\} \\
& =E\{X Y-X E\{Y\}-E\{X\} Y+E\{X\} E\{Y\}\} \\
& =E\{X Y\}-E\{X\} E\{Y\}-E\{X\} E\{Y\}+E\{X\} E\{Y\} \\
& =E\{X Y\}-E\{X\} E\{Y\} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X Y}(x, y) \mathrm{d} x \mathrm{~d} y-E\{X\} E\{Y\} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) \mathrm{d} x \mathrm{~d} y-E\{X\} E\{Y\} \\
& =\int_{-\infty}^{\infty} x f_{X}(x)\left(\int_{-\infty}^{\infty} y f_{Y}(x) \mathrm{d} y\right) \mathrm{d} x-E\{X\} E\{Y\} \\
& =\left(\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x\right)\left(\int_{-\infty}^{\infty} y f_{Y}(x) \mathrm{d} y\right)-E\{X\} E\{Y\} \\
& =E\{X\} E\{Y\}-E\{X\} E\{Y\} \\
& =0
\end{aligned}
$$

Two independent random variables are always uncorrelated.
(b) Let X be a continuous random variable with a variance $\sigma_{X}^{2}>0$ and a pdf $f_{X}(x)$. The pdf shall be non-zero for all real numbers, $f_{X}(x)>0, \forall x \in \mathbb{R}$. Furthermore, the pdf $f_{X}(x)$ shall be symmetric around zero, $f_{X}(x)=f_{X}(-x), \forall x \in \mathbb{R}$. Let Y be a random variable given by $Y=a X^{2}+b X+c$ with $a, b, c \in \mathbb{R}$.
For which values of a, b, and c are X and Y uncorrelated?
For which values of a, b, and c are X and Y independent?

Solution:

First we investigate the correlation of the random variables X and Y. For the covariance $C_{X Y}$, we have

$$
\begin{aligned}
C_{X Y}= & E\{X Y\}-E\{X\} E\{Y\} \\
= & E\left\{a X^{3}+b X^{2}+c X\right\}-E\{X\} E\left\{a X^{2}+b X+c\right\} \\
= & a E\left\{X^{3}\right\}+b E\left\{X^{2}\right\}+c E\{X\} \\
& -a E\{X\} E\left\{X^{2}\right\}-b E\{X\}^{2}-c E\{X\} \\
= & a\left(E\left\{X^{3}\right\}-E\{X\} E\left\{X^{2}\right\}\right)+b\left(E\left\{X^{2}\right\}-E\{X\}^{2}\right) \\
= & a\left(E\left\{X^{3}\right\}-E\{X\} \sigma_{X}^{2}\right)+b\left(\sigma_{X}^{2}-E\{X\}^{2}\right)
\end{aligned}
$$

Due to the symmetry of the pdf around zero, $f_{X}(x)=f_{X}(-x)$, $\forall x \in \mathbb{R}$, the expectation values of the odd integer powers of the random variable X are equal to 0 . With the integer variable $n \geq 0$, we have

$$
\begin{aligned}
E\left\{X^{2 n+1}\right\} & =\int_{-\infty}^{\infty} x^{2 n+1} f_{X}(x) \mathrm{d} x \\
& =\int_{0}^{\infty} x^{2 n+1} f_{X}(x) \mathrm{d} x+\int_{-\infty}^{0} x^{2 n+1} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

Using the substitution $t=-x$ for the second integral, we obtain

$$
\begin{aligned}
E\left\{X^{2 n+1}\right\} & =\int_{0}^{\infty} x^{2 n+1} f_{X}(x) \mathrm{d} x+\int_{\infty}^{0}(-t)^{2 n+1} f_{X}(-t)(-\mathrm{d} t) \\
& =\int_{0}^{\infty} x^{2 n+1} f_{X}(x) \mathrm{d} x+\int_{\infty}^{0} t^{2 n+1} f_{X}(t) \mathrm{d} t \\
& =\int_{0}^{\infty} x^{2 n+1} f_{X}(x) \mathrm{d} x-\int_{0}^{\infty} t^{2 n+1} f_{X}(t) \mathrm{d} t \\
& =0
\end{aligned}
$$

In particular, we have $E\{X\}=0$ and $E\left\{X^{3}\right\}=0$, yielding

$$
\begin{aligned}
C_{X Y} & =a\left(E\left\{X^{3}\right\}-E\{X\} \sigma_{X}^{2}\right)+b\left(\sigma_{X}^{2}-E\{X\}^{2}\right) \\
& =b \cdot \sigma_{X}^{2}
\end{aligned}
$$

The random variables X and Y are uncorrelated if and only if b is equal to 0 .

Now, we investigate the dependence of the random variables X and Y. The random variables X and Y are independent if and only if $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$. Since $f_{X Y}(x, y)=f_{Y \mid X}(y \mid x) f_{X}(x)$, we can also say that X and Y are independent if and only if the marginal pdf for $f_{Y}(y)$ is equal to the conditional pdf $f_{Y \mid X}(y \mid x)$.
The value of the random variable Y is completely determined by the value of the random variable X. Hence, the conditional pdf $f_{Y \mid X}(y \mid x)$ is given by the Dirac delta function

$$
f_{Y \mid X}(y \mid x)=\delta\left(y-a x^{2}-b x-c\right)
$$

If the conditional pdf $f_{Y \mid X}(y \mid x)$ depends on the value x of the random variable X, the random variables X and Y are not independent, since $f_{Y}(y)$ cannot be equal to $f_{Y \mid X}(y \mid x)$ in this case. The conditional pdf $f_{Y \mid X}(y \mid x)$ does not depend on x if one of the following conditions is fulfilled:

- $a \neq 0$ and $f_{X}(x)=\frac{w}{2} \delta\left(x-x_{1}\right)+\frac{1-w}{2} \delta\left(x-x_{2}\right)$, where x_{1} and x_{2} are the roots of the quadratic equation $a x^{2}+b x=d$ for any value of $d>-b^{2} /(4 a)$, and $0 \leq w \leq 1$;
- $a=0, b \neq 0$, and $f_{X}(x)=\delta\left(x-x_{0}\right)$ with x_{0} being any constant real value;
- $a=0$ and $b=0$.

Since it is given that $f_{X}(x)>0, \forall x \in \mathbb{R}$, we do not need to consider the first two cases. Hence, for all parameters a, b, and c with $a \neq 0$ or $b \neq 0$, the random variables X and Y are dependent.
For the case $a=0$ and $b=0$, the conditional pdf is given by

$$
f_{Y \mid X}(y \mid x)=\delta(y-c)
$$

and the random variable Y is given by $Y=c$. The random variable Y is always equal to c. Consequently, its marginal pdf is given by

$$
f_{Y}(y)=\delta(y-c)
$$

and is equal to the conditional pdf $f_{Y \mid X}(y \mid x)$.
The random variables X and Y are independent if and only if $a=0$ and $b=0$.
(c) Which of the following statements for two random variables X and Y are true?
i. If X and Y are uncorrelated, they are also independent.
ii. If X and Y are independent, $E\{X Y\}=0$.
iii. If X and Y are correlated, they are also dependent.

Solution:

i. The statement "if X and Y are uncorrelated, they are also independent" is wrong. As a counterexample consider the random variables X and Y in problem (2b) for $a \neq 0$ and $b=0$. In this case, the random variables are uncorrelated, but are dependent.
ii. The statement "if X and Y are independent, $E\{X Y\}=0$ " is wrong. As shown in problem (2a), the independence of X and Y implies $C_{X Y}=E\{X Y\}-E\{X\} E\{Y\}=0$. If, however, both mean values $E\{X\}$ and $E\{Y\}$ are not equal to zero, then $E\{X Y\}$ is also not equal to zero.
iii. The statement "if X and Y are correlated, they are also dependent" is true. This statement is the contraposition of the statement "if X and Y are independent, they are also uncorrelated", which has been proved in problem (2a).

