
Exercises with solutions (Set B)

3. A fair coin is tossed an infinite number of times. Let Yn be a random
variable, with n ∈ Z, that describes the outcome of the n-th coin toss. If
the outcome of the n-th coin toss is head, Yn is equal to 1; if it is tail, Yn
is equal to 0. Now consider the random process X = {Xn}. The random
variables Xn are determined by Xn = Yn + Yn−1, and thus describe the
total number of heads in the n-th and (n− 1)-th coin tosses.

(a) Determine the marginal pmf pXn(xn) and the marginal entropyH(Xn).

Is it possible to design a uniquely decodable code with one codeword
per possible outcome of Xn that has an average codeword length
equal to the marginal entropy?

Solution:

Since we consider a fair coin, both possible outcomes (head and tail)
of a single coin toss are equally likely. Hence, the pmf for the random
variables Yn is given by pYn

(0) = P (Yn = 0) = 1
2 and pYn

(1) =
P (Yn = 1) = 1

2 . The random variables Yn and Ym with n 6= m
are independent. Furthermore, two different k-symbol sequences of
heads and tails “YnYn−1 · · ·Yn−k+1” are mutually exclusive events.
The alphabetA for the random variables Xn consists of three possible
outcomes A = {0, 1, 2}. Hence, the marginal pmf can be obtained as
follows:

pXn
(0) = P (Xn = 0)

= P (“YnYn−1” = “00”)

= pYn
(0) · pYn

(0)

=
1

2
· 1

2

=
1

4
,

pXn
(1) = P (Xn = 1)

= P ({“YnYn−1” = “01”} ∪ {“YnYn−1” = “10”})
= P (“YnYn−1” = “01”) + P (“YnYn−1” = “10”)

= pYn
(0) · pYn

(1) + pYn
(1) · pYn

(0)

=
1

2
· 1

2
+

1

2
· 1

2

=
1

2
,

pXn
(2) = P (Xn = 2)

= P (“YnYn−1” = “11”)

= pYn
(1) · pYn

(1)

=
1

2
· 1

2

=
1

4
.

1

The marginal entropy H(Xn) is given by

H(Xn) = −
∑
xn∈A

pXn(xn) log2 pXn(xn)

= −pXn(0) log2 pXn(0)− pXn(1) log2 pXn(1)

−pXn(2) log2 pXn(2)

= −1

4
log2

(
1

4

)
− 1

2
log2

(
1

2

)
− 1

4
log2

(
1

4

)
= 2 · 1

4
+ 1 · 1

2
+ 2 · 1

4

=
3

2
.

Since all marginal probabilities are integer powers of 2, it is possible
to develop a Huffman code for which the average codeword length is
equal to the marginal entropy.

An example for such a code is given in the table below.

xn pXn
(xn) codeword `(xn)

0 0.25 10 2
1 0.50 0 1
2 0.25 11 2

The average codeword length is

¯̀=
∑
xn∈A

pXn
(xn) · `(xn) =

1

4
· 2 +

1

2
· 1 +

1

4
· 2 =

3

2
,

and is thus equal to the marginal entropy H(Xn).

2

(b) Determine the conditional pmf pXn|Xn−1
(xn|xn−1) and the condi-

tional entropy H(Xn|Xn−1).

Design a conditional Huffman code.

What is the average codeword length of the conditional Huffman
code?

Solution:

The conditional pmf pXn|Xn−1
(xn|xn−1) can be calculated using the

relationship

pXn|Xn−1
(xn|xn−1) =

pXnXn−1(xn, xn−1)

pXn(xn−1)
.

The probability masses of the marginal pmf pXn
(xn) have been cal-

culated in (3a). The joint probability masses pXnXn−1
(xn, xn−1) can

be calculated in a similar way.

As an example, consider the joint probability mass

pXnXn−1
(1, 1)

= P (Xn = 1, Xn−1 = 1)

= P (“YnYn−1Yn−2” = “010”) + P (“YnYn−1Yn−2” = “101”)

=

(
1

2

)3

+

(
1

2

)3

=
1

4
.

Note that for some combinations of xn and xn−1, the joint probability
masses pXnXn−1

(xn, xn−1) are equal to zero, since the corresponding
event {Xn = xn ∩ Xn−1 = xn−1} cannot occur. If Xn−1 = 0, i.e., if
the result of the (n − 1)-th and the (n − 2)-th coin toss is tail, the
random variable Xn can only take the values 0 or 1. Similarly, if
Xn−1 = 2, Xn can only take the values 1 or 2. Consequently, the
joint probability masses pXnXn−1

(2, 0) and pXnXn−1
(0, 2) are equal

to 0. The following table shows that probability masses of the joint
pmf pXnXn−1(xn, xn−1) and the conditional pmf pXn|Xn−1

(xn|xn−1).

xn−1 xn pXn
(xn−1) pXnXn−1

(xn, xn−1) pXn|Xn−1
(xn|xn−1)

0 0.125 0.50
0 1 0.25 0.125 0.50

2 0.000 0.00
0 0.125 0.25

1 1 0.50 0.250 0.50
2 0.125 0.25
0 0.000 0.00

2 1 0.25 0.125 0.50
2 0.125 0.50

3

The conditional entropy H(Xn|Xn−1) is given by

H(Xn|Xn−1) = −
∑
xn∈A

xn−1∈A

pXnXn−1(xn, xn−1) log2 pXn|Xn−1
(xn|xn−1).

Some of the joint probability masses are equal to 0. These terms
can be simply excluded from the summation, as can be shown by
considering the following limit, where p denotes the joint probability
pXnXn−1

(xn, xn−1) and q denotes the marginal probability pXn
(xn−1),

which is always greater than 0,

lim
p→0

−p log2

(
p

q

)
with q > 0.

By applying L’Hôpital’s rule, we obtain

lim
p→0

−p log2

(
p

q

)
= lim

p→0
−

log2

(
p
q

)′
(

1
p

)′ = lim
p→0

−
1

ln 2 ·
q
p ·

1
q

− 1
p2

= lim
p→0

1

ln 2
· p =

1

ln 2
lim
p→0

p

= 0.

Inserting the values of the joint and conditional pmf, which are given
in the table above, into the expression for the conditional entropy
yields

H(Xn|Xn−1) = −4 · 1

8
· log2

(
1

2

)
− 2 · 1

8
· log2

(
1

4

)
−1 · 1

4
· log2

(
1

2

)
= 4 · 1

8
· 1 + 2 · 1

8
· 2 + 1 · 1

4
· 1

=
1

2
+

1

2
+

1

4

=
5

4
.

An example for a conditional Huffman code is shown in the following
table. Note that we do not assign a codeword to the impossible events
{Xn = 0 ∩ Xn−1 = 2} and {Xn = 2 ∩ Xn−1 = 0}.

xn−1 xn pXn|Xn−1
(xn|xn−1) codeword `(xn|xn−1)

0 0.50 0 1
0 1 0.50 1 1

2 0.00 - 0
0 0.25 10 2

1 1 0.50 0 1
2 0.25 11 2
0 0.00 - 0

2 1 0.50 0 1
2 0.50 1 1

4

The average codeword length of the conditional Huffman code is given
by

¯̀ = −
∑
xn∈A

xn−1∈A

pXnXn−1
(xn, xn−1) `(xn|xn−1)

= 4 · 1

8
· 1 + 2 · 1

8
· 0 + 2 · 1

8
· 2 + 1 · 1

4
· 1

=
5

4
.

The average codeword length of the conditional Huffman code is equal
to the conditional entropy H(Xn|Xn−1).

5

(c) Is the random process X a Markov process?

Solution:

The characteristic property of a Markov process is that the future
states of the process depend only on the present state, not on the
sequence of events that precede it. Using the conditional pmfs, this
property can be written as

pXn|Xn−1Xn−2···(xn|xn−1, xn−2, · · ·) = pXn|Xn−1
(xn|xn−1).

Now, let us investigate the given process X. If Xn−1 = 0, we know
that the result of the (n − 1)-th and (n − 2)-th coin tosses was tail.
Hence, the random variableXn can only take the values 0 (for Yn = 0)
or 1 (for Yn = 1); both with the probability of 1

2 . By considering
additional random variables Xn−k with k > 1, we cannot improve
the knowledge about Xn. We have

pXn|Xn−1Xn−2···(xn|0, xn−2, · · ·)

= pXn|Xn−1
(xn|0) =

 0.5 : xn = 0
0.5 : xn = 1
0.0 : xn = 2

.

Similarly, if Xn−1 = 2, we know that the result of the (n− 1)-th and
(n− 2)-th coin tosses was head. Hence, the random variable Xn can
only take the values 1 (for Yn = 0) or 2 (for Yn = 1); both with the
probability of 1

2 . By considering additional random variables Xn−k
with k > 1, we cannot improve the knowledge about Xn. We have

pXn|Xn−1Xn−2···(xn|2, xn−2, · · ·)

= pXn|Xn−1
(xn|2) =

 0.0 : xn = 0
0.5 : xn = 1
0.5 : xn = 2

.

However, for Xn−1 = 1, the situation is different. Here, we do not
know the exact sequence “Yn−1Yn−2”, we only know that it was either
“01” or “10”. By considering an additional random variable Xn−2,
we can improve our knowledge about Xn. If, for example, Xn−2 = 0,
we know that the sequence “Yn−1Yn−2Yn−3” was equal to “100”, and
then the random variable Xn can only take the values 1 or 2, both
with a probability of 1

2 .

For an analytic proof that X is not a Markov process, we consider the
conditional probabilities pXn|Xn−1

(0|1) and pXn|Xn−1Xn−2
(0|1, 2). In

problem (3b), we calculated the conditional pmf pXn|Xn−1
(xn|xn−1)

and obtained

pXn|Xn−1
(0|1) =

1

4
.

6

The probability mass pXn|Xn−1Xn−2
(0|1, 2) is given by

pXn|Xn−1Xn−2
(0|1, 2) =

pXnXn−1Xn−2
(0, 1, 2)

pXnXn−1
(1, 2)

=
P (“YnYn−1Yn−2Yn−3” = “0011”)

P (“YnYn−1Yn−2” = “011”)

=

(
1
2

)4(
1
2

)3
=

1

2
.

Hence, we have

pXn|Xn−1Xn−2
(0|1, 2) 6= pXn|Xn−1

(0|1).

The process X is not a Markov process.

7

(d) Derive a general formula for the N -th order block entropy HN =
H(Xn, · · · , Xn−N+1).

How many symbols have to be coded jointly at minimum for obtain-
ing a code that is more efficient than the conditional Huffman code
developed in (3b)?

Solution:

For the following derivation, let pN (x0, · · · , xN−1) denote the N -th
order joint pmf pXn···Xn−N+1

(xn, · · · , xn−N+1). TheN -th order block
entropy is given by

HN = H(Xn, · · · , Xn−N+1)

= −
∑
x0∈A

· · ·
∑

xN−1∈A
pN (x0, · · · , xN−1) log2 pN (x0, · · · , xN−1).

The summation in the above equation is done over 3N terms. Each
N -symbol sequence “x0 · · ·xN−1” can be represented by a number of
(N + 1)-symbol sequences “y0 · · · yN”, where yn represents a possible
value of the random variable Yn.

There are 2N+1 possible (N + 1)-symbol sequences “y0 · · · yN”. We
have to differentiate the following three cases:

• All symbols of the symbol sequence “x0 · · ·xN−1” are equal to 1,
xn = 1, ∀n ∈ [0, N − 1]. In this case, the N -symbol sequence
“x0 · · ·xN−1” can be obtained by exactly two (N + 1)-symbol
sequences “y0 · · · yN”, namely “0101 · · · ” and “1010 · · · ”. Con-
sequently, the joint probability mass pN (x0, · · · , xN−1) is equal
to

pN2 =

(
1

2

)N+1

+

(
1

2

)N+1

= 2−N .

• The symbol sequence “x0 · · ·xN−1” is possible and contains at
least one “0” or one “2”. In this case, the N -symbol sequence
“x0 · · ·xN−1” is obtained by exactly one (N+1)-symbol sequence
“y0 · · · yN” and the joint probability mass pN (x0, · · · , xN−1) is
equal to

pN1 =

(
1

2

)N+1

= 2−(N+1).

Since there are 2N+1 outcomes of tossing a coin N + 1 times, ex-
actly 2N+1− 2 probability masses (number of possible outcomes
minus the two outcomes considered above) are equal to pN1.

• The symbol sequence “x0 · · ·xN−1” is impossible. This is, for ex-
ample, the case if the symbol sequence contains the sub-sequences
“02”, “20”, “010”, or “212”, which cannot be represented as an
outcome of the coin tossing experiment. The joint probability
mass pN (x0, · · · , xN−1) for the impossible symbol sequences is,
of course, equal to

pN0 = 0.

The number of impossible N -symbol sequences “x0 · · ·xN−1” is
equal to the number of total symbol sequences (which is 3N)

8

minus the number of symbol sequences for which all symbols are
equal to 1 (which is 1) minus the number of symbol sequences
that correspond to exactly one outcome of N + 1 coin tosses
(which is 2N+1− 2). Hence, there are 3N − 2N+1 + 1 impossible
N -symbol sequences “x0 · · ·xN−1”.

For problem (3b), we have shown that

lim
p→0

−p log2 p = 0.

Hence, we do not need to consider the impossible N -symbol se-
quences, with the probability masses equal to 0, for calculating the
N -th order block entropy. Consequently, we obtain

HN = −1 · pN2 log2 pN2 − (2N+1 − 2) · pN1 log2 pN1

= −1 · 2−N log2(2−N)− (2N+1 − 2) · 2−(N+1) log2(2−(N+1))

= N · 2−N + (N + 1)(1− 2−N)

= N · 2−N + (N + 1)−N · 2−N − 2−N

= (N + 1)− 2−N .

Since all joint probability masses are either equal to 0 or negative
integer powers of 2, we can always construct a Huffman code with an
average codeword length per N -symbol sequence equal to the N -th
order block entropy.

Such an N -th order block Huffman code is more efficient than the
conditional Huffman code, if its average codeword length per symbol
¯̀
N is less than the average codeword length per symbol ¯̀

C for the
conditional Huffman code. Hence, we want to find the number of
symbols N so that

¯̀
N =

HN

N
< ¯̀

C =
5

4
.

By inserting the expression for HN , we obtain

N + 1− 2−N

N
<

5

4

4N + 4− 4 · 2−N < 5N

N > 4− 2−(N−2).

We can manually check that the above inequality is not fulfilled for
the case N = 1 (1 is not greater than 2). For N > 1, the term
2−(N−2) is always greater than 0 and less then or equal to 1. Since
N is an integer number, we can then write

N ≥ 4.

At minimum, we have to code 4 symbols jointly for obtaining a code
that is more efficient than the conditional Huffman code developed
in (3b).

The following table lists the N -th order block entropy HN and the
average codeword length per symbol (assuming a redundancy of zero)
for the block codes with N equal to 1, 2, 3, 4, and 5.

9

N HN HN/N
1 3/2 3/2 = 1.5
2 11/4 11/8 = 1.375
3 31/8 31/24 = 1.2916̄
4 79/16 79/64 = 1.234375
5 191/32 191/160 = 1.19375

The data in the table additionally show that a joint coding of 4 or
more symbols yields an average codeword length per symbol (assum-
ing a redundancy of zero, which can be achieved with a block Huffman
code, since all probability masses are integer powers of 2) that is less
than the average codeword length of 1.25 for the conditional Huffman
code developed in (3b).

10

(e) Calculate the entropy rate H̄(X) of the random process X.

Is it possible to design a variable length code with finite complexity
and an average codeword length equal to the entropy rate? If yes,
what requirement has to be fulfilled?

Solution:

The entropy rate H̄(X) is defined by

H̄(X) = lim
N→∞

H(Xn, · · · , Xn−N+1)

N
= lim

N→∞

HN

N
.

By inserting the expression for the N -th order block entropy, which
we have derived in (3d), we obtain

H̄(X) = lim
N→∞

HN

N

= lim
N→∞

N + 1− 2−N

N

= lim
N→∞

N

N
+ lim

N→∞

1

N
+ lim

N→∞

1

N · 2N
= 1 + 0 + 0

= 1.

The entropy rate H̄(X) for the random process X = {Xn} is equal
to 1 bit per symbol. It should be noted that the entropy rate H̄(X)
for the random process X = {Xn} is equal to the entropy rate H̄(Y)
and the marginal entropy H(Yn) of the iid process Y = {Yn}.
We first consider the joint coding of N symbols. The average code-
word length per symbol is given by

¯̀
N =

HN

N
.

By using the expression for HN that we derived in (3d), we obtain

¯̀
N =

HN

N
=
N + 1− 2−N

N

= 1 +
1− 2−N

N
> 1.

By coding a finite number N of symbols jointly, we cannot develop
a code with an average codeword length per symbol that is equal to
the entropy rate.

Similarly, we cannot achieve the entropy rate by considering a finite
number N of previously coded symbols for a conditional code. If we
consider the N previously coded symbols xn−1 to xn−N , inclusive, we
always have to consider the case that all these symbols are equal to 1.
If all considered previously coded symbols are equal to 1, there are
always two possibilities for the sequence of the corresponding random
variables “Yn−1 · · ·Yn−N−1”, namely “1010 · · · ” and “0101 · · · ”. For

11

this condition, the pmf is equal to { 14 ,
1
2 ,

1
4} and, thus, the average

codeword length is equal to 3
2 . For all other possible conditions,

the pmf is equal to { 12 ,
1
2 , 0} or {0, 12 ,

1
2}, and the average codeword

length is equal to 1. But since the probability for the condition that
all N previously coded symbols are equal to 1 is greater than 0, the
average codeword length for the entire conditional code is always
greater than 1.

By only observing the random variables Xn, it is not possible to
construct a code that achieves the entropy rate. The general problem
is that when considering a finite number N of symbols, all symbols
can be equal to 1, and in this case we cannot know whether the
outcome of the corresponding sequence of coin tosses is “head, tail,
head, tail, · · · ” or “tail, head, tail, head, · · · ”.

If, however, we do not only know the values of the random variables
Xn at the encoder side, but also the values of the random variables
Yn, we can construct a simple code that achieves the entropy rate.
We do not transmit the values of Xn, but the values of Yn using the
simple code in the table below.

yn pYn
(yn) codeword

0 1/2 0
1 1/2 1

At the decoder side, the values xn of the random variables Xn are
obtained based on the transmitted values yn of the random variables
Yn by xn = yn + yn−1. The average codeword length for this code is

¯̀=
∑

yn∈{0,1}

pYn(yn) · `(yn) =
1

2
· 1 +

1

2
· 1 = 1.

It is equal to the entropy rate H̄(X) of the random process X = {Xn}
and the entropy rate H̄(Y) of the random process Y = {Yn}.

12

4. Given is a discrete iid process X with the alphabet A = {a, b, c, d, e, f, g}.
The pmf pX(x) and 6 example codes are listed in the following table.

x pX(x) A B C D E F
a 1/3 1 0 00 01 000 1
b 1/9 0001 10 010 101 001 100
c 1/27 000000 110 0110 111 010 100000
d 1/27 00001 1110 0111 010 100 10000
e 1/27 000001 11110 100 110 111 000000
f 1/9 001 111110 101 100 011 1000
g 1/3 01 111111 11 00 001 10

(a) Develop a Huffman code for the given pmf pX(x), calculate its average
codeword length and its absolute and relative redundancy.

Solution:

The Huffman algorithm can be described as follows: First, we create
a symbol group for each alphabet letter. Then, in each iteration, the
symbol groups are sorted according to their associated probabilities.
Two symbol groups with the smallest probabilities are selected, and
each of the two symbol groups is characterized by a single bit. Then,
the two selected symbol groups are summarized to a new symbol
group. This process is repeated until a single symbol group is ob-
tained. Finally, the constructed binary code tree is converted into a
prefix code using the assigned bits.

The construction of the binary code tree for the given pmf is illus-
trated in the following table.

sorted probabilities
associated symbol groups

assigned bits
step 1 1/3 1/3 1/9 1/9 1/27 1/27 1/27

a g b f c d e
0 1

step 2 1/3 1/3 1/9 1/9 2/27 1/27
a g b f de c

0 1
step 3 1/3 1/3 1/9 1/9 1/9

a g b f cde
0 1

step 4 1/3 1/3 2/9 1/9
a g cdef b

0 1
step 5 1/3 1/3 1/3

a g bcdef
0 1

step 6 2/3 1/3
bcdefg a
0 1

13

Given the developed binary code tree, the codeword for each par-
ticular symbol x ∈ A is constructed by concatenating the bits that
are assigned to the symbol groups containing the particular symbol,
starting with the last iteration (i.e., the largest symbol groups) of
the above described algorithm. The resulting code for the above
illustrated code construction is shown in the table below.

x codeword
a 1
b 011
c 01011
d 010100
e 010101
f 0100
g 00

Note that there are multiple codes for a given pmf that can be con-
structed with the Huffman algorithm. We could sort the probabilities
with the same values in a different order, and we could switch the
assignment of 0 and 1 bits in some or all of the iteration steps.

The average codeword length per symbol is given by

¯̀ =
∑
x∈A

pX(x) · `(x)

=
1

3
+

3

9
+

5

27
+

6

27
+

6

27
+

4

9
+

2

3

=
3

3
+

7

9
+

17

27
=

27 + 21 + 17

27

=
65

27
≈ 2.407.

The entropy of the random variables Xn = X is given by

H(X) = −
∑
x∈A

pX(x) log2 pX(x)

= −2 · 1

3
· log2

(
1

3

)
− 2 · 1

9
· log2

(
1

9

)
− 3 · 1

27
· log2

(
1

27

)
=

2

3
· log2 (3) +

2

9
· log2

(
32
)

+
3

27
· log2

(
33
)

=

(
2

3
+

4

9
+

9

27

)
· log2 3 =

18 + 12 + 9

27
· log2 3

=
13

9
· log2 3 ≈ 2.289.

The absolute redundancy of the Huffman code is

ρ = ¯̀−H(X)

=
65

27
− 13

9
· log2 3

=
13

27
(5− 3 log2 3) ≈ 0.118.

14

The absolute redundancy of the Huffman code is approximately 0.118
bit per symbol.

The relative redundancy of the Huffman code is

ρ

H(X)
=

¯̀−H(X)

H(X)
=

¯̀

H(X)
− 1

=
5

3 log2 3
− 1 ≈ 0.0515.

The relative redundancy of the Huffman code is approximately 5.15%.

15

(b) For all codes A, B, C, D, E, and F, do the following:

• Calculate the average codeword length per symbol;

• Determine whether the code is a singular code;

• Determine whether the code is uniquely decodable;

• Determine whether the code is a prefix code;

• Determine whether the code is an optimal prefix code.

Solution:

The average codeword length per symbol is given by

¯̀=
∑
x∈A

pX(x) · `(x),

where `(x) denote the length of the codeword for the alphabet letter
x. As an example, the average codeword length for code C is

¯̀
C =

2

3
+

2

3
+

3

9
+

3

9
+

3

27
+

4

27
+

4

27
=

4

3
+

6

9
+

11

27
=

36 + 18 + 11

27
=

65

27
.

The average codeword length for all given codes are summarized in
the following table, which also includes a summary of the answers for
the other questions.

x pX(x) A B C D E F
a 1/3 1 0 00 01 000 1
b 1/9 0001 10 010 101 001 100
c 1/27 000000 110 0110 111 010 100000
d 1/27 00001 1110 0111 010 100 10000
e 1/27 000001 11110 100 110 111 000000
f 1/9 001 111110 101 100 011 1000
g 1/3 01 111111 11 00 001 10

¯̀ 65/27 99/27 65/27 63/27 81/27 65/27
singular no no no no yes no
uniq. dec. yes yes yes no no yes
prefix yes yes yes no no no
opt. prefix yes no yes no no no

In the following, the properties of the given codes are briefly analyzed:

• Code A:

– The code is not singular, since a different codeword is as-
signed to each alphabet letter.

– The code is a prefix code, since no codeword represents a
prefix (or the complete bit string) of another codeword.

– Since the code is a prefix code, it is uniquely decodable.

– The code is an optimal prefix code, since it is a prefix code
and has the same average codeword length as a Huffman code
for the given pmf (see 4a).

16

• Code B:

– The code is not singular, since a different codeword is as-
signed to each alphabet letter.

– The code is a prefix code, since no codeword represents a
prefix (or the complete bit string) of another codeword.

– Since the code is a prefix code, it is uniquely decodable.

– The code is not an optimal prefix code, since the average
codeword length is greater than that of the Huffman code
for the given pmf (see 4a).

• Code C:

– The code is not singular, since a different codeword is as-
signed to each alphabet letter.

– The code is a prefix code, since no codeword represents a
prefix (or the complete bit string) of another codeword.

– Since the code is a prefix code, it is uniquely decodable.

– The code is an optimal prefix code, since it is a prefix code
and has the same average codeword length as a Huffman code
for the given pmf (see 4a).

• Code D:

– The code is not singular, since a different codeword is as-
signed to each alphabet letter.

– The code is a not a prefix code, since the codeword “01” for
the letter a represents a prefix of the codeword “010” for the
letter d.

– The code is not uniquely decodable, since the letter sequences
“aaa” and “db” give the same bit string “010101”.

– The code is not an optimal prefix code, since it is no prefix
code.

• Code E:

– The code is singular, since the same codeword (“001”) is
assigned to the alphabet letters b and g.

– Since the code is singular, it is not uniquely decodable, it is
no prefix code, and it is not an optimal prefix code.

• Code F:

– The code is not singular, since a different codeword is as-
signed to each alphabet letter.

– The code is a not a prefix code, since, for example, the code-
word “1” for the letter a represents a prefix of the codeword
“100” for the letter b.

– The code is uniquely decodable, since based on the number
of successive bits equal to 0, the symbol sequence can be
unambiguously determined given a bit sequence. This will
be further explained in (4c).

– The code is not an optimal prefix code, since it is no prefix
code.

17

(c) Briefly describe a process for decoding a symbol sequence given a
finite sequence of K bits that is coded with code F.

Solution:

The decoding process can be described as follows:

(1) Set n = 0.

(2) Read the next bit bn.

(3) Read all bits bn+i until the next bit bn+m equal to 1, excluding
the bit bn+m equal to 1, or, if the remaining bit sequence does
not contain a bit equal to 1, the end of the bit sequence.

(4) Determine the number N0 of read bits equal to 0, excluding the
bit bn and all previously read bits.

(5) Depending on the value of bn, do the following:

• If bn is equal to 0, output (N0 + 1)/6 times the symbol e.

• If bn is equal to 1, do the following:

– If N0 mod 6 == 0, output the symbol a.

– If N0 mod 6 == 1, output the symbol g.

– If N0 mod 6 == 2, output the symbol b.

– If N0 mod 6 == 3, output the symbol f .

– If N0 mod 6 == 4, output the symbol d.

– If N0 mod 6 == 5, output the symbol c.

– If N0 ≥ 6, output bN0/6c times the symbol e.

(6) Set n = n+N0 + 1.

(7) If n < K, go to step (2).

Note that although the considered code K is uniquely decodable, it
is not instantaneously decodable. In general, the next symbol is not
known before the next bit equal to 1 (or the end of the message)
has been detected and the number of successive zero bits can be
arbitrarily large.

18

5. Given is a Bernoulli process X with the alphabet A = {a, b} and the pmf
pX(a) = p, pX(b) = 1−p. Consider the three codes in the following table.

Code A Code B Code C
symbols codeword symbols codeword symbol codeword
aa 1 aa 0001 a 0
ab 01 ab 001 b 1
b 00 ba 01

bb 1

(a) Calculate the average codeword length per symbol for the three codes.

Solution:

The code A is a code that assigns variable-length codewords to variable-
length symbol sequences. Let sk be the symbol sequences to which
the codewords are assigned. The average codeword length per symbol
is the average codeword length per symbol sequence sk divided by
the average number of symbols per symbol sequence sk. With `(sk)
denoting the length of the codeword that is assigned to sk, n(sk) de-
noting the number of symbols in the symbol sequence sk, and pS(sk)
denoting the probability of the symbol sequence sk, we have

¯̀
A =

∑
∀sk pS(sk) `(sk)∑
∀sk pS(sk)n(sk)

.

Note that the probability p(sk) is given by

pS(sk) = pna(sk) · (1− p)nb(sk),

where na(sk) and nb(sk) represent the number of symbols equal to
a and b, respectively, in the symbol sequence sk. Hence, the average
codeword length per symbol for the code A is

¯̀
A =

pS(aa) · `(aa) + pS(ab) · `(ab) + pS(b) · `(b)
pS(aa) · n(aa) + pS(ab) · n(ab) + pS(b) · n(b)

=
p2 · 1 + p(1− p) · 2 + (1− p) · 2
p2 · 2 + p(1− p) · 2 + (1− p) · 1

=
p2 + 2p− 2p2 + 2− 2p

2p2 + 2p− 2p2 + 1− p

=
2− p2

1 + p
.

The code B is a code that assigns a codeword to each possible se-
quence of two symbols. Hence, the average codeword length per
symbol is equal to the average codeword length per symbol sequence

19

divided by 2,

¯̀
B =

1

2

∑
∀sk

pS(sk) `(sk)

=
1

2
(pS(aa)`(aa) + pS(ab)`(ab) + pS(ba)`(ba) + pS(bb)`(bb))

=
1

2

(
p2 · 4 + p(1− p) · 3 + p(1− p) · 2 + (1− p)2 · 1

)
=

1

2

(
4p2 + 3p− 3p2 + 2p− 2p2 + 1− 2p+ p2

)
=

1 + 3p

2
.

The code C assign a codeword of length 1 to both alphabet letters.
Hence, its average codeword length per symbol is

¯̀
C = 1.

20

(b) For which probabilities p is the code A more efficient than code B?

Solution:

The code A is more efficient than code B if its average codeword
length is less than the average codeword length of code B,

¯̀
A < ¯̀

B

2− p2

1 + p
<

1 + 3p

2

4− 2p2 < 1 + 3p+ p+ 3p2

−5p2 − 4p+ 3 < 0

p2 +
4

5
p− 3

5
> 0.

The quadratic function y = p + 4
5p −

3
5 is parabola, which opens

upward (since the term p2 is multiplied by a positive number). Hence,
y > 0 if p < p1 or p > p2, where p1 and p2 are the roots of 0 =
p2 + 4

5p−
3
5 with p1 ≤ p2. The roots p1 and p2 are given by

p1/2 = −2

5
∓

√(
2

5

)
+

3

5

= −2

5
∓
√

4 + 15

25

=
1

5

(
∓
√

19− 2
)
.

Hence, we have

p1 =
1

5

(
−
√

19− 2
)
≈ −1.2718,

p2 =
1

5

(√
19− 2

)
≈ 0.4718.

Consequently, the code A is more efficient than code B if

1

5

(√
19− 2

)
< p ≤ 1,

or, approximately, if
0.4718 < p ≤ 1.

21

(c) For which probabilities p is the simple code C more efficient than
both code A and code B?

Solution:

The first condition is

¯̀
C < ¯̀

A

1 <
2− p2

1 + p

1 + p < 2− p2

p2 + p− 1 < 0.

The quadratic function y = p+p−1 is parabola, which opens upward.
Hence, y < 0 if p1 < p < p2, where p1 and p2 are the roots of
0 = p2 + p− 1 with p1 ≤ p2. The roots p1 and p2 are given by

p1/2 = −1

2
∓

√(
1

2

)
+ 1

= −1

2
∓
√

1 + 4

4

=
1

2

(
∓
√

5− 1
)
.

Hence, we have

p1 =
1

2

(
−
√

5− 1
)
≈ −1.6180,

p2 =
1

2

(√
5− 1

)
≈ 0.6180.

Consequently, the code C is more efficient than code A if

0 ≤ p < 1

2

(√
5− 1

)
.

The second condition is

¯̀
C < ¯̀

B

1 <
1 + 3p

2
2 < 1 + 3p

1 < 3p

p >
1

3
.

Hence, the code C is more efficient than code B if

1

3
< p ≤ 1.

22

By combining both derived conditions, we obtain that the simple
code C is more efficient than both code A and code B if

1

3
< p <

1

2

(√
5− 1

)
,

or, approximately, if

0.3333 < p < 0.6180.

For 0 ≤ p < 1
3 , code B is more efficient than code A and code C, and

for 1
2

(√
5− 1

)
< p ≤ 1, code A is more efficient than code B and

code C. This is illustrated in Fig. 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

a
v
e
ra

g
e
 c

o
d

e
w

o
rd

 l
e
n
g

th
 p

e
r

sy
m

b
o
l

probability p

Figure 1: Average codeword length for codes A, B, and C as function of the
probability p in comparison to the binary entropy function Hb(p).

23

6. Given is a Bernoulli process B = {Bn} with the alphabet AB = {0, 1},
the pmf pB(0) = p, pB(1) = 1 − p, and 0 ≤ p < 1. Consider the random
variable X that specifies the number of random variables Bn that have to
be observed to get exactly one “1”.

Calculate the entropies H(Bn) and H(X).

For which value of p, with 0 < p < 1, is H(X) four times as large as
H(Bn)?

Hint: ∀|a|<1,

∞∑
k=0

ak =
1

1− a
, ∀|a|<1,

∞∑
k=0

k ak =
a

(1− a)2
.

Solution:

The entropy for the Bernoulli process B is

HB(p) = H(Bn) = −pB(0) log2 pB(0)− pB(1) log2 pB(1)

= −p log2 p− (1− p) log2(1− p).

For calculating the entropy of the random variableX, we first determine its
pmf pX(x). The alphabet for the random variable X is AX = {1, 2, · · · }.
We may see a “1” in the first observation of Bn (for the special case p = 0,
we always see a “1” in the first observation), or in the second observation of
Bn, etc. It is, however, also possible that we have to look at an arbitrarily
large number of random variables Bn before we see a “1”.

The probability mass pX(k) is the probability that X = k and, hence,
the probability that we see a symbol string “BnBn+1 · · ·Bn+k−2Bn+k−1”
equal to “00 · · · 01”,

pX(k) = P (X = k) = P ({Bn = 0} ∩ {Bn+1 = 0} ∩ · · ·
∩ {Bn+k−2 = 0} ∩ {Bn+k−1 = 1}).

Since the random variables Bn are independent (a Bernoulli process is a
binary iid process), we have

pX(k) = P (Bn+k−1 = 1) ·
k−2∏
i=0

P (Bn+i = 0) = pB(1) · pB(0)k−1

= (1− p) pk−1.

The pmf for the random variable X is a geometric pmf. Its entropy is

24

given by

HX(p) = H(X) = −
∞∑
i=1

pX(i) log2 pX(i)

= −
∞∑
i=1

(1− p)pi−1 log2

(
(1− p)pi−1

)
= −

∞∑
k=0

(1− p)pk log2

(
(1− p)pk

)
= −

∞∑
k=0

(1− p)pk (log2(1− p) + k log2 p)

= −
∞∑
k=0

(
(1− p) log2(1− p)

)
pk −

(
(1− p) log2(1− p)

)
k pk

= −(1− p) log2(1− p)

(∞∑
k=0

pk

)
− (1− p) log2 p

(∞∑
k=0

kpk

)
.

For the case we are considering, 0 ≤ p < 1, the series in the above equation
converge and we can write

HX(p) = −
(
(1− p) log2(1− p)

) 1

1− p
−
(
(1− p) log2 p

) p

(1− p)2

= − log2(1− p)− p

1− p
log2 p.

By reformulating the above expression, we obtain

HX(p) =
1

1− p

(
− (1− p) log2(1− p)− p log2 p

)
=

1

1− p
HB(p).

We now determine the value of p, with 0 < p < 1, for which HX(p) is four
times as large as HB(p),

HX(p) = 4 HB(p)

1

1− p
HB(p) = 4 HB(p)

For 0 < p < 1, HB(p) is greater than 0. Hence, we can divide the above
equation by HB(p) and obtain

1

4
= 1− p

p =
3

4
= 0.75.

For p = 0.75, the entropy of the random variable X is four times as large
as the entropy of the Bernoulli process.

25

7. Proof the chain rule for the joint entropy,

H(X,Y) = H(X) +H(Y |X).

Solution:

With AX and AY being the alphabets of the random variables X and Y ,
respectively, the joint entropy H(X,Y) is defined as

H(X,Y) = −
∑

x∈AX

∑
y∈AY

pXY (x, y) log2 pXY (x, y).

Using the chain rule pXY (x, y) = pX(x)pY |X(y|x) for the joint probability
masses, we obtain

H(X,Y) = −
∑

x∈AX

∑
y∈AY

pXY (x, y) log2 pX(x)

−
∑

x∈AX

∑
y∈AY

pXY (x, y) log2 pY |X(y|x)

= −
∑

x∈AX

 ∑
y∈AY

pXY (x, y)

 log2 pX(x) +H(Y |X)

= −
∑

x∈AX

pX(x) log2 pX(x) +H(Y |X)

= H(X) +H(Y |X).

26

8. Investigate the entropy of a function of a random variable X. Let X be
a discrete random variable with the alphabet AX = {0, 1, 2, 3, 4} and the
binomial pmf

pX(x) =

 1/16 : x = 0 ∨ x = 4
1/4 : x = 1 ∨ x = 3
3/8 : x = 2

.

(a) Calculate the entropy H(X).

Solution:

Inserting the given probability masses into the definition of entropy
yields

H(X) = −2 · 1

16
· log2

(
1

16

)
− 2 · 1

4
· log2

(
1

4

)
− 1 · 3

8
· log2

(
3

8

)
= 2 · 1

16
· 4 + 2 · 1

4
· 2 + 1 · 3

8
· (3− log2 3)

=
1

2
+ 1 +

9

8
− 3

8
log2 3 =

21

8
− 3

8
log2 3

=
3

8
(7− log2 3) ≈ 2.0306.

27

(b) Consider the functions g1(x) = x2 and g2(x) = (x− 2)2.

Calculate the entropies H(g1(X)) and H(g2(X)).

Solution:

Let Y be the random variable Y = g(X). The alphabet of Y is given
by the alphabet of the random variable X and the function g1(x),

AY =
⋃

x∈AX

g1(x) = {0, 1, 4, 9, 16}.

Similarly, let Z be the random variable Z = g2(X). The alphabet of
Z is given by

AZ =
⋃

x∈AX

g2(x) = {0, 1, 4}.

The pmf for Y is given by

pY (y) =
∑

x∈AX : y=g1(x)

pX(x) =

 1/16 : y = 0 ∨ y = 16
1/4 : y = 1 ∨ y = 9
3/8 : y = 4

.

Similarly, the pmf for Z is given by

pZ(z) =
∑

x∈AX : z=g2(x)

pX(x) =

 3/8 : z = 0
1/2 : z = 1
1/8 : z = 2

.

Using the determined pmfs for calculating the entropies, we obtain

H(g1(X)) = H(Y) = −
∑

y∈AY

pY (y) log2 pY (y)

= −2 · 1

16
· log2

(
1

16

)
− 2 · 1

4
· log2

(
1

4

)
− 1 · 3

8
· log2

(
3

8

)
= 2 · 1

16
· 4 + 2 · 1

4
· 2 + 1 · 3

8
· (3− log2 3)

=
1

2
+ 1 +

9

8
− 3

8
log2 3 =

21

8
− 3

8
log2 3

=
3

8
(7− log2 3)

= H(X),

and

H(g2(X)) = H(Z) = −
∑

z∈AZ

pZ(z) log2 pZ(z)

= −3

8
· log2

(
3

8

)
− 1

2
· log2

(
1

2

)
− 1

8
· log2

(
1

8

)
=

3

8
· (3− log2 3) +

1

2
+

3

8

=
1

8
(16− 3 log2 3)

= H(X)− 5

8
.

28

(c) Proof that the entropy H(g(X)) of a function g(x) of a random vari-
able X is not greater than the entropy of the random variable X,

H(g(X)) ≤ H(X)

Determine the condition under which equality is achieved.

Solution:

Using the chain rule, H(X,Y) = H(X) +H(Y |X), we can write

H(X, g(X)) = H(g(X), X)

H(X) +H(g(X)|X) = H(g(X)) +H(X|g(X))

H(g(X)) = H(X) +H(g(X)|X)−H(X|g(X)).

Since the random variable g(X) is a function of the random variable
X, the value of g(X) is known if the value of X is known. Hence,
the conditional probability mass function pg(X)|X(y|x) is given by

pg(X)|X(y|x) =

{
1 : y = g(x)
0 : y 6= g(x)

.

Let AX denote the alphabet of the random variables X with ∀x ∈
AX , pX(x) > 0. Similarly, let AY denote the alphabet of the ran-
dom variable Y = g(X) with ∀y ∈ AY , pY (y) > 0. The conditional
entropy H(g(X)|X) is given by

H(g(X)|X) = −
∑

x∈AX

∑
y∈AY

pX,g(X)(x, y) log2 pg(X)|X(y|x)

= −
∑

x∈AX

pX(x)

 ∑
y∈AY

pg(X)|X(y|x) log2 pg(X)|X(y|x)

.
The terms with pg(X)|X(y|x) = 0 do not contribute to the sum in
parenthesis and can be ignored. We obtain,

H(g(X)|X) = −
∑

x∈AX

pX(x) pg(X)|X(g(x)|x) log2 pg(X)|X(g(x)|x)

= −
(
1 · log2 1

)
·
∑
∀x

pX(x) = − log2 1

= 0.

Hence, the conditional entropy H(g(X)|X) is always equal to 0, and
we obtain for H(g(X)),

H(g(X)) = H(X)−H(X|g(X)).

Since the entropy is always greater than or equal to 0, we have proved
that

H(g(X)) ≤ H(X).

If and only if g(X) is an injective function for all letters of the alpha-
bet AX , i.e., if ∀a, b ∈ AX , a 6= b implies g(a) 6= g(b), we can define

29

an inverse function h(y), so that h(g(x)) = x, ∀x ∈ AX . In this case,
we obtain

H(X|g(X)) = H(h(g(X))|g(X)) = 0,

Consequently, if g(X) is an injective function for all letters of the
alphabet AY , the entropy H(g(X)) is equal to the entropy H(X),

H(g(X)) = H(X).

If g(X) is not an injective function for all letters of the alphabet AY ,
i.e., if there are two alphabet letters a and b 6= a, with g(a) = g(b),
the entropy H(g(X)) is less than the entropy H(X),

H(g(X)) < H(X).

30

