
Exercises with solutions (Set C)

9. Given is a Bernoulli process X = {Xn} with the alphabet A = {a, b} and
the pmf pX(a) = 1/4 and pX(b) = 3/4.

(a) Consider Elias coding and derive the codeword for the symbol se-
quence “abba” using the iterative encoding procedure.

Solution:

The iterative encoding can be summarized as follows:

• Derive the cumulative probability mass function cX excluding
the current symbol

cX(a) = 0

cX(b) = pX(a) =
1

4

• Initialize the interval width and the lower interval boundary

W0 = 1

L0 = 0

• Update the interval width and lower interval boundary for the
first symbol “a”

W1 = W0 · pX(a) = 1 · 1

4
=

1

4
L1 = L0 +W0 · cX(a) = 0 + 1 · 0 = 0

• Update the interval width and lower interval boundary for the
second symbol “b”

W2 = W1 · pX(b) =
1

4
· 3

4
=

3

16

L2 = L1 +W1 · cX(b) = 0 +
1

4
· 1

4
=

1

16

• Update the interval width and lower interval boundary for the
third symbol “b”

W3 = W2 · pX(b) =
3

16
· 3

4
=

9

64

L3 = L2 +W2 · cX(b) =
1

16
+

3

16
· 1

4
=

7

64

• Update the interval width and lower interval boundary for the
fourth and last symbol “a”

W = W4 = W3 · pX(a) =
9

64
· 1

4
=

9

256

L = L4 = L3 +W3 · cX(a) =
7

64
+

9

64
· 0 =

7

64

1

• Determine the number of bits K for the Elias codeword based
on the derived interval width

K = d− log2W e =

⌈
log2

256

9

⌉
= log2

256

8
= log2 32 = 5

• Determine the value of V = dL · 2Ke

V =
⌈
L · 2K

⌉
=

⌈
7

64
· 25
⌉

=

⌈
7

2
· 25
⌉

= 4

• Determine the value of v = V · 2−K = dL · 2Ke · 2−K and write
it as binary fraction with K digits after the binary point

v =
⌈
L · 2K

⌉
2−K = 4 · 2−5 = 4 · 1

32
=

1

8
= 0.00100b

• Determine the Elias codeword by using the first K bits after the
binary point of the value v (this is equivalent to using a binary
representation of the value V with K bits)

codeword(”abba”) = ”00100”

2

(b) Develop the complete code for an Elias coding of 3 symbols (i.e.,
determine the codewords for all symbol sequences that consist of 3
symbols).

Determine the average codeword length per symbol and compare it
to the entropy rate and the average codeword length per symbol for
a joint Huffman code for sequences of 3 symbols.

Is the Elias code more efficient than the Huffman code for the same
number of jointly coded symbols?

Solution:

For developing the complete Elias code, we could apply the itera-
tive encoding procedure as done in (9a) for each of the 8 symbol
sequences. But since we want to develop the complete code, this
can be simplified. We can sort the symbol sequences s = {s0, s1, s2}
in increasing order of the associated lower interval boundaries. The
corresponding sorting index i could be derived by

i(s) =

2∑
k=0

z(sk) · 22−k with z(s) =

{
0 : s = a
1 : s = b

.

Then, the interval width W for a symbol sequence si = {s0, s1, s2}
is given by

W (si) =

2∏
k=0

pX(sk),

and the lower interval boundaries are obtained by

L(si) =

{
0 : i = 0
L(si−1) +W (si−1) : 0 < i < 8

.

The development of the Elias code is illustrated in the following table.

i si W (si) L(si) − log2 W K L · 2K dL · 2Ke codeword

0 aaa 1/64 0/64 6.00 6 0 0 000000
1 aab 3/64 1/64 4.42 5 1/2 1 00001
2 aba 3/64 4/64 4.42 5 2 2 00010
3 abb 9/64 7/64 2.83 3 7/8 1 001
4 baa 3/64 16/64 4.42 5 8 8 01000
5 bab 9/64 19/64 2.83 3 19/8 3 011
6 bba 9/64 28/64 2.83 3 7/2 4 100
7 bbb 27/64 37/64 1.25 2 37/16 3 11

With pX(s) = pX(s0)pX(s1)pX(s2) being the joint pmf for symbol

3

sequences of 3 symbols, the average codeword length per symbol is

¯̀
E =

1

3

7∑
i=0

pX(si) `E(si) =
1

3

7∑
i=0

W (si) `E(si)

=
1

3

(
1

64
· 6 +

3

64
· (5 + 5 + 5) +

9

64
· (3 + 3 + 3) +

27

64
· 2
)

=
1

192
(6 + 45 + 81 + 54) =

186

192

=
31

32
= 0.96875

An example for a joint Huffman code is given in the following table

i si pX(si) codeword
0 aaa 1/64 00000
1 aab 3/64 00001
2 aba 3/64 00010
3 abb 9/64 001
4 baa 3/64 00011
5 bab 9/64 010
6 bba 9/64 011
7 bbb 27/64 1

The average codeword length for the joint Huffman code is

¯̀
H =

1

3

7∑
i=0

pX(si) `H(si)

=
1

3

(
1

64
· 5 +

3

64
· (5 + 5 + 5) +

9

64
· (3 + 3 + 3) +

27

64
· 1
)

=
1

192
(5 + 45 + 81 + 27) =

158

192

=
79

96
≈ 0.8229

The entropy rate of the given source is

H̄(X) = H(X) = −pX(a) log2 pX(a)− pX(b) log2 pX(b)

= −1

4
log2

1

4
− 3

4
log2

3

4

=
1

2
+

3

4
(2− log2 3)

=
1

4
(8− 3 log2 3) ≈ 0.81128

4

The absolute redundancy for the Elias and Huffman code are

ρE = ¯̀
E − H̄(X) =

31

32
− 1

4
(8− 3 log2 3)

=
1

32
(24 log2 3− 33) ≈ 0.15747

ρH = ¯̀
H − H̄(X) =

79

96
− 1

4
(8− 3 log2 3)

=
1

96
(72 log2 3− 113) ≈ 0.01164

For the relative redundancies, we obtain

ρ∗E =
ρE

H̄(X)
=

24 log2 3− 33

8 · (8− 3 log2 3)
≈ 19.41%

ρ∗H =
ρH
H̄(X)

=
72 log2 3− 113

24 · (8− 3 log2 3)
≈ 1.43%

The Huffman code is more efficient than the Elias code.

5

(c) Decode the 3-symbol sequence {s0, s1, s2} represented by the bit
string “100” using the iterative Elias decoding algorithm.

Solution:

For decoding a symbol of an M -symbol alphabet, we have to calculate
M − 1 thresholds (lower interval boundaries) and compare the value
v given by the bit string with these threshold. Here, we consider a
binary source and, hence, we only have to calculate a single threshold,
which is the lower interval boundary of the second (upper) interval.

The iterative decoding can be summarized as follows:

• Determine the value v that is represented by the codeword “100”

v = 0.100b = 2−1 =
1

2

• Initialize the interval width and the lower interval boundary

W0 = 1 and L0 = 0

• Calculate the threshold T0 (i.e., the lower interval boundary for
the symbol b) for the first symbol

T0 = L1(b) = L0 +W0 · cX(b) = 0 + 1 · 1

4
=

1

4

Since v ≥ T0, the first symbol s0 is equal to “b”.

• Update the interval with and lower interval boundary for the
decoded symbol

W1 = W0 · pX(s0) = 1 · 3

4
=

3

4

L1 = L0 +W0 · cX(s0) = 0 + 1 · 1

4
=

1

4

• Calculate the threshold T1 (i.e., the lower interval boundary for
the symbol b) for the second symbol

T1 = L2(b) = L1 +W1 · cX(b) =
1

4
+

3

4
· 1

4
=

7

16

Since v ≥ T1, the second symbol s1 is equal to “b”.

• Update the interval with and lower interval boundary for the
decoded symbol

W2 = W1 · pX(s1) =
3

4
· 3

4
=

9

16

L2 = L1 +W1 · cX(s1) =
1

4
+

3

4
· 1

4
=

7

16

• Calculate the threshold T2 (i.e., the lower interval boundary for
the symbol b) for the third symbol

T2 = L3(b) = L2 +W2 · cX(b) =
7

16
+

9

16
· 1

4
=

37

64

Since v < T2, the third symbol s2 is equal to “a”.

The decoded symbol sequence {s0, s1, s2} is equal to “bba”.

6

(d) Consider the case in which the developed Elias code is used for cod-
ing multiple 3-symbol sequences. The codewords for the 3-symbol
sequences are concatenated. Given is a bit string “10011100”.

Decode the symbol sequence using the developed code table.

Decode the first three symbols (i.e., the first 3-symbol sequence) using
the iterative decoding algorithm.

What do you observe?

Solution:

The Elias code represents a prefix code and can be decoded by com-
paring the bits inside the bit string with the codewords starting from
the beginning of the bit string.

It is obvious that the bit string “10011100” consists of the codewords
“100”, “11”, and “100”. Hence, it represents the symbol sequence
“bbabbbbba” (“bba”, “bbb”, “bba”).

Using the iterative decoding procedure, the following sequence for
the first 3 symbols is decoded.

• Determine the value v that is represented by the given bit string
“10011100”

v = 0.10011100b = 2−1+2−4+2−5+2−6 =
1

2
+

1

16
+

1

32
+

1

64
=

39

64

Note that the decoder cannot know the border between the code-
words, so that the complete bit string has to used for determining
the value v.

• Initialize the interval width and the lower interval boundary

W0 = 1

L0 = 0

• Calculate the threshold T0 (i.e., the lower interval boundary for
the symbol b) for the first symbol

T0 = L1(b) = L0 +W0 · cX(b) = 0 + 1 · 1

4
=

1

4

Since v ≥ T0, the first symbol s0 is equal to “b”.

• Update the interval with and lower interval boundary for the
decoded symbol

W1 = W0 · pX(s0) = 1 · 3

4
=

3

4

L1 = L0 +W0 · cX(s0) = 0 + 1 · 1

4
=

1

4

• Calculate the threshold T1 (i.e., the lower interval boundary for
the symbol b) for the second symbol

T1 = L2(b) = L1 +W1 · cX(b) =
1

4
+

3

4
· 1

4
=

7

16

Since v ≥ T1, the second symbol s1 is equal to “b”.

7

• Update the interval with and lower interval boundary for the
decoded symbol

W2 = W1 · pX(s1) =
3

4
· 3

4
=

9

16

L2 = L1 +W1 · cX(s1) =
1

4
+

3

4
· 1

4
=

7

16

• Calculate the threshold T2 (i.e., the lower interval boundary for
the symbol b) for the third symbol

T2 = L3(b) = L2 +W2 · cX(b) =
7

16
+

9

16
· 1

4
=

37

64

Since v ≥ T2, the third symbol s2 is equal to “b”.

The first 3 symbols of the decoded symbol sequence {s0, s1, s2, · · · }
are equal to “bbb”. A correct decoding of the symbol sequence is not
possible using the iterative decoding procedure.

If multiple symbol sequences have to be decoded, an Elias code with
K = d− log2W e bits for the codewords is not uniquely decodable
using the iterative decoding procedure.

8

(e) How many bits have to be used for a codeword in order to make an
Elias code uniquely decodable using the iterative decoding algorithm
for a sequence of codewords.

Derive a lower and upper bound for the average codeword length per
symbol for the corresponding Elias code if a codeword is generated
for a sequences of N symbols.

Solution:

For guaranteeing unique decodability for a sequence of codewords
(using the iterative algorithm), we have to ensure than each pos-
sible value of v that may be obtained by using a concatenation of
codewords “cncn+1 · · · ” lies inside the interval [Ln, Ln +Wn).

By using the assignment vn = dLn ·2Ke·2−K , the value of v obtained
by any concatenation of codewords cannot become smaller than the
lower interval, independently of the selected number K of bits. How-
ever, for certain values of K, the value v may become larger than or
equal to the upper interval boundary Ln +Wn.

The worst case is obtained if all bits following the codeword for the
first symbol sequence are equal to 1,

v∗ = vn +

∞∑
i=K+1

2−i

To ensure unique decodability, we have to ensure that v∗ is less than
the upper interval boundary

v∗ = vn +

∞∑
i=K+1

2−i < Ln +Wn

The sum in the above inequality is always less than 2−K and, hence,
the inequality is always fulfilled if

vn + 2−K ≤ Ln +Wn

Inserting the expression for vn gives

dLn · 2Ke · 2−K + 2−K ≤ Ln +Wn

Using dxe < x + 1, we can state that the above inequality is always
fulfilled if

(Ln · 2K + 1) · 2−K + 2−K ≤ Ln +Wn

Ln + 2−K + 2−K ≤ Ln +Wn

21−K ≤ Wn

1−K ≤ log2Wn

K ≥ 1− log2Wn

Hence, the smallest number of bits for guaranteeing unique decod-
ability using the iterative decoding algorithm is

K = d− log2Wne+ 1,

9

which is 1 bit more than we require for uniquely decoding a single
symbol sequence using the Elias code.

The average codeword length per symbol for the considered Elias
code is

¯̀
E1 =

1

N
E {dlog2Wne+ 1} =

1

N
E
{
dlog2 pSN (SN)e+ 1

}
,

where pSN is the N -th order joint pmf.

Using dxe ≥ x and dxe < x+ 1, we obtain

1

N
E
{

log2 pSN (SN) + 1
}
≤ ¯̀

E1 <
1

N
E
{

log2 pSN (SN) + 2
}

HN (SN)

N
+

1

N
≤ ¯̀

E1 <
HN (SN)

N
+

2

N

where HN (SN) denotes the block entropy for N symbols.

10

10. Given is a stationary discrete iid process X = {Xn} with the symbol
alphabet A = {’M’, ’I’, ’S’, ’P’} and the pmf

pX(x) =

0.1 : x = ’M’
0.3 : x = ’I’
0.4 : x = ’S’
0.2 : x = ’P’

Consider binary arithmetic coding of the given source.

(a) Use a fixed-length code for binarizing the given source X.

Verify on the given example that binarization does not have any
impact on the coding efficiency (assuming a successive coding that
achieves the entropy rate).

What binarization schemes can be used in the context of binary arith-
metic coding?

Show that binarization does not change the lower bound for the av-
erage codeword length per symbol.

Solution:

The following table lists a possible fixed-length binarization scheme
and the associated pmfs.

x pX(x) b0 b1 pB0B1
(b0, b1) pB0

(b0) pB1|B0
(b1|b0)

’M’ 1/10 0 0 1/10 1/4
’I’ 3/10 0 1 3/10

4/10
3/4

’S’ 4/10 1 0 4/10 2/3
’P’ 2/10 1 1 2/10

6/10
1/3

The entropy rate of the given iid process is

H̄(X) = H(Xn) = − 1

10
log2

1

10
− 2

10
log2

2

10
− 3

10
log2

3

10
− 4

10
log2

4

10

= log2 10−
(

1

10
· 0 +

2

10
· 1 +

3

10
· log2 3 +

4

10
· 2
)

= log2 10− 1− 3

10
log2 3 ≈ 1.84644

For the binary process, the even random variables B2n are indepen-
dent of the other random variables; the odd random variables B2n+1

depends only on the directly preceding random variables B2n. Hence,
the entropy rate is

H̄(B) =
1

2
H(B2n, B2n+1) =

1

2
(H(B2n) +H(B2n+1|B2n))

For the entropy H(B2n), we obtain

H(B2n) = − 4

10
log2

4

10
− 6

10
log2

6

10

= log2 10−
(

4

10
· 2 +

6

10
· (1 + log2 3)

)
= log2 10− 7

5
− 3

5
log2 3 ≈ 1.13401

11

For the conditional entropy, we obtain

H(B2n+1|B2n) = − 1

10
log2

1

4
− 3

10
log2

3

4
− 4

10
log2

2

3
− 2

10
log2

1

3

=
2

10
+

6

10
− 3

10
log2 3 +

4

10
log2 3− 4

10
+

2

10
log2 3

=
2

5
+

3

10
log2 3 ≈ 0.79396

Hence, the entropy rate H̄(B) is

H̄(B) =
1

2
(H(B2n) +H(B2n+1|B2n))

=
1

2

(
log2 10 +

−7 + 2

5
+

3− 6

10
log2 3

)
=

1

2

(
log2 10− 1− 3

10
log2 3

)
=

1

2
H̄(X)

Since each symbol xn is mapped onto two binary symbols b2n and
b2n+1 with the chosen binarization scheme (xn 7→ {b2n, b2n+1}), this
verifies that the chosen binarization does not have any impact on the
coding efficiency.

When using binary arithmetic coding, the input sequence of symbols
is first mapped to a sequence of binary symbols and then the sequence
of binary symbols is arithmetically coded. For obtaining a uniquely
decodable code, both steps have to be uniquely decodable. Hence,
the binarization scheme has to represent a uniquely decodable code.

For investigating the impact of binarization we consider the entropy
of a particular random variable X given any condition C. With-
out loss of generality we assume that a symbol x is mapped to at
maximum N binary symbols. The conditional entropy for a random
variable X given the condition C is

H(X|C) = H(B0, B1, · · · , BN−1|C)
= H(B0|C) +H(B1|B0, C) +H(B2|B0, B1, C) +

· · ·+H(BN−1|B0, B1, · · · , BN−2, C)

Hence, mapping the input symbols to binary symbols does not have
any impact on the coding efficiency presuming that the correct con-
ditional pmfs are used for the following coding process.

Note that depending on the actually chosen binarization scheme, not
all sequences of binary symbols are possible. The probability masses
for the impossible sequences of binary symbols are equal to 0 and do
not contribute to the conditional entropies.

12

(b) For arithmetic coding, the probability masses have to be represented
with finite precision. Round the pmfs for the binary symbols to a
precision of V = 4 bit.

What conditions need to be fulfilled for the rounded version of a pmf?
Are these conditions fulfilled for the example?

Investigate the impact on the average codeword length per symbol
of the given source X (assuming that the following arithmetic coding
process does not have any negative impact on the coding efficiency).

Solution:

Let p∗ denote the rounded version of a pmf p. The rounded version
of a pmf, with a precision of V bit, can be obtained by

p∗(x) = bp(x) · 2V + 0.5c · 2−V

The pmfs for the binary symbols and their rounded versions are sum-
marized in the following table.

b pB0
(b) p∗B0

(b)

0 2/5 6/16=3/8
1 3/5 10/16=5/8

b pB1|B0=0(b) p∗B1|B0=0(b) pB1|B0=1(b) p∗B1|B0=1(b)

0 1/4 4/16=1/4 2/3 11/16
1 3/4 12/16=3/4 1/3 5/16

The following two conditions have to be fulfilled:

• A non-zero probability mass must not be rounded to zero

∀x:p(x)>0 p∗(x) > 0

• The sum over all rounded probability masses must not be greater
than 1 ∑

x

p∗(x) ≤ 1

Both conditions are fulfilled for the rounded pmfs of the example.

The increase in average codeword length per binary symbol for each
of the binary pmfs p is given by

∆¯̀ = −
1∑

k=0

p(k)
(

log2 p(k)− log2 p
∗(k)

)
=

1∑
k=0

p(k) log2

p∗(k)

p(k)

13

Hence, we obtain

∆¯̀
B0

=
2

5
log2

16

15
+

3

5
log2

24

25

=
1

5
(17 + log2 3− 8 log2 5) ≈ 0.0019075

∆¯̀
B1|B0=0 =

1

4
log2 1 +

3

4
log2 1 = 0

∆¯̀
B1|B0=1 =

2

3
log2

32

33
+

1

3
log2

16

15

=
1

3
(14− 3 log2 3− log2 5− 2 log2 11) ≈ 0.0014404

The increase in average codeword length for a random variable X is
given by

∆¯̀
X = ∆¯̀

B0
+ pB0

(0) ·∆¯̀
B1|B0=0 + pB0

(1) ·∆¯̀
B1|B0=1

=
1

5
(31− 2 log2 3− 9 log2 5− 2 log2 11) ≈ 0.0027718

The increase in average codeword length increases by about 0.0028
bit per symbol X due to the rounding of the pmfs to 4 bit. This
corresponds to an increase of approximately 0.15% relative to the
entropy rate.

14

(c) For arithmetic coding, the interval width has to be represented with
finite precision.

Show that, for a coding of N symbols, the corresponding increase
in average codeword length per arithmetically coded symbol is less
than 1/N + log2(1 + 21−U) bits, if U is the number of bits used for
representing the interval width.

Determine the minimum precision U that is required to guarantee
that the coding efficiency loss due to rounding the interval width is
less than 0.1% when more than 10000 symbols X are transmitted.

Solution:

For analyzing the impact of representing the interval boundaries with
finite precision, we compare the codeword length `A of arithmetic
coding with that of Elias coding `E . The average increase in code-
word length per symbol ∆` is given by

∆` = `A − `E = d− log2WNe − d− log2 pS(N)(s(N))e

By applying the inequalities dxe ≥ x and dxe < x+ 1, we obtain

∆` < 1− log2WN − d− log2 pS(N)(s(N))e
< 1− log2WN + log2 pS(N)(s(N))

= 1 + log2

pS(N)(s(N))

WN

= 1 + log2

∏N−1
k=0 p(sk)∏N−1
k=0

Wk+1

Wk

= 1 +

N−1∑
k=0

log2

Wk · p(sk)

Wk+1

It should be noted that the same expression is obtained if we com-
pare the codeword length for the arithmetic code with the optimal
codeword length “− log2 pS(N)(s(N))”.

It should also be noted that we considered the initial interval width
W0 to be equal to 1. Often the initial interval width is actually set
equal to W0 = (2U−1) ·2−U = 1−2−U , in order not to have a special
case for the first symbol (A0 would otherwise exceed the range of U
bits). Then the right side of the above inequality would additionally
include the term log2(1− 2−U). We will ignore this aspect.

In the following, we will derive an upper bound for Wk·p(sk)
Wk+1

, and

thus find an upper bound for ∆` and the average codeword length
per symbol.

Since we want to analyze the effect of the quantization of the interval
width, we assume that the probability masses p(x) are accurately
represented by V bit integers pV (x) according to

p(x) = pV (x) · 2−V

In each iteration step, the interval width Wn is represented by an U
bit integer value An,

Wn = An · 2−zn ,

15

where zn is an integer shift parameter. For maximizing the precision
of this representation, zn is chosen in a way that

2U−1 ≤ An < 2U ,

i.e., so that the most significant bit of the binary representation of
An is equal to 1.

In order to guarantee unique decodability, we have to ensure that
the intervals do not overlap. This condition is always fulfilled if the
rounded intervals are less than or equal to the non-rounded intervals,
i.e, we have to ensure that

Wn+1 ≤ Wn · p(sn)

An+1 · 2−zn+1 ≤ An · 2−zn · pV (sn) · 2−V

The terms 2−zn and 2−V represent bit shift parameters. The value
of An+1 has to be derived from the product An · pV (sn).

Let xn denote the number of leading zeros in the (U + V)-bit repre-
sentation of the product An ·pV (sn). The value of xn is in the interval
[0;V]. In practice, the value of xn can be determined by comparing
the product with the sequence of thresholds 2U+V−1, 2U+V−2, etc.
If the product is less than 2U+V−x, but greater than or equal to
2U+V−x−1, the number of leading zeros in the (U + V)-bit represen-
tation of An · pV (sn) is equal to xn = x. The value of xn can also be
expressed as

xn = U + V −
⌊
1 + log2(An · pV (sn))

⌋
For guaranteeing that 2U−1 ≤ An+1 < 2U , we have to increase the
bits shift z by the number of leading zeros in the binary representation
of An · pV (sn). Hence, we have

zn+1 = zn + xn,

which yields

An+1 · 2−zn+1 ≤ An · 2−zn · pV (sn) · 2−V

An+1 ≤ An · pV (sn) · 2xn−V

And for guaranteeing that Wn+1 is less than Wn · p(sn), i.e., for
guaranteeing that the condition above is fulfilled, we choose

An+1 =
⌊
An · pV (sn) · 2xn−V

⌋
The rounding towards zero can in practice be replaced by a bit shift
to the right, i.e., An = (An · pV (sn)) >> (V − xn). Note that is
equivalent to using the first U significant bits in the representation
of the product An · pV (sn) for An+1.

As a consequence, the interval width Wn+1 is

Wn+1 = An+1 · 2zn+1 =
⌊
An · pV (sn) · 2xn−V

⌋
· 2−zn−xn

16

By applying the inequality bxc > x− 1, we can write

Wn+1 =
⌊
An · pV (sn) · 2xn−V

⌋
· 2−zn−xn

> An · pV (sn) · 2−zn−V − 2−zn−xn

= An · 2−zn · p(sn)− 2−zn+1

= Wn · p(sn)− Wn+1

An+1

Dividing the inequality by Wn+1 and using the property An ≥ 2U−1

yields
Wn · p(sn)

Wn+1
< 1 +

1

An+1
≤ 1 + 21−U

Inserting this expression into the inequality that we derived at the
beginning yields

∆` < 1 +

N−1∑
k=0

log2

Wk · p(sk)

Wk+1
< 1 +N · log2(1 + 21−U)

For the increase in codeword length per symbol, we obtain

∆`

N
<

1

N
+ log2(1 + 21−U)

Now, we consider the given source X and determine the precision U
that is required for guaranteeing that the coding efficiency loss is less
than 0.1% when more than N = 10000 symbols are transmitted.

Hence, for the increase in codeword length per symbol x, we have to
obey

∆`

N
<
H(Xn)

1000
,

where N is the number of coded symbols x.

Since we code 2 binary symbols per symbol x, the total number
of arithmetically coded symbols NB = 2N is equal to 20000, and
the maximum increase in codeword length per arithmetically coded
symbol has to fulfill the inequality,

∆`

NB
<
H(Xn)

2000
.

This inequality is fulfilled if we set U in a way that the inequality

1

NB
+ log2(1 + 21−U) <

H(Xn)

2000

is fulfilled. By reformulating this inequality (and using NB = 2N),

17

we obtain

log2(1 + 21−U) <
H(Xn)

2000
− 1

2N

1 + 21−U < 2(
H(Xn)
2000 −

1
2N)

21−U < 2(
H(Xn)
2000 −

1
2N) − 1

1− U < log2

(
2(

H(Xn)
2000 −

1
2N) − 1

)
U > 1− log2

(
2(

H(Xn)
2000 −

1
2N) − 1

)
By inserting the values for N and H(Xn), we obtain

U > 11.689697 . . .

U ≥ 12

If we use a precision of 12 bits for representing the interval width, it
is guaranteed that the increase in codeword length per symbol x is
less than 0.1% if we code 10000 or more symbols.

18

(d) Consider arithmetic coding that uses U bits for representing the in-
terval width and V bits for representing the probability masses.

Show that the lower interval boundaries can be represented by a
counter and an integer value of U + V bits.

Solution:

We start with investigating the binary representation ofWn = An · 2−zn ,
which is shown in the following:

Wn = 0.

zn bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

1xx · · ·x︸ ︷︷ ︸
U bits

000 · · ·

The first zn − U bits after the binary point are equal to 0. These
bits are followed by U bits that represent the integer value An. All
following bits are equal to 0.

The binary representation of c(sn) = cV (sn) · 2−V consist of V bits
after the binary point that represent the value of the integer cV (sn).
All remaining bits are equal to 0.

c(sn) = 0. xxx · · ·x︸ ︷︷ ︸
V bits

000 · · ·

The binary representation of the product Wn·c(sn) is given as follows:

Wn · c(sn) = 0.

zn+V bits︷ ︸︸ ︷
00000 · · · 0︸ ︷︷ ︸
zn−U bits

xxx · · ·x︸ ︷︷ ︸
U+V bits

000 · · ·

The first zn − U bits after the binary point are equal to 0. The
following U + V bits represent the product An · cV (sn) and depend
on the current symbol sn and the previously coded symbols. All
following bits are equal to 0.

Given the binary representation of Wn ·c(sn), we can conclude which
bits of the lower interval boundary Ln can be changed by the interval
update Ln+1 = Ln +Wn · c(sn):

Ln = 0.

zn−U bits︷ ︸︸ ︷
ssssssss · · · s︸ ︷︷ ︸
zn−U−cn bits

0111 · · · 1︸ ︷︷ ︸
cn bits

xxx · · ·x︸ ︷︷ ︸
U+V bits

000 · · ·

The first zn − U bits after the binary point are not directly changed
(the corresponding bits in Wn · c(sn) are equal to 0), but may be
modified by a carry from the following bits. The following U + V
bits, which are called active bits are directly modified, since the cor-
responding bits in Wn · c(sn) represent the integer An · cV (sn). All
bits that follow these bits are equal to zero and are not modified in
the update Ln 7→ Ln+1, but may be modified in future updates.

The only possibility to modify the first zn−U bits after the decimal
point is a carry from the following U + V bits. We can partition

19

the first zn − U bits after the decimal point into two sections. The
first section, which is called outstanding bits, consists of all bits equal
to 1 (if any) that directly precede the U + V active bits and the
zero (if any) that precedes these bits equal to 1. All other bits are
referred to as settled bits. These settled bits cannot be modified by
the current or any following interval update (all Ln+k are less than
Ln +Wn, since the intervals are nested). Hence, the settled bits can
be output as soon as they become settled, and the remaining bits can
be represented by an (U + V)-bit integer Bn representing the active
bits and a counter cn representing the number of outstanding bits.

The total number of bits to output is

K = d− log2WNe = zN − blog2ANc = zN − U + 1

Hence, at the end of the coding process, all outstanding bits and the
most significant bit of the (U +V)-bit integer BN have to be output.

The arithmetic encoding process can be stated as follows:

(1) Initialization: A0 = 2U − 1, B0 = 0, c0 = 0

(2) Iterative Coding : For n = 0 to n = N − 1, do the following:

[Find the bit shift xn = zn+1 − zn]

• Determine the value A∗n+1 = An · pV (sn)

• Determine the value B∗n+1 = Bn +An · cV (sn)

• Determine the number xn of leading zeros in the (U +V)-bit
representation of A∗n+1

[Set the parameters An+1 and Bn+1]

• Set m = (1 << (U + V − xn))− 1
[“<<” – bit shift to the left]

• Set An+1 = A∗n+1 >> (V − xn)
[“>>” – bit shift to the right]

• Set Bn+1 = (B∗n+1 &m) << xn [“&” – bit-wise “and”]

[Output the settled bits and set the counter cn+1]

• [Carry] If B∗n+1 ≥ 2U+V , do the following:

– Set r = max(cn − 2, 0)

– Output a bit equal to “1” and r bits equal to “0”

– Modify cn = cn − r − 1

– Modify B∗n+1 = B∗n+1 − 2U+V

• Modify B∗n+1 = B∗n+1 >> (U + V − xn)

• Determine the number y of trailing bits equal to 1 in the
binary representation of B∗n+1

• [Case 1] If y = xn and cn = 0, do the following:

– Output y bits equal to “1”

– Set cn+1 = 0

• [Case 2] If y = xn and cn > 0, set cn+1 = cn + y

• [Case 3] If y < xn, do the following:

20

– If cn > 0,

∗ Output a bit equal to “0”

∗ Output cn − 1 bits equal to “1”

– Set k = xn − 1

– While k > y, do

∗ Output a bit equal to (B∗n+1 >> k) & 1

∗ Modify k = k − 1

(3) Termination: Do the following:

• If cn > 0,

– Output a bit equal to “0”

– Output cn − 1 bits equal to “1”

• Output a bit equal to (BN >> (U + V − 1)) & 1

21

(e) Consider binary arithmetic coding for the given source X with fixed-
length binarization, V = 4 bits for representing the probability masses,
and U = 4 bits for representing the interval width.

Generate the arithmetic codeword for the symbol sequence “MISS”.

Compare the length of the arithmetic codeword with the length of
the codeword that would be generated by Elias coding.

Solution:

The encoding procedure can be done as described above. The main
steps for the example are summarized in the following table.

22

s b pV cV parameter updates & output
A0 = 15 = ’1111’

initialization c0 = 0
B0 = 0 = ’0000 0000’

“M” 0 6 0 A0 · pV = 15 · 6 = 90 = ’0101 1010’
B0 + A0 · cV = 0 + 15 · 0 = 0 = ’0 0000 0000’

x0 = 1
A1 = ’1011’ = 11
c1 = 1
B1 = ’0000 0000’ = 0

output = “”
0 4 0 A1 · pV = 11 · 4 = 44 = ’0010 1100’

B1 + A1 · cV = 0 + 11 · 0 = 0 = ’0 0000 0000’
x1 = 2
A2 = ’1011’ = 11
c2 = 1
B2 = ’0000 0000’ = 0

output = “00”
“I” 0 6 0 A2 · pV = 11 · 6 = 66 = ’0100 0010’

B2 + A2 · cV = 0 + 11 · 0 = 0 = ’0 0000 0000’
x2 = 1
A3 = ’1000’ = 8
c3 = 1
B3 = ’0000 0000’ = 0

output = “0”
1 12 4 A3 · pV = 8 · 12 = 96 = ’0110 0000’

B3 + A3 · cV = 0 + 8 · 4 = 32 = ’0 0010 0000’
x3 = 1
A4 = ’1100’ = 12
c4 = 1
B4 = ’0100 0000’ = 64

output = “0”
“S” 1 10 6 A4 · pV = 12 · 10 = 120 = ’0111 1000’

B4 + A4 · cV = 64 + 12 · 6 = 136 = ’0 1000 1000’
x4 = 1
A5 = ’1111’ = 15
c5 = 2
B5 = ’0001 0000’ = 16

output = “”
0 11 0 A5 · pV = 15 · 11 = 165 = ’1010 0101’

B5 + A5 · cV = 16 + 15 · 0 = 16 = ’0 0001 0000’
x5 = 0
A6 = ’1010’ = 10
c6 = 2
B6 = ’0001 0000’ = 16

output = “”
“S” 1 10 6 A6 · pV = 10 · 10 = 100 = ’0110 0100’

B6 + A6 · cV = 16 + 10 · 6 = 76 = ’0 0100 1100’
x6 = 1
A7 = ’1100’ = 12
c7 = 1
B7 = ’1001 1000’ = 152

output = “01”
0 11 0 A7 · pV = 12 · 11 = 132 = ’1000 0100’

B7 + A7 · cV = 152 + 12 · 0 = 152 = ’0 1001 1000’
x7 = 0
A8 = ’1000’ = 8
c8 = 1
B8 = ’1001 1000’ = 152

output = “”
termination output = “01” [outstanding & first bit of B8]

23

The codeword generated by the arithmetic encoding procedure is
“0000 0101”. It consists of 8 bits.

The length of the codeword that would be generated by Elias coding
(i.e., without rounding the probabilities and interval widths) is given
by

KE =
⌈
− log2 p(s0, s1, s2, s3)

⌉
=
⌈
− log2

(
p(s0)p(s1)p(s2)p(s3)

)⌉
=

⌈
− log2

(
1

10
· 3

10
· 4

10
· 4

10

)⌉
=

⌈
− log2

(
48

10000

)⌉
=
⌈
7.7 · · ·

⌉
= 8

It has the same size as the codeword generated by arithmetic coding
with V = 4 and U = 4.

24

