
Exercises with solutions (Set D)

11. A fair die is rolled at the same time as a fair coin is tossed. Let A be the
number on the upper surface of the die and let B describe the outcome of
the coin toss, where B is equal to 1 if the result is “head” and it is equal
to 0 if the result if “tail”. The random variables X and Y are given by
X = A+B and Y = A−B, respectively.

Calculate the marginal entropies H(X) and H(Y ), the conditional en-
tropies H(X|Y ) and H(Y |X), the joint entropy H(X,Y ) and the mutual
information I(X;Y ).

Solution:

Let a, b, x, and y denote possible values of the random variables A, B, X,
and Y , respectively.

Each event {a, b} is associated with exactly one event {x, y} and the prob-
ability for such an event is given by

pAB(a, b) = pXY (x, y) =
1

6
· 1

2
=

1

12

Consequently, we obtain for the joint entropy

H(X,Y ) = −
∑
x,y

pXY (x, y) log2 pXY (x, y) = −12 · 1

12
log2

1

12

= log2 12 = 2 + log2 3

The following tables list the possible values of the random variables X
and Y , the associated events {a, b}, and the probability masses pX(x) and
pY (y).

x events {a, b} pX(x)
1 {1, 0} 1/12
2 {2, 0}, {1, 1} 1/6
3 {3, 0}, {2, 1} 1/6
4 {4, 0}, {3, 1} 1/6
5 {5, 0}, {4, 1} 1/6
6 {6, 0}, {5, 1} 1/6
7 {6, 1} 1/12

y events {a, b} pY (y)
0 {1, 1} 1/12
1 {1, 0}, {2, 1} 1/6
2 {2, 0}, {3, 1} 1/6
3 {3, 0}, {4, 1} 1/6
4 {4, 0}, {5, 1} 1/6
5 {5, 0}, {6, 1} 1/6
6 {6, 0} 1/12

The random variable X = A + B can take the values 1 to 7. The prob-
ability masses pX(x) for the values 1 and 7 are equal to 1/12, since they
correspond to exactly one event. The probability masses for the values 2
to 6 are equal to 1/6, since each of these values corresponds to two events
{a, b}. Similarly, the random variable Y = A−B can take the values 0 to
6, where the probability masses for the values 0 and 6 are equal to 1/12,
while the probability masses for the values 1 to 5 are equal to 1/6.
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Hence, the marginal entropies are given by

H(X) = −
∑
x

pX(x) log2 pX(x) = −2 · 1

12
log2

1

12
− 5 · 1

6
log2

1

6

=
1

6
·
(

log2 4 + log2 3
)

+
5

6
·
(

log2 2 + log2 3
)

=
7

6
+ log2 3

and

H(Y ) = −
∑
y

pY (y) log2 pY (y) = −2 · 1

12
log2

1

12
− 5 · 1

6
log2

1

6

=
7

6
+ log2 3

The conditional entropies can now be determined using the chain rule

H(X|Y ) = H(X,Y )−H(Y ) = 2 + log2 3− 7

6
− log2 3 =

5

6

H(Y |X) = H(X,Y )−H(X) = 2 + log2 3− 7

6
− log2 3 =

5

6

Alternatively, we can also calculate the conditional entropies based on the
probability mass functions.

The conditional probability mass function pX|Y (x|y) is given by

pX|Y (x|y = 0) =

{
1 : x = y + 2
0 : otherwise

pX|Y (x|y = 6) =

{
1 : x = y
0 : otherwise

pX|Y (x|0 < y < 6) =

 1/2 : x = y
1/2 : x = y + 2
0 : otherwise

Hence, we obtain

H(X|Y ) = −
∑
y

pY (y)
∑
x

pX|Y (x|y) log2 pX|Y (x|y)

= −2 · 1

12

(
1 · 1 log2 1

)
− 5 · 1

6

(
2 · 1

2
log2

1

2

)
=

5

6

Similarly, the conditional probability mass function pY |X(y|x) is given by

pY |X(y|x = 1) =

{
1 : y = x
0 : otherwise

pY |X(y|x = 7) =

{
1 : y = x− 2
0 : otherwise
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pY |X(y|1 < x < 7) =

 1/2 : y = x− 2
1/2 : y = x
0 : otherwise

Hence, we obtain

H(Y |X) = −
∑
x

pX(x)
∑
y

pY |X(y|x) log2 pY |X(y|x)

= −2 · 1

12

(
1 · 1 log2 1

)
− 5 · 1

6

(
2 · 1

2
log2

1

2

)
=

5

6

The mutual information I(X;Y ) can be determined according to

I(X;Y ) = H(X)−H(X|Y ) =
7

6
+ log2 3− 5

6
=

1

3
+ log2 3

or

I(X;Y ) = H(Y )−H(Y |X) =
7

6
+ log2 3− 5

6
=

1

3
+ log2 3

Alternatively, it can also be determined based on the probability mass
functions,

I(X;Y ) =
∑
x,y

pXY (x, y) log2

pXY (x, y)

pX(x) pY (y)

= 8 · 1

12
log2

(
1
12

)(
1
6

)
·
(
1
6

) + 4 · 1

12
log2

(
1
12

)(
1
12

)
·
(
1
6

)
=

2

3
log2 3 +

1

3
log2 6 =

2

3
log2 3 +

1

3

(
1 + log2 3

)
=

1

3
+ log2 3
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12. Consider a stationary Gauss-Markov process X = {Xn} with mean µ, vari-
ance σ2, and the correlation coefficient ρ (correlation coefficient between
two successive random variables).

Determine the mutual information I(Xk;Xk+N ) between two random vari-
ables Xk and Xk+N , where the distance between the random variables is
N times the sampling interval.

Interpret the results for the special cases ρ = −1, ρ = 0, and ρ = 1.

Hint: In the lecture, we showed

E
{

(X− µN )T ·C−1N · (X− µN )
}

= N, (1)

which can be useful for the problem.

Solution:

The mutual information I(Xk;Xk+N ) between the random variables Xk

and Xk+N can be expressed using differential entropies

I(Xk;Xk+N ) = h(Xk)− h(Xk|Xk+N )

= h(Xk) + h(Xk+N )− h(Xk, Xk+N )

= 2h(Xk)− h(Xk, Xk+N )

The marginal pdf of the source is given by

f1(x) =
1√

2πσ2
e−

(x−µ)2

2 σ2

For the marginal differential entropy h(Xk), we obtain

h(Xk) = E {− log2 f1(x)}

= E

{
log2

(√
2πσ2

)
+

1

ln 2
· (x− µ)2

2σ2

}
=

1

2
log2(2πσ2) +

1

2σ2 ln 2
E
{

(x− µ)2
}

=
1

2
log2(2πσ2) +

1

2

1

ln 2

=
1

2
log2(2πσ2) +

1

2
log2(e)

=
1

2
log2(2πe σ2)

The joint pdf of two samples of a Gaussian process is a Gaussian pdf.
With x = [xk xk+N ]T being a vector of potential outcomes of the random
variables, the joint pdf is given by

f2,N (xk, xk+N ) = f2,N (x) =
1

2π
√
|C2,N |

e−
1
2 (x−µ2)

TC−1
2,N (x−µ2)
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where µ2 = [µ µ]T is the vector of mean values and C2,N is the covariance
matrix. With X = [Xk Xk+N ]T being a vector of two random variables
Xk and Xk+N the covariance matrix is given by

C2,N = E
{

(X− µ2)T (X− µ2)
}

=

[
E{(Xk − µ)2} E{(Xk − µ)(Xk+N − µ)}
E{(Xk − µ)(Xk+N − µ)} E{(Xk − µ)2}

]
Hence, we obtain for the joint differential entropy

h(Xk, Xk+N )

= E
{
− log2 f2,N (Xk, Xk+n)

}
= E

{
log2

(
2π
√∣∣C2,N

∣∣)+
1

2 ln 2
(X− µ2)TC−12,N (X− µ2)

}
=

1

2
log2

(
(2π)2

∣∣C2,N

∣∣)+
1

2 ln 2
E
{

(X− µ2)TC−12,N (X− µ2)
}

Inserting the expression given as hint yields

h(Xk, Xk+N )

=
1

2
log2

(
(2π)2

∣∣C2,N

∣∣)+
1

2 ln 2
E
{

(X− µ2)TC−12,N (X− µ2)
}

=
1

2
log2

(
(2π)2

∣∣C2,N

∣∣)+
2

2 ln 2

=
1

2
log2

(
(2π)2

∣∣C2,N

∣∣)+
2

2 ln 2

=
1

2
log2

(
(2π)2

∣∣C2,N

∣∣)+
ln e

ln 2

=
1

2
log2

(
(2π)2

∣∣C2,N

∣∣)+ log2 e

=
1

2
log2

(
(2πe)2

∣∣C2,N

∣∣)
Note that a continuous stationary Markov process with correlation factor
ρ can be represented by

Xk+N − µ = ρ (Xk+N−1 − µ) + Zk+N

= ρ2 (Xk+N−2 − µ) + ρZk+N−1 + Zk+N

= ρN (Xk − µ) +

N−1∑
i=0

ρi Zk+N−i

where Z = {Zk} is a zero-mean iid process; for Gauss-Markov processes,
it is an zero-mean Gaussian iid process.
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The covariance E{(Xk − µ)(Xk+N − µ)} is given by

E{(Xk − µ)(Xk+N − µ)}

= E

{(
Xk − µ

)(
ρN (Xk − µ) +

N−1∑
i=0

ρi Zk+N−i

)}
= ρN E

{
(Xk − µ)2

}
+

N−1∑
i=0

ρi
(
E {Xk Zk+N−i}+ µE {Zk+N−i}

)
= ρN σ2

Consequently, the covariance matrix C2,N is given by

C2,N =

[
σ2 ρNσ2

ρNσ2 σ2

]
For the determinant, we obtain∣∣C2,N

∣∣ = σ2 · σ2 − (ρNσ2) · (ρNσ2) = σ4 (1− ρ2N )

Inserting this expression into the formula for the joint differential entropy,
which we have derived above, yields

h(Xk, Xk+N ) =
1

2
log2

(
(2πe)2

∣∣C2,N

∣∣)
=

1

2
log2

(
(2πe)2σ4

(
1− ρ2N

))
For the mutual information, we finally obtain

I(Xk;Xk+N ) = 2h(Xk)− h(Xk, Xk+N )

= 2 · 1

2
log2(2πe σ2)− 1

2
log2

(
(2πe)2σ4

(
1− ρ2N

))
=

1

2
log2

(
(2πe)2σ4

(2πe)2σ4
(
1− ρ2N

))

= −1

2
log2

(
1− ρ2N

)
The mutually information between two random variables of a Gauss-
Markov process depends only on the correlation factor ρ and the distance
N between the two considered random variables.

For ρ = 0, the process is a Gaussian iid process, and the mutual informa-
tion is equal to 0. A random variable Xk does not contian any information
about any other random variable Xk+N with N 6= 0.

For ρ = ±1, the process is deterministic, and the mutual information is
infinity. By knowing any random variable Xk, we know all other random
variables Xk+N .
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13. Show that for discrete random processes the fundamental bound for loss-
less coding is a special case of the fundamental bound for lossy coding.

Solution:

The fundamental bound for lossy coding is the information rate-distortion
function given by

R(I)(D) = lim
N→∞

inf
gN :δ(gN )≤D

IN
(
S(N);S′

(N))
N

= lim
N→∞

inf
gN :δ(gN )≤D

(
HN

(
S(N)

)
−HN

(
S(N);S′

(N))
N

)

= lim
N→∞

HN

(
S(N)

)
N

− lim
N→∞

sup
gN :δ(gN )≤D

(
HN

(
S(N)|S′(N))
N

)

For lossless coding, the distortion D is equal to 0 and the vector of re-

constructed samples S′
(N)

is equal to the vector of source samples S(N).
Hence, we have

R(I)(D = 0) = lim
N→∞

HN

(
S(N)

)
N

− lim
N→∞

sup
gN :δ(gN )=0

(
HN

(
S(N)|S(N))

N

)

The conditional entropy HN

(
S(N)|S(N)) is equal to 0, and thus

R(I)(D = 0) = lim
N→∞

HN

(
S(N)

)
N

− lim
N→∞

sup
gN :δ(gN )=0

(
0

N

)
= lim

N→∞

HN

(
S(N)

)
N

= H̄(S)

For zero distortion, the information rate-distortion function is equal to the
entropy rate.
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14. Determine the Shannon lower bound with MSE distortion, as distortion-
rate function, for iid processes with the following pdfs:

• The exponential pdf fE(x) = λ · e−λ·x, with x ≥ 0

• The zero-mean Laplace pdf fL(x) = λ
2 · e

−λ·|x|

Express the distortion-rate function for the Shannon lower bound as a
function of the variance σ2. Which of the given pdfs is easier to code (if
the variance is the same)?

Solution:

The mean of the exponential pdf is given by

µE =

∞∫
0

x fE(x) dx = λ

∞∫
0

x e−λx dx

Using the substitution t = −λx and applying the integration rule
∫
uv′ =

uv −
∫
u′v with u = t and v′ = et yields

µE = λ

∞∫
0

x e−λx dx =
1

λ

−∞∫
0

t et dt =
1

λ

[t et]−∞
0
−
−∞∫
0

et dt


=

1

λ

([
0− 0

]
−
[
et
]−∞
0

)
= − 1

λ

[
0− 1

]
=

1

λ

For the variance of the exponential pdf, we obtain

σ2
E =

∞∫
0

x2 fE(x) dx− µ2
E = λ

∞∫
0

x2 e−λ·x dx− 1

λ2

Using the substitution t = −λx and applying the integration rule
∫
uv′ =

uv −
∫
u′v with u = tn and v′ = et yields

σ2
E = λ

∞∫
0

x2 e−λx dx− 1

λ2
= − 1

λ2

−∞∫
0

t2 et dt− 1

λ2

= − 1

λ2

[t2 et]−∞
0
− 2

−∞∫
0

t et dt

− 1

λ2

= − 1

λ2

[0− 0
]
− 2

−∞∫
0

t et dt

− 1

λ2

=
2

λ2

[tet]−∞
0
−
−∞∫
0

et dt

− 1

λ2
=

2

λ2

([
0− 0

]
−
[
et
]−∞
0

)
− 1

λ2

= − 2

λ2

[
0− 1

]
− 1

λ2
=

2

λ2
− 1

λ2
=

1

λ2
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Similarly, for the variance of the Laplace pdf, we obtain

σ2
L =

∞∫
−∞

x2 fL(x) dx =
λ

2

∞∫
−∞

x2 e−λ·|x| dx

=
λ

2
· 2
∞∫
0

x2 e−λx dx = λ

−∞∫
0

x2 e−λx dt =
2

λ2

The Shannon lower bound for iid processes and MSE distortion is given
by

DL(R) =
1

2πe
· 22h(X) · 2−2R

For the differential entropy of the exponential pdf, we obtain

hE(X) = −
∞∫
0

fE(x) log2 fE(x) dx

= −λ
∞∫
0

e−λx
(

log2 λ−
λ

ln 2
x

)
dx

=
λ2

ln 2

∞∫
0

x e−λx dx− λ log2 λ

∞∫
0

e−λx dx

By setting t = −λx and using the integration rule
∫
uv′ = uv−

∫
u′v with

u = x and v′ = et, we obtain

hE(X) =
1

ln 2

−∞∫
0

t et dt+ log2 λ

−∞∫
0

et dt

=
1

ln 2

[t et]−∞
0
−
−∞∫
0

et dt

+ log2 λ

−∞∫
0

et dt

=
λ

ln 2

[
0− 0

]
+

(
log2 λ−

1

ln 2

) −∞∫
0

et dt

= (log2 λ− log2 e)
[
et
]−∞
0

= log2

λ

e

[
0− 1

]
= log2

e

λ
=

1

2
log2

(
e2

λ2

)
=

1

2
log2

(
e2 σ2

)
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Similarly, the differential entropy for the Laplace pdf is given by

hL(X) = −
∞∫
−∞

fL(x) log2 fL(x) dx

= −λ
2

∞∫
−∞

e−λ |x|
(

log2

λ

2
− λ

ln 2
|x|
)

dx

= −λ
∞∫
0

e−λx
(

log2

λ

2
− λ

ln 2
x

)
dx

=
λ2

ln 2

∞∫
0

x e−λx dx− λ log2

λ

2

∞∫
0

e−λx dx

By setting t = −λx and using the integration rule
∫
uv′ = uv−

∫
u′v with

u = x and v′ = et, we obtain

hL(X) =
1

ln 2

−∞∫
0

t et dt+ log2

λ

2

−∞∫
0

et dt

=
1

ln 2

[t et]−∞
0
−
−∞∫
0

et dt

+ log2

λ

2

−∞∫
0

et dt

=
λ

ln 2

[
0− 0

]
+

(
log2

λ

2
− 1

ln 2

) −∞∫
0

et dt

=

(
log2

λ

2
− log2 e

) [
et
]−∞
0

= log2

λ

2e

[
0− 1

]
= log2

2e

λ
=

1

2
log2

(
4e2

λ2

)
=

1

2
log2

(
2e2 σ2

)
Inserting the expressions for the differential entropy into the formula for
the Shannon lower bound yields, for the exponential pdf,

D
(E)
L (R) =

1

2πe
· 22hE(X) · 2−2R =

e2 σ2

2πe
· 2−2R

=
e

2π
· σ2 · 2−2R

and, for the Laplace pdf,

D
(L)
L (R) =

1

2πe
· 22hL(X) · 2−2R =

2 e2 σ2

2πe
· 2−2R

=
e

π
· σ2 · 2−2R

Hence, at high rates R, the distortion for the Laplace pdf is twice as large
as the distortion for the exponential pdf with the same variance. The
exponential pdf is easier to code.
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