
Exercises with solutions (Set E)

15. Consider a symmetric scalar quantizer with 3 intervals,

q(x) =

 −b : x < −a
0 : |x| ≤ a
b : x > a

and a quantizer input with a zero-mean Laplace pdf,

f(x) =
1

2m
e−
|x|
m

(a) Derive the optimal reconstruction value b as a function of the decision
threshold a for MSE distortion.

Express the resulting distortion as function of a and the variance
σ2 = 2m2.

Solution:

Due to the symmetry of the pdf and the quantizer design, the MSE
distortion can be written as

D(a, b) = 2

a∫
0

x2 f(x) dx+ 2

∞∫
a

(x− b)2 f(x) dx

= 2

∞∫
0

x2 f(x) dx− 4b

∞∫
a

x f(x) dx+ 2b2
∞∫
a

f(x) dx

Setting the first partial derivative with respect to b equal to 0,

∂

∂b
D(a, b) = 0 = −4

∞∫
a

x f(x) dx+ 4b

∞∫
a

f(x) dx

yields the condition for the optimal reconstruction value b,

b =

∞∫
a

x f(x) dx

∞∫
a

f(x) dx

,

which is known as the centroid condition for MSE distortion.

Inserting this expression into the equation yields the following for-
mula for the distortion (when the centroid condition is fulfilled),

D∗(a) = 2

∞∫
0

x2 f(x) dx− 2

(∞∫
a

x f(x) dx

)2

∞∫
a

f(x) dx
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By defining

A = 2

∞∫
0

x2 f(x) dx =
1

m

∞∫
0

x2 e−
x
m dx

B(a) = 2

∞∫
a

x f(x) dx =
1

m

∞∫
a

x e−
x
m dx

C(a) = 2

∞∫
a

f(x) dx =
1

m

∞∫
a

e−
x
m dx

we can also write

b(a) =
B(a)

C(a)
and D∗(a) = A− B(a)2

C(a)

For the integrals A, B(a) and C(a), we obtain

A =
1

m

∞∫
0

x2 e−
x
m dx =

[
−e− x

m

(
x2 + 2mx+ 2m2

)]∞
0

= 2m2

B(a) =
1

m

∞∫
a

x e−
x
m dx =

[
−e− x

m

(
x+m

)]∞
a

= (a+m) e−
a
m

C(a) =
1

m

∞∫
a

e−
x
m dx =

[
− e− x

m

]∞
a

= e−
a
m

Then, we obtain for the optimal reconstruction value

b(a) =
B(a)

C(a)
=

(a+m) e−
a
m

e−
a
m

= a+m = a+
1

2

√
2σ2

And the distortion for a centroidal quantizer is given by

D∗(a) = A− B(a)2

C(a)
= 2m2 − (a+m)2e−

2a
m

e−
a
m

= 2m2 − (a+m)2e−
a
m

By using the variance σ2 = 2m2, we obtain

D∗(a) = σ2 −
(
a+

1

2

√
2σ2

)2

e
− 2a√

2σ2
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(b) Determine the decision threshold a in a way that a Lloyd quantizer
for MSE distortion is obtained.

Determine the distortion and rate for the Lloyd quantizer by assum-
ing fixed-length coding (R = log2N) and compare the obtained R-D
point with the Shannon lower bound.

Solution:

A Lloyd quantizer is the optimal quantizer (minimum distortion) for
a given number of reconstruction levels. It fulfills two conditions:
the centroid condition considered above and the so-called nearest
neighbor condition:

uk =
1

2

(
s′k−1 + s′k

)
For our given 3-interval quantizer, we have

a =
1

2

(
0 + b

)
=
b

2

Hence, we obtain

a =
a+m

2
=⇒ a∗ = m = 1

2

√
2σ2

b∗ = 2m =
√

2σ2

It should be noted that these parameters are also obtained by setting
the derivative of the distortions D∗(a) with respect to a equal to 0.

For the distortion, we obtain

D∗ = σ2 −
(
a∗ +

1

2

√
2σ2

)2

e
− 2a∗√

2σ2

= σ2 −
(

1

2

√
2σ2 +

1

2

√
2σ2

)2

e
− 2√

2σ2

√
2σ2

2

= σ2 − 2

e
σ2 = σ2

(
e− 2

e

)
≈ 0.264241 · σ2

The nominal rate R for both Lloyd quantizers is

R = log2 3

For MSE distortion, the Shannon lower bound is given by

DSLB(R) =
e

π
σ2 2−2R or RSLB(D) =

1

2
log2

(
σ2

D
· e
π

)
Hence, the distortion for the Shannon lower bound DSLB at rate R is

DSLB(R) =
e

π
σ2 2−2 log2 3 =

e

9π
σ2 =

(
e− 2

e
σ2

)
· e2

9π(e− 2)

=
e2

9π(e− 2)
D∗ ≈ 0.363833 ·D∗
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which means that the distortion for the Lloyd quantizer is approxi-
mately factor 2.75 (or 4.39 dB) larger than the Shannon lower bound.

The rate for the Shannon lower bound RSLB at distortion D∗ is

RSLB(D∗) =
1

2
log2

(
e2

π (e− 2)

)
= log2 3− 1

2
log2

(
9π (e− 2)

e2

)
≈ R− 0.729326

which means that the rate for the Lloyd quantizer is approximately
0.729 bits per symbol (or 85.2%) larger than the Shannon lower
bound.

(c) Can the derived optimal quantizer for fixed-length coding be im-
proved by adding entropy coding (without changing the decision
thresholds and reconstruction levels)?

Solution:

For the developed Lloyd quantizer, we obtain reconstruction symbols
with the following pmf {p0, p1, p2}:

p1 = 2

a∫
0

f(x) dx =
1

m

m∫
0

e−
x
m dx =

[
−e− x

m

]m
0

= 1− 1

e

p0 = p2 =
1− p1

2
=

1

2e

Since the probability masses are not the same, the performance of
the quantizer can be improved by entropy coding.

The minimum rate is given by

R∗ = H = −2 · 1

2e
· log2

(
1

2e

)
− 1 ·

(
1− 1

e

)
· log2

(
1− 1

e

)
=

1

e
log2(2e)−

(
1− 1

e

)
· log2

(
1− 1

e

)
≈ 1.316909

Hence, by entropy coding, the rate (for same distortion) could be
reduced by approximately 0.27 bits per sample or 16.9%.
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16. Given is a Centroidal quantizer (not necessarily a Lloyd quantizer) for
MSE distortion and a source X. The quantizer has 5 reconstruction levels
{−3,−1, 0, 1, 3} which are chosen with probabilities {0.05, 0.1, 0.4, 0.3, 0.15}
and achieves an MSE of 1.05.

(a) Determine the mean µ and variance σ2 of the source X.

Solution:

We know that the quantizer obeys the centroid condition for MSE.
Hence, the reconstruction levels can be written as

s′k =

uk+1∫
uk

x f(x) dx

uk+1∫
uk

f(x) dx

=
1

pk

uk+1∫
uk

x f(x) dx,

where pk is the probability that the reconstruction level s′k is cho-
sen, i.e., the probability that the value of X falls inside the k-th
quantization interval [uk, uk+1).

Then, the mean value µ of X can be written as

µ =

∞∫
−∞

x f(x) dx =
∑
k

uk+1∫
uk

x f(x) dx =
∑
k

pk s
′
k

It should be noted that this is the definition of the mean of the quan-
tizer output q(X). Hence, a centroidal quantizer for MSE distortion
does not modify the mean of the source X, we have

E{X} = E{Q(X)}

For the mean of the quantization error e(X) = X −Q(X), we obtain

E{e(X)} = E{X −Q(X)} = E{X} − E{Q(X)} = 0

The quantization error of a centroidal quantizer for MSE distortion
has always zero mean.

For the given quantizer, we obtain

µ = −0.05 · 3− 0.1 · 1 + 0.3 · 1 + 0.15 · 3 = 0.5

Another given value is the MSE distortion, which can be written as

D =
∑
k

uk+1∫
uk

(x− s′k)2 f(x) dx

=
∑
k

 uk+1∫
uk

x2 f(x) dx− 2s′k

uk+1∫
uk

x f(x) dx+ s′2k

uk+1∫
uk

f(x) dx


=

∞∫
−∞

x2 f(x) dx−
∑
k

(
2s′k · (s′k pk)− s′2k · pk

)
= E{X2} −

∑
k

s′2k pk
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The last term on the right side is the second moment E{q(X)2}
of the quantizer output and the distortion is the second moment
E{e(X)} = E{(X − q(X))2} of the quantization error. Hence, for a
centroidal quantizer for MSE distortion, the second moment of the
input X is equal to the sum of the second moments of the quantizer
output q(X) and the quantization error e(X) = X − q(X),

E{X2} = E{q(X)2}+ E{e(X)2}

Since the mean of X and q(X) is the same and the mean of e(X) is
zero, we also have

E{X2} = E{q(X)2}+ E{e(X)2}
σ2
X + µ2

X = σ2
q(X) + µ2

q(X) + σ2
e(X)

σ2
X = σ2

q(X) + σ2
e(X)

The variance of the source X is equal to the sum of the variances of
the quantizer output and the quantization error.

The variance can then be expressed according to

σ2 = E{(X − µ)2} = E{X2} − 2µE{X}+ µ2 = E{X2} − µ2

= E{q(X)2}+ E{(X − q(X))2} − µ2

=
∑
k

s′2k pk +D − µ2

For the given quantizer, we obtain

σ2 = 0.05 · 9 + 0.1 · 1 + 0.3 · 1 + 0.15 · 9 + 1.05− 0.52 = 3

(b) With q(X) being the quantizer output and e(X) = X − q(X) be-
ing the quantization error, determine the correlations E{X q(X)},
E{X e(X)}, and E{q(X) e(X)}.

Solution:

The correlation E{X q(X)} can be written as

E{X q(X)} =

∫ ∞
−∞

x q(x) fXq(X)(x, q(x)) dx

=
∑
k

∫ uk+1

uk

x s′k fX(x) gq(X)|X(q(x)|x) dx

where fXq(X)(x, q(x)) denotes the joint pdf of X and q(X), fX(x)
denotes the marginal pdf of X, and gq(X)|X(y|x) denotes the condi-
tional pmf of q(X) given X.

Since q(X) is a deterministic function of X, the conditional pmf
gq(X)|X(y|x) is given by

gq(X)|X(y|x) =

{
1 : y = s′k with k : x ∈ [uk, uk+1)
0 : otherwise
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Hence, we obtain

E{X q(X)} =
∑
k

∫ uk+1

uk

x s′k fX(x) gq(X)|X(q(x)|x) dx

=
∑
k

s′k

∫ uk+1

uk

x f(x) dx =
∑
k

s′2k pk

= E{q(X)2}

For centroidal quantizers for MSE distortion, the correlation between
the input and the output signal is equal to the second moment of the
quantizer output.

For our example quantizer, we obtain

E{X q(X)} = 0.05 · 9 + 0.1 · 1 + 0.3 · 1 + 0.15 · 9 = 2.2

For the correlation between the input signal X and the quantization
error, we obtain

E{X e(X)} = E{X (X − q(X))} = E{X2} − E{X q(X)}
= E{e(X)2}+ E{q(X)2} − E{q(X)2}
= E{e(X)2} = D

For centroidal quantizers for MSE distortion, the correlation between
the input and quantization error is equal to the second moment of
the quantization error, i.e., it is equal to the MSE distortion. Except
the quantizer yields a distortion of zero, i.e., it does not apply any
quantization, the input signal and the quantization error are always
correlated.

For the given quantizer, the correlation E{X e(X)} is equal to 1.05.

Finally, for the correlation between quantizer output and quantiza-
tion error, we obtain

E{q(X) e(X)} = E{q(X) (X − q(X))} = E{q(X)X} − E{q(X)2}
= E{q(X)2} − E{q(X)2} = 0

For centroidal quantizers for MSE distortion, the quantizer output
and the quantization error are always uncorrelated.
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17. Consider a discrete Markov process X = {Xn} with the symbol alphabet
AX = {0, 2, 4, 6} and the conditional pmf

pXn|Xn−1
(xn|xn−1) =

{
a : xn = xn−1
1
3 (1− a) : xn 6= xn−1

,

for xn, xn−1 ∈ AX . The parameter a, with 0 < a < 1, is a variable that
specifies the probability that the current symbol is equal to the previous
symbol. For a = 1/4, our source X would be i.i.d.

Given is a quantizer of size 2 with the reconstruction levels s′0 = 1 and
s′1 = 5 and the decision threshold u1 = 3.

(a) Assume optimal entropy coding using the marginal probabilities of
the quantization indices and determine the rate-distortion point of
the quantizer.

Solution:

First, we determine the marginal pmf pX(x). By reasons of symme-
try, it can easily be seen that the marginal pmf is given by

pX(x) =
1

4

for all symbols x ∈ AX . In a more rigorous way, this can also be
derived by

pX(x) =
∑
∀y∈AX

pXn|Xn−1
(x|y) · pX(y)

= a · pX(x) +
1− a

3

∑
∀y∈AX : y 6=x

pX(y)

= a · pX(x) +
1− a

3
(1− pX(x))

=

(
4a

3
− 1

3

)
· pX(x) +

1

3
− a

3

3 pX(x) = (4a− 1) pX(x) + (1− a)

(4− 4a) pX(x) = 1− a

pX(x) =
1− a
4− 4a

=
1

4

Let Y = {Yn} denote the random sequence of quantization indices,
with Yn ∈ {0, 1}. With Ck denoting the quantization cell with the
reconstruction value s′k, the marginal pmf pY (y) can be written as

pY (k) =
∑
x∈Ck

pX(x) = 2 · 1

4
=

1

2

For the distortion D, we then obtain

D =

1∑
k=0

∑
∀x∈Ck

(x− s′k)2 pX(x) = 4 · 12 · 1

4
= 1
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And the rate for optimal entropy coding is given by

R = −
1∑
k=0

pY (k) log2 pY (k) = −2 · 1

2
· log2

(
1

2

)
= 1

An optimal entropy coding can be realized by a simple code that
assigns a bit equal to 0 to the quantization index 0 and a bit equal
to 1 to the quantization index 1 (or vice versa).

The rate-distortion point for the quantizer with scalar entropy coding
is given by R = 1 and D = 1.

(b) Can the overall quantizer performance be improved by applying con-
ditional entropy coding (e.g., using arithmetic coding with condi-
tional probabilities)? How does it depend on the parameter a?

Solution:

The distortion is only dependent on the decision threshold and recon-
struction levels. Hence, it does not change by modifying the entropy
coding for the quantization indices and is D = 1.

For conditional entropy coding, the minimum achievable rate is given
by the conditional entropy

R = −
1∑
i=0

1∑
j=0

pYnYn−1(i, j) log2 pYn|Yn−1
(i|j)

For determining the rate, we first have to calculate the joint and
conditional pmf for the quantization indices. The joint pmf is given
by

pYnYn−1
(i, j) =

∑
∀x∈Ci

∑
∀y∈Cj

pXnXn−1
(x, y)

=
∑
∀x∈Ci

∑
∀y∈Cj

pXn|Xn−1
(x|y) pX(y)

For the case i 6= j, we obtain

pYnYn−1(i, j) = 2 · 2 · 1− a
3
· 1

4
=

1− a
3

,

and for the case i = j, we have

pYnYn−1
(i, i) = 2 ·

(
a+

1− a
3

)
· 1

4
=

1

6
(3a+ 1− a) =

1 + 2a

6

Hence, the joint pmf is

pYnYn−1
(i, j) =

{
1
6 (1 + 2a) : i = j
1
3 (1− a) : i 6= j

And for the conditional pmf, we obtain

pYn|Yn−1
(i|j) =

pYnYn−1(i, j)

pY (j)
=

{
1
3 (1 + 2a) : i = j
2
3 (1− a) : i 6= j
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Consequently, the minimum rate achievable by conditional entropy
coding is

R = −
1∑
i=0

1∑
j=0

pYnYn−1
(i, j) log2 pYn|Yn−1

(i|j)

= −2

(
1 + 2a

6
log2

(
1 + 2a

3

)
+

1− a
3

log2

(
2− 2a

3

))
= −

(
1 + 2a

3

)
log2

(
1 + 2a

3

)
−
(

2− 2a

3

)
log2

(
2− 2a

3

)
= −

(
1 + 2a

3

)
log2

(
1 + 2a

3

)
−
(

1− 1 + 2a

3

)
log2

(
1− 1 + 2a

3

)
= Hb

(
1 + 2a

3

)
,

where Hb(p) represents the binary entropy function.

The rate R is maximized (equal to 1) if the argument of the binary
entropy function is equal to 1/2, i.e., if

1

2
=

1 + 2a

3
=⇒ a =

1

4

In this case, the source samples are independent.

The larger the absolute difference
∣∣a − 1

4

∣∣, the more dependent suc-
cessive source samples are and the lower the rate becomes. If a
approaches 1 (i.e., if the difference

∣∣a− 1
4

∣∣ approaches the maximum
of 3

4 ), the rate approaches 0.

In the following diagram, the rate for optimal entropy coding using
the conditional pmf of the quantization indices is plotted over the
probability parameter a.
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In summary, we note that the performance of scalar quantizers for
sources with memory can be improved if we apply entropy coding
techniques that employ conditional (or joint) probabilities.
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18. Calculate the gain of optimal 2-dimensional vector quantization relative
to optimal scalar quantization for high rates on the example of a uniform
pdf.

Hint: For high rates, border effects can be neglected. It can be assumed
that the signal space for which the pdf is non-zero is completely filled with
regular quantization cells.

Solution:

For a uniform pdf the optimal scalar quantizer is a uniform threshold
quantizer with reconstruction levels at the center of the quantization in-
tervals. This quantizer represents both, a Lloyd quantizer and an entropy-
constrained Lloyd quantizer.

Without loss of generality, we write the uniform pdf according to

f(x) =

{
1
2a : |x| ≤ a
0 : |x| > a

,

where a determines the with of the distribution.

Let N denote the number of quantization cells. The width of the quanti-
zation cells is given by

∆ =
2a

N

and the rate for the quantizer (all cells have the same probability) is given
by

R = log2N

For the distortion Dk inside one interval, we obtain

Dk =

s′k+ ∆
2∫

s′k−
∆
2

(x− s′k)2 f(x) dx =
1

2a

s′k+ ∆
2∫

s′k−
∆
2

(x− s′k)2 dx =
1

2a

∆
2∫

−∆
2

t2 dt

=
1

2a

[
t3

3

]∆
2

−∆
2

=
1

6a

[
∆

8
+

∆

8

]
=

1

24a
∆3 =

1

24a

(
2a

N

)3

=
a2

3N3

For the overall distortion, we then obtain

D =

N−1∑
k=0

Dk = N ·Dk = N · a2

3N3
=

a2

3N2

By using R = log2N (and thus N = 2R), finally obtain the operational
rate-distortion function for scalar quantization

D1(R) =
a2

3
· 2−2R = σ2 · 2−2R
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We now consider vector quantization with 2 dimensions. The joint pdf in
2 dimensions is given by

f(x, y) =

{
1

4a2 : |x| ≤ a ∧ |y| ≤ a
0 : |x| > a ∨ |y| > a

If we ignore border effects, the optimal quantization cells in two dimensions
are regular hexagons, as they provide the densest packing. At the borders
of the non-zero range [−a · · · a] × [−a · · · a] of our joint pdf f(x, y) the
shapes would be different, but these effects can be ignored if we consider
high rates (i.e., a large number of quantization cells). For the uniform pdf,
a quantizer with hexagonal cells and reconstruction values inside the center
is a Lloyd quantizer as well as an entropy-constrained Lloyd quantizer.

In the high rate case, the number of quantization cells can be approximated
by

N =
4a2

Ahexagon
,

where Ahexagon represents the area of a hexagonal quantization cell.

bb
h

For determining the area of a hexagonal cell, we can divide it into 6 equi-
lateral triangles as shown in the figure above. Let b denote the length of
a side of the hexagon and let h denote the height of the triangles. Then,
we have

Ahexagon = 6 ·Atriangle = 6 · 1

2
· h · b = 3 · (b · cos(30◦)) · b = 3 · (b ·

√
3

2
) · b

=
3
√

3

2
b2

The number of quantization cells becomes

N =
4a2

3
√

3
2 b2

=
8
√

3

9

a2

b2
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For calculating the distortion Dk inside a quantization cell, we further
divide one of the triangles (the top center one) into two right triangles
and calculate the distortion of one of these triangles (the one to the right).
The line at the right side of the triangle we consider is given by

y = tan(60◦) · x =
√

3x

The distortion for a quantization cell is

Dk = 12 ·Dtriangle = 12

b/2∫
x=0

h∫
y=
√

3x

r2 · f(x, y) dy dx

=
12

4a2

b/2∫
x=0

h∫
y=
√

3x

(x2 + y2) dy dx

=
12

4a2

 b/2∫
x=0

 h∫
y=
√

3x

y2 dy

dx+

b/2∫
x=0

x2

 h∫
y=
√

3x

dy

 dx


=

12

4a2

 b/2∫
x=0

[
h3

3
− 3
√

3x3

3

]
dx+

b/2∫
x=0

x2
[
h−
√

3x
]
dx


=

12

4a2

h3

3

b/2∫
x=0

dx−
√

3

b/2∫
x=0

x3 dx+ h

b/2∫
x=0

x2 dx−
√

3

b/2∫
x=0

x3 dx


=

12

4a2

(
h3

3
·
(
b

2

)
−
√

3 ·
(

b4

4 · 16

)
+ h ·

(
b3

3 · 8

)
−
√

3 ·
(

b4

4 · 16

))
=

12

4a2

(
b h3

6
−
√

3 b4

64
+
b3 h

24
−
√

3 b4

64

)

With h = b cos(30◦) =
√

3
2 b, we obtain

Dk =
12

4a2

(
3
√

3 b4

6 · 8
−
√

3 b4

64
+

√
3 b4

24 · 2
−
√

3 b4

64

)

=
12
√

3 b4

4 a2

(
3

48
− 1

64
+

1

48
− 1

64

)
= 3
√

3
b4

a2

(
4

48
− 2

64

)
= 3
√

3
b4

a2

(
1

12
− 1

32

)
= 3
√

3
b4

a2
· 8− 3

96
=

5
√

3

32

b4

a2

Using the previously derived relation

N =
8
√

3

9

a2

b2
=⇒ b4 =

64 · 3
81

a4

N2
=

64

27

a4

N2
,
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we get

Dk =
5
√

3

32

1

a2
· 64

27

a4

N2
=

10
√

3

27

a2

N2

The overall distortion for 2 samples is then

D(2) =

N−1∑
k=0

Dk = N ·Dk =
10
√

3

27

a2

N

And for the distortion D per sample, we obtain

D =
D(2)

2
=

5
√

3

27

a2

N

The rate for 2 samples is given by

R(2) = log2N

The rate per sample is then

R =
R(2)

2
=

1

2
log2N

yielding the following expression for the number of samples

N = 22R

Inserting this expression into the expression for the distortion per sample
yields the operational rate-distortion function for 2-dimensional vector
quantization

D2(R) =
5
√

3 a2

27
· 2−2R

For the ratio of the distortions for 2-d vector quantization and scalar
quantization at the same rate, we obtain

D2(R)

D1(R)
=

5
√

3 a2

27 · 2−2R

a2

3 · 2−2R
=

5 · 3 ·
√

3

27
=

5
√

3

9
≈ 0.962250

The signal-to-noise ratio for high rates is improved by

∆ρ = −10 log10

(
D2(R)

D1(R)

)
= 10 log10

(
3
√

3

5

)
≈ 0.167119 dB

The increase in SNR that is obtained by increasing the quantizer dimen-
sion from 1 to 2 at high rates (and using optimal entropy-constrained
quantizers) is approximately 0.17 dB. Hence, the difference to the rate-
distortion curve has been reduced from 1.533 dB to 1.366 dB.

By further increasing the quantizer dimension, the distance to the rate-
distortion function can be further reduced. Asymptotically, the rate-
distortion function is achieved if the quantizer dimension approaches in-
finity.
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19. Consider scalar quantization of a Laplacian source at high rates:

f(x) =
λ

2
· e−λ |x| with σ2

S =
2

λ2

In a given system, the used quantizer is a Lloyd quantizer with fixed-length
entropy coding (the number of quantization intervals represents a power
of 2).

How many bits per sample can be saved if the quantizer is replaced by an
entropy-constrained quantizer with optimal entropy coding?

Note: The operation points of the quantizers can be accurately described
by high rate approximations.

Solution:

The high-rate approximation of the distortion-rate function for the Lloyd
quantizer with fixed-length codes is given by

DF (R) =
1

12

 ∞∫
−∞

3
√
f(x) dx

3

· 2−2R

Inserting the Laplace pdf yields

DF (R) =
1

12

 ∞∫
−∞

3
√
f(x) dx

3

· 2−2R

=
1

12

 ∞∫
−∞

3

√
λ

2
e−λ|x| dx

3

· 2−2R

=
λ

24

 ∞∫
−∞

e−
λ
3 |x| dx

3

· 2−2R

=
λ

3

 ∞∫
0

e−
λ
3 x dx

3

· 2−2R

=
λ

3

− 3

λ

−∞∫
0

et dt

3

· 2−2R

=
9

λ2

(
e0 − e−∞

)3 · 2−2R

=
9

λ2
· 2−2R

=
9

2
· σ2 · 2−2R
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The high rate approximation of the distortion-rate function for the entropy-
constrained Lloyd quantizer with optimal entropy coding is given by

DV (R) =
1

12
· 22h(X) · 2−2R

where h(X) denotes the differential entropy.

For the differential entropy, we obtain

h(X) = −
∞∫
−∞

f(x) log2 f(x) dx

= −λ
2

∞∫
−∞

e−λ |x|
(

log2

λ

2
− λ

ln 2
|x|
)

dx

= −λ
∞∫

0

e−λx
(

log2

λ

2
− λ

ln 2
x

)
dx

=
λ2

ln 2

∞∫
0

x e−λx dx− λ log2

λ

2

∞∫
0

e−λx dx

By setting t = −λx and using the integration rule
∫
uv′ = uv−

∫
u′v with

u = x and v′ = et, we obtain

h(X) =
1

ln 2

−∞∫
0

t et dt+ log2

λ

2

−∞∫
0

et dt

=
1

ln 2

[t et]−∞
0
−
−∞∫
0

et dt

+ log2

λ

2

−∞∫
0

et dt

=
λ

ln 2

[
0− 0

]
+

(
log2

λ

2
− 1

ln 2

) −∞∫
0

et dt

=

(
log2

λ

2
− log2 e

) [
et
]−∞

0
= log2

λ

2e

[
0− 1

]
= log2

2e

λ
=

1

2
log2

(
4e2

λ2

)
=

1

2
log2

(
2e2 σ2

)
Inserting this expression yields the operational distortion-rate function

DV (R) =
1

12
· 22· 12 log2(2 e2 σ2) · 2−2R

=
1

12
·
(
2 e2 σ2

)
· 2−2R

=
e2

6
· σ2 · 2−2R

Setting the distortions equal to zero yields the following rate difference
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∆R = RF −RV :

DV (RV ) = DF (RF )

e2

6
· σ2 · 2−2RV =

9

2
· σ2 · 2−2RF

22∆R = 22(RF−RV ) =
27

e2

∆R =
1

2
log2

(
27

e2

)
≈ 0.9347

By replacing the Lloyd quantizer with fixed-length coding by an entropy-
constrained quantizer with optimal variables-length coding approximately
0.93 bit per sample can be saved at high rates (i.e., at rates for which the
high rate approximations are sufficiently accurate).
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