
Exercises with solutions (Set F)

20. Given is a stationary random process S = {Sn}. We consider affine pre-
diction of a random variable Sn given the N preceding random variables
Sn−1 = [Sn−1 Sn−2 · · · Sn−N ]T .

Derive all formulas (as requested below) as function of the mean µs, the
variance σ2

S , the N -th order autocovariance matrix CN and the auto-
covariance vector c1 = E{(Sn − µS)(Sn−1 − µSeN )}, where eN is an
N -dimensional vector with all entries equal to 1.

(a) Derive the affine predictor that minimizes the mean squared predic-
tion error.

Solution:

An affine predictor can be written as

Ŝn = h0 + hTN · Sn−k

with h0 and
hN = [h1 h2 · · · hN ]T

being the parameters of the affine predictor.

The prediction error is then given by

Un = Sn − Ŝn = Sn − h0 − hTN Sn−k

For the mean of the prediction error, we obtain

µU = E{Un} = E{Sn} − h0 − hTN E{Sn−k}
= µS − h0 − µS hTN eN

= µS (1− hTN eN )− h0

The variance of the prediction error is given by

σ2
U = E

{(
U − E{U}

)2}
= E

{(
Sn − h0 − hTN Sn−k − µS (1− hTN eN ) + h0

)2}
= E

{(
(Sn − µS)− hTN (Sn−k − µSeN )

)2}
= E

{(
Sn − µS

)2}− 2hTN E
{(
Sn − µS

)(
Sn−k − µSeN

)}
+E

{(
Sn−k − µSeN

)(
Sn−k − µSeN

)T}
= σ2

S − 2hTN c1 + hTN CN hN

The mean squared prediction error can be written as

ε2U = σ2
U + µ2

U

= σ2
S − 2hTN c1 + hTN CN hN +

(
µS (1− hTN eN )− h0

)2
The MSE is a convex function of the parameters hk, with 0 ≤ k ≤ N .

1



We first consider the minimization of the MSE with respect to h0.
Since the first term of the MSE (which represents the variance) is
independent of h0, the minimization yields

∂

∂h0
ε2U = 2

(
µS (1− hTN eN )− h0

)
(−1)

0 = µS (1− hTN eN )− h0

h0 = µS (1− hTN eN ) = µS

(
1−

N∑
i=1

hi

)
The resulting mean squared prediction error is

ε2U = σ2
U = σ2

S − 2hTN c1 + hTN CN hN

For deriving the vector hN that minimizes the variance, we write the
vector and matrix multiplications as sums:

σ2
U = σ2

S − 2

N∑
i=1

hi(c1)i +

N∑
i=0

N∑
j=0

hihj(CN )ij

Since σ2
U is a convex function with respect to the parameters hk, with

1 ≤ k ≤ N , the parameters that minimize the variance can be found
be setting the first derivatives equal to 0.

For 1 ≤ k ≤ 1, we have

∂

∂hk
σ2
U = −2 (c1)k + 2hk (CN )kk +

∑
i 6=k

hi (CN )ik +
∑
i 6=k

hi (CN )ki

0 = −2 (c1)k + 2

N∑
i=0

hi (CN )ik,

yielding

N∑
i=0

(CN )ki hi = (c1)k

(CN )k hN = (c1)k,

where (CN )k denotes the k-th row of the matrix CN .

By combining all N equations, we obtain the matrix equation

CN · hN = c1

And by multiplication with the inverse autocovariance matrix from
the front, we obtain

hN = C−1N · c1
Hence, the affine predictor that minimizes the mean squared predic-
tion error is given by

hN = C−1N · c1
h0 = µS (1− hT

N eN ) = µS (1− cT1 C−1N eN )
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(b) Derive expressions for the mean and the variance of the resulting
prediction error as well as for the mean squared error.

Solution:

For the mean of the prediction error, we obtain

µU = µS (1− hT
N eN )− ho

= µS (1− hT
N eN )− µS (1− hT

N eN )

= 0

By inserting CNhN = c1 into the expression for the variance, we
obtain

σ2
U = σ2

S − 2hTN c1 + hTN CN hN

= σ2
S − 2hTN c1 + hTN c1

= σ2
S − hTN c1

and

σ2
U = σ2

S − hTN c1

= σ2
S −

(
C−1N c1

)T
c1

= σ2
S − cT1 C−1N c1

Finally, for the mean squared prediction error, we obtain

ε2U = σ2
U + µ2

U

= σ2
U

= σ2
S − cT1 C−1N c1

3



(c) Derive the affine predictor and the resulting mean, variance and mean
squared prediction error for the special case N = 1, meaning that a
random variable Sn is predicted using the random variable Sn−1.
The correlation coefficient between successive random variables is ρ.

Solution:

The autocovariance matrix CN and the autocovariance vector c1 are
given by

CN = E
{(
Sn − µS

)2}
= σ2

S

c1 = E
{(
Sn − µS

)(
Sn−1 − µS

)}
= ρ σ2

S

For the coefficient h1 of the affine predictor that minimizes the MSE
ε2U , we obtain

CN h1 = c1

σ2
S h1 = ρ σ2

S

h1 = ρ

And for the coefficient h0, we have

h0 = µS(1− h1)

= µS(1− ρ)

So, the affine predictor is given by

Ŝn = ρ · Sn−1 + µS(1− ρ)

The resulting mean is
µU = 0,

the variance

σ2
U = σ2

S − h c1 = σ2
S − h ρσ2

S = σ2
S (1− ρ2),

and the MSE
ε2U = σ2

U + µ2
U = σ2

S (1− ρ2)

4



21. In image and video coding, a sample Sn is often predicted by directly
using a previous sample Sn−1, i.e., by Ŝn = Sn−1.

Consider a zero-mean stationary process S = {Sn} with the first-order
correlation factor ρ.

(a) For what correlation factors ρ do we observe a prediction gain (the
mean squared prediction error is smaller than the second moment of
the input)?

Solution:

The MSE (or variance) of the prediction error is given by

ε2U,1 = σ2
S − 2h c1 + h2 CN

= σ2
S − 2ρσ2

S + σ2
S

= 2σ2
S (1− ρ)

A positive prediction gain is observed for

ε2U,1 < ε2S

2σ2
S (1− ρ) < σ2

S

2(1− ρ) < 1

(1− ρ) <
1

2

ρ >
1

2

(b) For what correlation factors is the loss versus optimal linear predic-
tion smaller than 0.1 dB?

In optimal prediction, we have h = ρ, yielding the MSE

ε2U,opt = σ2
S − h c1 + h2 CN

= σ2
S − 2ρ2σ2

S + ρ2σ2
S

= σ2
S (1− ρ2)

The loss in prediction gain is smaller than 0.1 dB, if we have

−10 log10

ε2U,opt
ε2U,1

<
1

10

log10

σ2
S (1− ρ2)

2σ2
S (1− ρ)

> − 1

100

1 + ρ

2
> 10−

1
100

ρ > 2 · 10−
1

100 − 1 ≈ 0.9545
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22. Consider prediction in images. Assume that an image can be considered
as a realization of a stationary 2-d process with mean µS and variance σ2

S .

We want to linearily predict a current sample based on up to three (already
coded) neigbouring samples: the sample to the left of the current sample,
the sample above the current sample, and the sample to the top-left of
the current sample.

The correlation factor between two horizontally adjacent samples is ρH ,
the correlation factor between two vertically adjacent samples is ρV , and
the correlation factor between two diagonally adjacent samples is ρD (same
in both directions).

The goal is to design linear predictors that minimize the mean squared
prediction error. The mean µS is subtracted from both the current sample
and the samples used for prediction before doing the prediction.

(a) Assume that ρH > ρV .

Compare optimal linear prediction using only the horizontally adja-
cent sample and optimal linear prediction using both the horizontally
and the vertically adjacent sample.

Under which cicumstances is the prediction using both samples better
than the prediction using only the horizontally adjacent sample?

Solution:

We first consider optimal linear prediction using only the horizontally
adjacant sample. The predictor is given by

ŜX = µS + h (SH − µS)

yielding the prediction error

UH = SX − ŜX = SX − µS − h (SH − µS)

For the mean squared prediction error, we obtain

ε2H = E
{
U2
H

}
= E

{(
SX − µS + h (SH − µS)

)2}
= E

{(
SX − µS

)2}− 2hE
{(
SX − µS)

)(
SH − µS)

)}
+h2E

{(
SH − µS

)2}
= σ2

S − 2hρHσ
2
S + h2σ2

S

= σ2
S(1− 2hρH + h2)

The prediction coefficient that minimizes the MSE is given by

h = ρH

yielding
ε2H = σ2

S

(
1− ρ2H

)
Now, we consider optimal linear prediction using the horizontally and
the vertically adjacant sample. The predictor is given by

ŜX = µS + h2 (SHV − µSe2)
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with h2 = [h v]T , SHV = [SH SV ]T , and e2 = [1 1]T .

For the mean squared prediction error, we obtain

ε2HV = E
{
U2
HV

}
= E

{(
SX − µS + h2 (SHV − µSe2)

)2}
= E

{(
SX − µS

)2}− 2h2E
{(
SX − µS

)(
SH − µSe2

)}
+hT2 E

{(
SHV − µSe2

)(
SHV − µSe2

)T}
= σ2

S − 2h2c + hT2 Ch2

with the autocovariance matrix

C = E

{[
SH − µS
SV − µS

]
·
[
SH − µS SV − µS

]}
= σ2

S

[
1 ρD
ρD 1

]
and the autocovariance vector

c = E

{[
SH − µS
SV − µS

]
· (Sx − µS)

}
= σ2

S

[
ρH
ρV

]
The prediction coefficients that minimize the MSE are given by the
solution of

σ2
S

[
1 ρD
ρD 1

]
·
[
h
v

]
= σ2

S

[
ρH
ρV

]
Hence, we have the two equations

h+ ρD · v = ρH

ρD · h+ v = ρV

Multiplying the second equation by −ρD and adding the result to
the first equation yields(

1− ρ2D
)
h = ρH − ρDρV

h =
ρH − ρDρV

1− ρ2D
Similarly, we obtain

v =
ρV − ρDρH

1− ρ2D
yieling

h2 =
1

1− ρ2D

[
ρH − ρDρV
ρV − ρDρH

]
For the MSE, we obtain

ε2HV = σ2
S − cT h2

= σ2
S −

σ2
S

1− ρ2D

[
ρH ρV

] [ ρH − ρDρV
ρV − ρDρH

]
= σ2

S −
σ2
S

1− ρ2D

(
ρ2H + ρ2V − 2ρDρHρV

)
= σ2

S

(
1− ρ2H + ρ2V − 2ρDρHρV

1− ρ2D

)

7



The difference between the MSE ε2H and ε2HV is

ε2H − ε2HV = σ2
S (1− ρ2H)− σ2

S

(
1− ρ2H + ρ2V − 2ρDρHρV

1− ρ2D

)
= σ2

S

(
ρ2H + ρ2V − 2ρDρHρV

1− ρ2D
− ρ2H

)
= σ2

S

(
ρ2H + ρ2V − 2ρDρHρV − ρ2H + ρ2Dρ

2
H

1− ρ2D

)
= σ2

S

(
(ρV )2 − 2(ρDρH)(ρV ) + (ρDρH)2

1− ρ2D

)
= σ2

S

(ρV − ρDρH)2

1− ρ2D

The MSE for the 2-sample prediction is never greater than the MSE
for the 1-sample prediction. In general (ρD 6= ρV

ρH
), the MSE can be

reduced by using the vertically adjacent sample in addition to the
horizontally adjacent sample for prediction.
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(b) Consider the special case ρH = ρV = ρ and ρD = ρ2.

Derive the prediction gain g = σ2
S/ε

2 for the optimal vertical predic-
tors using

• the sample to the left

• the sample to the left and the sample above

• the sample to the left, the sample above, and the sample to the
top-left

What are the prediction gains in dB for ρ = 0.95?

Solution:

For the predictor using the horizontally adjacent sample, we have

gH =
σ2
S

ε2H

=
σ2
S

σ2
S (1− ρ2H)

=
1

1− ρ2

For the predictor that uses the horizontally and the vertically adja-
cent sample, we have

gHV =
σ2
S

ε2HV

=
σ2
S

σ2
S

(
1− ρ2H+ρ2V −2ρDρHρV

1−ρ2D

)
=

1− ρ2D
1− ρ2D − ρ2H − ρ2V + 2ρDρHρV

=
1− ρ4

1− ρ4 − ρ2 − ρ2 + 2ρ4

=
1− ρ4

1− 2ρ2 + ρ4
=

(
1− ρ2

)(
1 + ρ2

)(
1− ρ2

)2
=

1 + ρ2

1− ρ2

For the predictor that uses all three adjacent samples, the prediction
coefficients h3 = [h v d]T are given by the solution of the linear
equation system

C3 h3 = c3

with

C3 = σ2
S

 1 ρD ρV
ρD 1 ρH
ρV ρH 1

 = σ2
S

 1 ρ2 ρ
ρ2 1 ρ
ρ ρ 1


and

c3 = σ2
S

 ρH
ρV
ρD

 = σ2
S

 ρ
ρ
ρ2


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Hence, we have

h+ ρ2 · v + ρ · d = ρ

ρ2 · h+ v + ρ · d = ρ

ρ · h+ ρ · v + d = ρ2

Multiplying the last equation by −ρ and adding it to the first and
second equation yields

(1− ρ2)h = ρ (1− ρ2)

(1− ρ2) v = ρ (1− ρ2)

and, hence,
h = v = ρ

Inserting this in the third equation of the above equation system
yields

d = −ρ2

Hence, we have

h3 =

 ρ
ρ
−ρ2


And for the MSE, we obtain

ε2HVD = σ2
S − cT3 h3

= σ2
S − σ2

S

[
ρ ρ ρ2

]  ρ
ρ
−ρ2


= σ2

S − σ2
S

(
ρ2 + ρ2 − ρ4

)
= σ2

S

(
1− 2ρ2 + ρ4

)
= σ2

S

(
1− ρ2

)2
Hence, the prediction gain is

gHVD =
σ2
S

ε2HVD
=

1(
1− ρ2

)2
For ρ = 0.95, we get the following prediction gains in dB:

GH = 10 log10

1

1− ρ2
≈ 10.11 dB

GHV = 10 log10

1 + ρ2

1− ρ2
≈ 12.90 dB

GHVD = 10 log10

1(
1− ρ2

)2 ≈ 20.22 dB
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23. Given is a stationary AR(2) process

Sn = Zn + α1 · Sn−1 + α2 · Sn−2

where {Zn} represents zero-mean white noise.

The AR parameters are α1 = 0.7 and α2 = 0.2.

(a) Determine the correlation factors ρ1 and ρ2, where ρ1 is the corre-
lation factor between adjacent samples Sn and Sn−1, and ρ2 is the
correlation factor between samples Sn and Sn−2 that are two sam-
pling intervals apart.

Solution:

The covariance between two samples Sn and Sn−1 is given by

E{SnSn−1} = E{(Zn + α1Sn−1 + α2Sn−2)Sn−1}
= E{Zn Sn−1}+ α1E{S2

n−1}+ α2E{Sn−1 Sn−2}
ρ1 σ

2
S = α1 σ

2
S + α2 ρ1 σ

2
S

ρ1 (1− α2) = α1

yielding

ρ1 =
α1

1− α2
=

0.7

1− 0.2
= 0.875

Similarly, the covariance between two samples Sn and Sn−2 is given
by

E{SnSn−2} = E{(Zn + α1Sn−1 + α2Sn−2)Sn−2}
= E{Zn Sn−2}+ α1E{Sn−1Sn−2}+ α2E{S2

n−2}
ρ2 σ

2
S = α1 ρ1 σ

2
S + α2 σ

2
S

ρ2 = α1 ρ1 + α2

= α1
α1

1− α2
+ α2

=
α2
1 − α2

2 + α2

1− α2

yielding

ρ2 =
α2
1 − α2

2 + α2

1− α2
=

0.72 − 0.22 + 0.2

1− 0.2
= 0.8125
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(b) Derive the optimal linear predictor (minimizing the MSE) using the
2 previous samples.

Determine the prediction gain in dB.

Solution:

The predictor is given by

Ŝn = [h1 h2]

[
Sn−1
Sn−2

]
The optimal predictor is the solution of the following linear equation
system

C2 · h = c1

σ2
S

[
1 ρ1
ρ1 1

]
·
[
h1
h2

]
= σ2

S

[
ρ1
ρ2

]
or

h1 + ρ1 h2 = ρ1

ρ1 h1 + h2 = ρ2

yielding

(1− ρ21)h1 = ρ1 − ρ1 ρ2

h1 = ρ1
1− ρ2
1− ρ21

= 0.875 · 1− 0.8125

1− 0.8752

h1 = 0.7

and

h2 = ρ2 − h1 ρ1
= 0.8125− 0.7 · 0.875

h2 = 0.2

It should be noted that the prediction coefficients are equal to the AR
parameters (h1 = α1 and h2 = α2), which can be shown by inserting
the formulas for the correlation factors in the above equations.

For the variance of the prediction error, we obtain

σ2
U = σ2

S − hT · c1
= σ2

S − h1 · ρ1σ2
S − h2 · ρ2σ2

S

= σ2
S (1− h1 · ρ1 − h2 · ρ2)

= σ2
S (1− 0.7 · 0.875− 0.2 · 0.8125)

σ2
U = 0.225 · σ2

S

yielding the prediction gain

GP = 10 · log10

σ2
S

σ2
U

= 10 · log10

1

0.225
GP ≈ 6.4782 dB
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(c) Derive the optimal linear predictor (minimizing the MSE) using only
the directly preceeding sample.

What is the prediction gain in dB?.

What is the loss relative to an optimal prediction using the last two
samples?

Solution:

The optimal prediction coefficient is the solution of the equation

C1 · h = c1

σ2
S · h = ρ1 · σ2

S

yielding
h = ρ1 = 0.875

The resulting prediction error variance is given by

σ2
U = σ2

S − h · c1
= σ2

S − ρ1 · ρ1 · σ2
S

= σ2
S (1− ρ21)

= σ2
S (1− 0.8752)

σ2
U = 0.234375 · σ2

S

yielding the prediction gain

GP = 10 · log10

σ2
S

σ2
U

= 10 · log10

1

0.234375
GP ≈ 6.3009 dB

The loss versus optimal prediction is

L = 10 · log10

0.234375σ2
S

0.225σ2
S

= 10 · log10

0.234375

0.225
≈ 0.1773 dB
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(d) Can the linear predictor using the directly preceeding sample, given
by

Un = Sn − ρ1 · Sn−1.
be improved by adding a second prediction stage

Vn = Un − h · Un−1?

What is the optimal linear predictor for the second prediction stage?

What is the prediction gain achieved by the second prediction stage?

How big is the loss versus optimal linear prediction using the last two
samples?

Solution:

The covariance of the prediction error after the first stage is given by

E{Un Un−1} = E{(Sn − ρ1 Sn−1) (Sn−1 − ρ1 Sn−2)}
= E{Sn Sn−1} − ρ1E{S2

n−1} − ρ1E{Sn Sn−2}
+ρ21E{Sn−1 Sn−2}

ρU σ
2
U = ρ1 σ

2
S − ρ1 σ2

S − ρ1ρ2 σ2
S + ρ31 σ

2
S

= σ2
S · ρ1 (ρ21 − ρ2)

Since, the covariance is not equal to zero (for ρ2 6= ρ21), the prediction
can be improved by adding a second prediction stage.

Inserting the formula for the prediction error variance after the first
prediction stage, σ2

U = σ2
S (1−ρ21), which has been derived above, we

obtain

ρU σ
2
U = σ2

S · ρ1 (ρ21 − ρ2)

ρU σ
2
S (1− ρ21) = σ2

S · ρ1 (ρ21 − ρ2)

ρU = ρ1
ρ21 − ρ2
1− ρ21

= 0.875 · 0.8752 − 0.8125

1− 0.8752

= −0.175

Hence, the optimal second stage predictor is given by

h = ρU = −0.175

and the final prediction error becomes

σ2
V = σ2

U (1− ρ2U )

= 0.969375σ2
U

yielding the second stage prediction gain

Gp = 10 · log10

σ2
U

σ2
V

= 10 · log10

1

0.969375
≈ 0.1351 dB

14



For the loss versus optimal prediction using the last two samples, we
obtain

L = 10 log10

0.969375σ2
U

0.225σ2
S

= 10 log10

0.969375 · 0.234375σ2
S

0.225σ2
S

= 10 log10

0.969375 · 0.234375

0.225
≈ 0.0422 dB
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24. Consider a zero-mean Gauss-Markov process with the correlation factor
ρ = 0.9.

The Gauss-Markov source is coded using DPCM at high rates. The quan-
tizer is an entropy-contrained Lloyd quantizer with optimal entropy cod-
ing.

(a) Neglect the quantization and derive the optimal linear predictor (min-
imizing the MSE) using the previous sample.

Determine the prediction gain.

Solution:

The optimal linear predictor is given by

ŜN = h · Sn−1 with h = ρ

The resulting prediction error is

σ2
U = σ2

S (1− ρ2)

Hence, we have the prediction gain

GP = 10 · log10

σ2
S

σ2
U

= 10 · log10

1

1− ρ2

= 10 · log10

1

1− 0.92

≈ 7.2125 dB

(b) Use the predictor derived in (24a) inside the DPCM loop.

Assume that the prediction error has a Gaussian distribution.

What is the approximate coding gain compared to ECSQ without
prediction at the rates R1 = 1 bit per sample, R2 = 2 bit per sample,
R3 = 3 bit per sample, R4 = 4 bit per sample, and R5 = 8 bit per
sample?

Solution:

For the prediction samples, we can write

Ŝn = h · S′n−1 = h · (Sn−1 −Qn−1),

where Qn = Sn − S′n represents the quantization error.

For the prediction error, we obtain

Un = Sn − Ŝn = Sn − hSn−1 + hQn−1

The mean of the prediction error is

µU = E{Un} = E{Sn} − hE{Sn}+ hE{Qn}
= µS(1− h) + µQ

= 0
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Note that {Sn} is a zero-mean process and µQ is zero, since an
entropy-constrained quantizer is a centroidal quantizer for which the
mean of the quantization error is always zero.

For the prediction error variance, we obtain

σ2
U = E{U2

n} = E{(Sn − hSn−1 + hQn−1)2}
= E{S2

n} − 2hE{Sn Sn−1}+ 2hE{SnQn−1}
+h2E{S2

n−1}+ h2E{Q2
n−1} − 2h2E{Sn−1Qn−1}

= σ2
S − 2hρσ2

S + h2σ2
S + h2σ2

Q

+2hE{SnQn−1} − 2h2E{Sn−1Qn−1}
= σ2

S − 2ρ2σ2
S + ρ2σ2

S + ρ2σ2
Q

+2ρE{SnQn−1} − 2ρ2E{Sn−1Qn−1}
= (1− ρ2)σ2

S + ρ2σ2
Q + 2ρE{SnQn−1} − 2ρ2E{Sn−1Qn−1}

For the cross-term, we have

2ρE{SnQn−1} − 2ρ2E{Sn−1Qn−1}
= 2ρE{(Zn + ρSn−1)Qn−1} − 2ρ2E{Sn−1Qn−1}
= 2ρE{ZnQn−1}+ 2ρ2E{Sn−1Qn−1} − 2ρ2E{Sn−1Qn−1}
= 2ρE{ZnQn−1}
= 0

yielding the prediction error variance

σ2
U = (1− ρ2)σ2

S + ρ2σ2
Q

For high rates (which we consider), the quantization error can be ex-
pressed using the high-rate approximation for the entropy-constrained
Lloyd quantizer for Gaussian sources

σ2
Q =

πe

6
· σ2

U · 2−2R

yielding

σ2
U = (1− ρ2)σ2

S + ρ2 · πe
6
· σ2

U · 2−2R

σ2
U

(
1− πe

6
· ρ2 · 2−2R

)
= (1− ρ2)σ2

S

σ2
U = σ2

S ·
1− ρ2

1− πe
6 · ρ2 · 2−2R

σ2
U = 6 · σ2

S ·
1− ρ2

6− π · e · ρ2 · 2−2R

And for the quantization error (for high rates), we get

σ2
Q =

πe

6
· σ2

U · 2−2R

=
πe

6
·
(

6 · σ2
S ·

1− ρ2

6− π · e · ρ2 · 2−2R

)
· 2−2R

= σ2
S ·
(

πe(1− ρ2)

6− π · e · ρ2 · 2−2R

)
· 2−2R
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Without prediction, we would have the high-rate quantization error

σ2
Q0 =

πe

6
· σ2

S · 2−2R

Hence, the coding gain (for high rates) is given by

GC(R) = 10 · log10

σ2
Q0

σ2
Q

= 10 · log10

6− πeρ2 · 2−2R

6 · (1− ρ2)

The coding gain is dependent on the actual bit rate.

For the rate R1 = 1, we obtain

GC(R1) = 10 · log10

6− πe · 0.92 · 2−2

6 · (1− 0.92)

≈ 5.7359 dB

For the rate R2 = 1, we obtain

GC(R2) = 10 · log10

6− πe · 0.92 · 2−4

6 · (1− 0.92)

≈ 6.8877 dB

For the rate R3 = 3, we obtain

GC(R3) = 10 · log10

6− πe · 0.92 · 2−6

6 · (1− 0.92)

≈ 7.1335 dB

For the rate R4 = 4, we obtain

GC(R3) = 10 · log10

6− πe · 0.92 · 2−8

6 · (1− 0.92)

≈ 7.1929 dB

For the rate R5 = 8, we obtain

GC(R3) = 10 · log10

6− πe · 0.92 · 2−16

6 · (1− 0.92)

≈ 7.2124 dB

The coding gain increase with increasing bit rate. For R appraoching
infinity, the coding gain approaches the prediction gain:

lim
R→∞

GC(R) = 10 · log10

1

1− 0.92
= GP

In the following diagram, the DPCM coding gain is plotted as func-
tion of the bit rate. For bit rates less than 1 bit per sample, our high
rate assumption is not valid.
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