JPEG Image Coding Standard

- International Standardization of Image Coding
- JPEG
The Scope of Picture and Video Coding Standardization

- Only Restrictions on the *Bitstream, Syntax, and Decoder* are standardized:
 - Permits optimization beyond the obvious
 - Permits complexity reduction for implementability
 - Provides *no* guarantees of Quality
Why Do We Need Standards?

- Image (and video) coding standards provide *interoperability* between codecs built by different manufactures
 - Basis for most products in communication technology
 - Standards based products can be built with common software and hardware tools
 - Only syntax and decoder specified

- Standards provide state-of-the-art technology that is developed by a group of experts in the field
 - Actual performance depends on implementation of standard regarding error resilience, delay, display
 - Encoder is not standardized and its optimization is left to the manufacturer
Standardization of Image Coding

- ITU-R Radiocommunications (www.itu.int/ITU-R)
 SG 6 - Broadcasting Service (terrestrial and satellite)
 - Standards for digital high definition television
 - Objective picture quality parameters and associated measurement and monitoring methods for television images
- ITU-T Telecommunication Standardization (www.itu.int/ITU-T)
 SG 9 - Integrated broadband cable networks and television and sound transmission
 - Objective and subjective methods for evaluating conversational audiovisual quality in multimedia services
 - Digital transmission of television signals for contribution
- SG 16 – Multimedia services, systems and terminals
 - Video and data conferencing using Internet-supported services
 - Advanced video coding
- ISO/IEC JTC1 SC29 Coding of audio, picture, multimedia and hypermedia information (www.iso.ch/meme/JTC1SC29.html)
 WG 1 - Digital compression and coding of still pictures (JPEG)
 WG 11 - Generic coding of moving pictures and associated audio information (MPEG)
JPEG: Image Partitioning

8x8 Blocks

Padded Blocks
JPEG: Baseline Algorithm

Image in ➔ Block wise 8x8 DCT ➔ Weighting / uniform quantization ➔ Entropy coding ➔ Bitstream out

Table specifications (transmitted as side information)

Image out ➔ Block wise inverse 8x8 DCT ➔ Inverse weighting ➔ Entropy decoding ➔ Bitstream in
JPEG: Quantizer Step Size

- Different weighting matrices are standardized, adapted to human visual contrast sensitivity
- Example: Inverse weighting for ITU-R 601 images

<table>
<thead>
<tr>
<th>Luminance</th>
<th>Chrominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 11 10 16 24 40 51 61</td>
<td>17 18 24 47 99 99 99 99</td>
</tr>
<tr>
<td>12 12 14 19 26 58 60 55</td>
<td>18 21 26 66 99 99 99 99</td>
</tr>
<tr>
<td>14 13 16 24 40 57 69 56</td>
<td>24 26 56 99 99 99 99 99</td>
</tr>
<tr>
<td>14 17 22 29 51 87 80 62</td>
<td>47 66 99 99 99 99 99 99</td>
</tr>
<tr>
<td>18 22 37 56 68 109 103 77</td>
<td>99 99 99 99 99 99 99 99</td>
</tr>
<tr>
<td>24 35 55 64 81 104 113 92</td>
<td>99 99 99 99 99 99 99 99</td>
</tr>
<tr>
<td>49 64 78 87 103 121 120 101</td>
<td>99 99 99 99 99 99 99 99</td>
</tr>
<tr>
<td>72 92 95 98 112 100 103 99</td>
<td>99 99 99 99 99 99 99 99</td>
</tr>
</tbody>
</table>

Thomas Wiegand: Digital Image Communication JPEG Image Coding Standard 7
Quantization of DCT Coefficients

- Differential coding of DC coefficient: DPCM using previous quantized DC coefficient as predictor
- Zig-zag scan of AC coefficients
Features of the JPEG “baseline system”
- Represents a minimum of capabilities
- Compression of digital images with 8-bit representation
- Sequential processing of blocks, i.e. starting from upper left corner moving to right side
- Transform coding using 8x8 block DCT
- Scalar quantization of transform coefficients with weighting matrix
- Zig-zag scan and successive entropy coding with prefix-free codes

Extended DCT-based system
- Digital images with 8 and 12-bit representation
- Sequential as well as progressive block handling
- Prefix-free or arithmetic codes
JPEG – Beyond Baseline

- **Lossless mode**
 - DPCM-based (no DCT)
 - Compression of digital images with 2 – 16 bits representation
 - Sequential processing of blocks
 - Prefix-free codes

- **Hierarchical mode**
 - Multiple pictures encoded differentially as well as non-differentially
 - Employs extended DCT-based or lossless JPEG mode
Entropy Coding

- Two methods for entropy coding defined
 - Prefix-free coding
 - Arithmetic coding

- Two options for Prefix-free coding of run-level pairs
 - Predefined code tables (one-pass system)
 - Code tables optimized for individual image (two-pass system)

- Arithmetic coding
 - Binary coder
 - Default conditioning table
 - Adaptive to actual symbol statistics
Coding Results

Original Coded at rate 1:150
Coding Results: Detail

Original

Coded at rate 1:150
Summary

- International Standardization of Image Coding is conducted to achieve inter-operability and to provide state-of-the-art technology
- Only syntax and decoder are specified
- JPEG started in 1986 and is a well established image coding standard
- JPEG still provides competitive performance for the medium bit-rate range