Information and Entropy

- Shannon’s Separation Principle
- Source Coding Principles
- Entropy
- Variable Length Codes
- Huffman Codes
- Joint Sources
- Arithmetic Codes
- Adaptive Codes
Shannon's Separation Principle

Assumptions:
- Single source and user
- Unlimited complexity and delay

Information Source
- Generates information we want to transmit or store

Source Coding
- Reduces number of bits to store or transmit relevant information

Channel Coding
- Increases number of bits or changes them to protect against channel errors
Many applications are not uni-directional point-to-point transmissions:
- Feedback
- Networks

In any practical system, we cannot afford unlimited complexity *neither unlimited delay*:
- There will always be a small error rate unless we tolerate sub-optimality
- It might work better to consider source and channel coding jointly
- Consider effect of transmission errors on source decoding result
Source Coding Principles

 IS The source coder shall represent the video signal by the minimum number of (binary) symbols without exceeding an acceptable level of distortion.

- Two principles are utilized:

 1. Properties of the information source that are known a priori result in redundant information that need not be transmitted (“redundancy reduction”).

 2. The human observer does not perceive certain deviations of the received signal from the original (“irrelevancy reduction”).

- Lossless coding: completely reversible, exploit 1. principle only
- Lossy coding: not reversible, exploit 1. and 2. principle
Entropy of a Memoryless Source

- Let a memoryless source be characterized by an ensemble U_0 with:
 - Alphabet \{ a_0, a_1, a_2, ..., a_{K-1} \}
 - Probabilities \{ $P(a_0)$, $P(a_1)$, $P(a_2)$, ..., $P(a_{K-1})$ \}

- Shannon: information conveyed by message “a_k“:
 \[
 I(a_k) = - \log(P(a_k))
 \]

- ”Entropy of the source“ is the average information contents:
 \[
 H(U_0) = E\{I(a_k)\} = - \sum_{k=0}^{K-1} P(a_k) \cdot \log(P(a_k))
 \]

- For „log“ = „log$_2$“ the unit is bits/symbol
Entropy and Bit-Rate

• Properties of entropy:

\[H(U_0) \geq 0 \]

\[\max \{ H(U_0) \} = \log K \text{ with } P(a_j) = P(a_k) \text{ for all } j, k \]

\[\lambda_{av} = \sum_{k=0}^{K-1} P(a_k) \times \lambda_{cw}(a_k) \]

- The entropy \(H(U_0) \) is a lower bound for the average word length \(\lambda_{av} \) of a decodable variable length code with \(\lambda_{cw}(a_k) \) being individual code word lengths.

- Conversely, the average word length \(\lambda_{av} \) can approach \(H(U_0) \), if sufficiently large blocks of symbols are encoded jointly.

- Redundancy of a code:

\[\rho = \lambda_{av} - H(U_0) \geq 0 \]
A code without redundancy, i.e.

\[\lambda_{av} = H(U_0) \]

is achieved, if all individual code word lengths

\[\lambda_{cw}(a_k) = - \log (P(a_k)) \]

For binary code words, all probabilities would have to be binary fractions:

\[P(a_k) = 2^{-\lambda_{cw}(a_k)} \]
Redundant Codes: Example

<table>
<thead>
<tr>
<th>a_i</th>
<th>$P(a_i)$</th>
<th>Redundant code</th>
<th>Optimum code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>0.500</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>a_2</td>
<td>0.250</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>a_3</td>
<td>0.125</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>a_4</td>
<td>0.125</td>
<td>11</td>
<td>111</td>
</tr>
</tbody>
</table>

$H(U_0) = 1.75$ bits

$\lambda_{av} = 2$ bits

$\rho = 0.25$ bits

$\lambda_{av} = 1.75$ bits

$\rho = 0$ bits
Variable Length Codes

- Unique decodability: Where does each code word start or end
- Insert start symbol: 01.0.010.1. wasteful
- Construct prefix-free code
- Kraft Inequality: test for uniquely decodable codes

\[\sum_{k=0}^{K-1} 2^{-\lambda_{cw}(a_k)} \leq 1 \]

- Application:

<table>
<thead>
<tr>
<th>(a_i)</th>
<th>(P(a_i))</th>
<th>(-\log_2(P(a_i)))</th>
<th>Code A</th>
<th>Code B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.2</td>
<td>2.32</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0.2</td>
<td>2.32</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>(a_4)</td>
<td>0.1</td>
<td>3.32</td>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

\(\zeta = 1.125\) Not uniquely decodable
\(\zeta = 1\) Uniquely decodable
Prefix-Free Codes

- Prefix-free codes are instantaneously and uniquely decodable
- Prefix-free codes can be represented by trees

Prefix-Free Codes

- Terminal nodes may be assigned code words
- Interior nodes cannot be assigned code words
- For binary trees: N terminal nodes: $N-1$ interior nodes

Code 0, 01, 11 is not a prefix-free code and uniquely decodable but: non-instantaneous
Huffman Code

- Design algorithm for variable length codes proposed by D. A. Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:

1. Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
2. Calculate the probability of the auxiliary symbol.
3. If more than one symbol remains, repeat steps 1 and 2 for the new auxiliary alphabet.
4. Convert the code tree into a prefix code.
Huffman Code: Example

1. Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
2. Calculate the probability of the auxiliary symbol.
3. If more than one symbol remains, repeat steps 1 and 2 for the new auxiliary alphabet.
4. Convert the code tree into a prefix code.
Joint Sources

- Joint sources generate N symbols simultaneously.
- A coding gain can be achieved by encoding those symbols jointly.
- The lower bound for the average code word length is the joint entropy:

$$H(U_1, U_2, \ldots, U_N) = -\sum_{u_1} \sum_{u_2} \cdots \sum_{u_N} P(u_1, u_2, \ldots, u_N) \cdot \log(P(u_1, u_2, \ldots, u_N))$$

- It generally holds that

$$H(U_1, U_2, \ldots, U_N) \leq H(U_1) + H(U_2) + \cdots + H(U_N)$$

with equality, if U_1, U_2, \ldots, U_N are statistically independent.
Markov Process

- Neighboring samples of the video signal are not statistically independent:

 Source with memory

 \[P(u_T) \neq P(u_T \mid u_{T-1}, u_{T-2}, ..., u_{T-N}) \]

- A source with memory can be modeled by a Markov random process.
- Conditional probabilities of the source symbols \(u_T \) of a Markov source of order \(N \):

 \[P(u_T \mid Z_T) = P(u_T \mid u_{T-1}, u_{T-2}, ..., u_{T-N}) \]

 state of the Markov source at time \(T \)
Entropy of Source with Memory

- Markov source of order N: conditional entropy

$$H(U_T | Z_T) = H(U_T | U_{T-1}, U_{T-2}, ..., U_{T-N})$$
$$= -\sum_{u_T} \sum_{u_{T-N}} p(u_T, u_{T-1}, u_{T-2}, ..., u_{T-N}) \log(p(u_T | u_{T-1}, u_{T-2}, ..., u_{T-N}))$$

$$H(U_T) \geq H(U_T | Z_T)$$

(equality for memoryless source)

- Average code word length can approach $H(U_T | Z_T)$ e.g. with a switched Huffman code

- Number of states for an 8-bit video signal:

 - $N = 1$: 256 states
 - $N = 2$: 65536 states
 - $N = 3$: 16777216 states
Second Order Statistics for Luminance Signal

Histogram of two horizontally adjacent pels
(picture: female head-and-shoulder view)
Arithmetic Coding

- Universal entropy coding algorithm for strings
- Representation of a string by a subinterval of the unit interval $[0,1)$
- Width of the subinterval is approximately equal to the probability of the string $p(s)$

- Interval of width $p(s)$ is guaranteed to contain one number that can be represented by b binary digits, with
 $$- \log(p(s)) + 1 \leq b \leq - \log(p(s)) + 2$$

- Each interval can be represented by a number which needs 1 to 2 bits more than the ideal code word length
Arithmetic Coding: Probability Intervals

- Random experiment: pmf $p(\text{“s”}) = (0.01)_b$ and $p(\text{“w”}) = (0.11)_b$

- Multiplications and additions with (potentially) very long word length
- Universal coding: probabilities can be changed on the fly:
 e.g., use $p(\text{“s” I “s”}), p(\text{“s” I “w”}), p(\text{“w” I “s”}), p(\text{“w” I “w”})$
Arithmetic Encoding and Decoding

- Encoding: “w”, “s”, “s”, “s” ➔ 010000
- Decoding: 010 ➔ “w”, “s”
Adaptive Entropy Coding

- For non-adaptive coding methods: pdf of source must be known a priori (inherent assumption: stationary source)
- Image and video signals are not stationary: sub-optimal performance
- Solution: adaptive entropy coding
- Two basic approaches to adaptation:
 1. Forward Adaptation
 - Gather statistics for a large enough block of source symbols
 - Transmit adaptation signal to decoder as side information
 - Drawback: increased bit-rate
 2. Backward Adaptation
 - Gather statistics simultaneously at coder and decoder
 - Drawback: error resilience
- Combine the two approaches and circumvent drawbacks (Packet based transmission systems)
Forward vs. Backward Adaptive Systems

Forward Adaptation
- Source symbols → Delay → Encoding → Channel → Decoding → Reconstructed symbols
- Computation of adaptation signal

Backward Adaptation
- Source symbols → Delay → Encoding → Channel → Decoding → Reconstructed symbols
- Computation of adaptation signal
Summary

- Shannon’s information theory vs. practical systems
- Source coding principles: redundancy & irrelevancy reduction
- Lossless vs. lossy coding
- Redundancy reduction exploits the properties of the signal source.
- Entropy is the lower bound for the average code word length.
- Huffman code is optimum entropy code.
- Huffman coding: needs code table.
- Arithmetic coding is a universal method for encoding strings of symbols.
- Arithmetic coding does not need a code table.
- Adaptive entropy coding: gains for sources that are not stationary