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Shannon's Separation Principle

Assumptions:
= Single source and user
= Unlimited complexity and delay

Inf . Generates information
nformation we want to transmit or
Source store

'

Reduces number of

SOUI.’CG bits to store or
Coding transmit relevant
l information

Increases number of
Channel bits or changes them

Coding to protect against
channel errors
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Practical Systems

» Many applications are not uni-directional point-to-point
transmissions:
e Feedback
* Networks

* [n any practical system, we cannot effort unlimited
complexity neither unlimited delay:

* There will always be a small error rate unless we
tolerate sub-optimality

e It might work better to consider source and channel
coding jointly

» Consider effect of transmission errors on source
decoding result
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Source Coding Principles

» The source coder shall represent the video signal by the minimum
number of (binary) symbols without exceeding an acceptable level
of distortion.

= Two principles are utilized:

1. Properties of the information source that are known a priori
result in redundant information that need not be transmitted
(“redundancy reduction®).

2. The human observer does not perceive certain deviations of
the received signal from the original (“irrelevancy reduction®).

» | ossless coding: completely reversible, exploit 1. principle only
» | ossy coding: not reversible, exploit 1. and 2. principle
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Entropy of a Memoryless Source

= Let a memoryless source be characterized by an ensemble U, with:

Alphabet { a,, a;, a,, ... ,a 1 }
Probabilities { P(a,), P(a,), P(a,), ..., P(a.,) }

= Shannon: information conveyed by message “a,

I(a,) = - log(P(a))

= “Entropy of the source* is the average information contents:

H(Uy) = E{l(a)} = - 3 P(ay) * log(P(a)
k=0

* For ,log" = ,log," the unit is bits/symbol
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Entropy and Bit-Rate

* Properties of entropy:

H(U,) =0

max { H(Up) } = log K with P(a) = P(a,) for all J, k

= The entropy H(U,) is a lower bound for the average word length A,
of a decodable variable length code with A, (a,) being individual
code word lengths

7\‘av = Sl P(ak) * 7\‘cw(ak)

k=0

= Conversely, the average word length A, can approach H(U,), if
sufficiently large blocks of symbols are encoded jointly.

= Redundancy of a code: | p=)_, -H(U,) =0
|| H
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Encoding with Variable Word Lengths

» A code without redundancy, I.e.

kav = H(UO)

IS achieved, if all individual code word lengths

Mewl(@y) = - log (P(ay))

» For binary code words, all probabilities would
have to be binary fractions:

P(ak) — Z'ch(ak)
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Redundant Codes: Example

redundant optimum
ch P(a) code IO(:ode
a, 0.500 00 0
a, 0.250 01 10
as 0.125 10 110
a, 0.125 11 111
H(U,) =1.75 bits | A,,= 2 bits | A4,=1.75 bits
p =0.25 bits| p = 0 bits
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Variable Length Codes

» Unique decodability: Where does each code word start or end
» |[nsert start symbol: 01.0.010.1. wasteful

= Construct prefix-free code

» Kraft Inequality: test for uniquely decodable codes

Uniquely decodable code exists if

c= S 2- kcw(ak)s 1
k=0

" Application: a P(a) | -log,(P(a)) Code A Code B
a, 0.5 1 0 0
a, 0.2 2.32 01 10
a, 0.2 2.32 10 110
a, 0.1 3.32 111 111
| ¢=1125 | ¢=1
Not uniquely decodable -~ Uniquely decodable
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Prefix-Free Codes

» Prefix-free codes are instantaneously and uniquely decodable
» Prefix-free codes can be represented by trees

‘0’ terminal

root node —"

/'1 110’
branch” N
interior 1
node
‘111°

 Terminal nodes may be assigned code words
* Interior nodes cannot be assigned code words
* For binary trees: N terminal nodes: N-1 interior nodes

» Code 0, 01, 11 is not a prefix-free code and uniquely decodable

but: non-instantaneous
T H
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Huffman Code

» Design algorithm for variable length codes proposed by
D. A. Huffman (1952) always finds a code with minimum

redundancy.
= Obtain code tree as follows:

1 Pick the two symbols with lowest probabilities
and merge them into a new auxiliary symbol.

2 Calculate the probability of the auxiliary symbol.

3 If more than one symbol remains, repeat steps
1 and 2 for the new auxiliary alphabet.

4 Convert the code tree into a prefix code.
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Huffman Code: Example

7)=0,2 1
P(7)=0.23 ‘1’ p=0,57
0(6)=0,28 0 10’
p(5)=0,16 o * ‘01’

_ ‘0’ A1
p(4)_0114 ;1, p:O,43 001
‘01
p(3)=0,07 Q- 0=0,27 ‘0001’
‘01
p(2)=0,03 o p=0,13 ‘00001’
‘01

p(1)=0,02 —7 p=0,06 ‘000001

(A _ 1 Pick the two symbols with lowest probabilities
(O)_O 01 O p—0,03 and merge them into a new auxiliary symbol. ‘0000001

p Y 2 Calculate the probability of the auxiliary symbol.

3 If more than one symbol remains, repeat steps
1 and 2 for the new auxiliary alphabet.

4 Convert the code tree into a prefix code.
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Joint Sources

= Joint sources generate N symbols simultaneously.

= A coding gain can be achieved by encoding those symbols jointly.

» The lower bound for the average code word length is the joint
entropy:

H(Ug, Uy, - Un) = P > Plugug, - ,un)-log (P (ug,uz, - ,un)

= |t generally holds that

H(Ug, Uz, - \UNJ= H(Uy + H(U) + ... + H(UN)

with equality, if U,, U,, ..., Uy are statistically independent.
| H
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Markov Process

» Neighboring samples of the video signal are not statistically
iIndependent:
Source with memory

P(u;) = P(Ur | Urq, Upy, oony Upy)

= A source with memory can be modeled by a Markov random process.
= Conditional probabilities of the source symbols u; of a Markov source
of order N:

P(Ur | Zy) = P(Ur I Up g, Upp, -oy Upy)

N\

\
N\

* state of the Markov source at time T
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Entropy of Source with Memory

= Markov source of order N: conditional entropy

H(U 1 Z) = H(Up 1 Uy, Up o Ury)
= -E { Iog (p(UT I uT-l’ uT_21 reny uT-N )) }

= -ZUT ZUT_N P(Ug, Up.q, Uy, ..y U ) lOG(P(UT ULy, Uy, -y Upy)

H(U;) = H(U;I Zy) (equality for memoryless source)

= Average code word length can approach H(U; | Z;) e.g. with a
switched Huffman code
= Number of states for an 8-bit video signal:

N=1 —> 256 states

N=2 — 65536 states

N=3 —> 16777216 states
| H
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Second Order Statistics for Luminance Signal

200

Relative
frequency
of occurence -

Amplitude
adjacent pixel

Amplitude of
current pixel

Histogram of two horizontally adjacent pels
(picture: female head-and-shoulder view)
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Arithmetic Coding

= Universal entropy coding algorithm for strings

» Representation of a string by a subinterval of the unit interval [0,1)

= Width of the subinterval is approximately equal to the probability of
the string p(s)

1

0
ll'

0.1111

0.111 * Interval of width p(s) is guaranteed to
oot contain one number that can be
0.1011 represented by b binary digits, with
0.101
o 1001

-log(p(s)) + 1 = b < - log(p(s)) + 2
O 0111 :| p(s)
0.011
88101 » Each interval can be represented by a
0.0011 number which needs 1 to 2 bits more
8-88(1)1 than the ideal code word length

0
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Arithmetic Coding: Probability Intervals

= Random experiment: pmf p(“s*) = (0.01), and p(*w*) = (0.11),

Symbol w “s” “s” “s” W
11— 1  (0.0111  40.010011r 40.01000011F —* 0.01000011

S \ S S S S \
0~ 0.01-—?0.01 -—*0.01 -—%0.01 - 0.010000011

= Multiplications and additions with (potentially) very long word length
» Universal coding: probabilities can be changed on the fly:
e.g., use p(“s*1“sY), p(“s” I “w*), p(“w* 1 “s*), p(“w* | “w*)
| H
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Arithmetic Encoding and Decoding

» Encoding: “w”, “s”, “s”, “s” =» 010000
» Decoding: 010 = “w”, “s”

Probabilty intervals

s
g I

Code intervals

Moo
b=
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Adaptive Entropy Coding

» For non-adaptive coding methods: pdf of source must be known a
priori (inherent assumption: stationary source)
* Image and video signals are not stationary: sub-optimal
performance
= Solution: adaptive entropy coding
= Two basic approaches to adaptation:
1. Forward Adaptation
» Gather statistics for a large enough block of source
symbols
* Transmit adaptation signal to decoder as side information
 Drawback: increased bit-rate
2. Backward Adaptation
» Gather statistics simultaneously at coder and decoder
» Drawback: error resilience
= Combine the two approaches and circumvent drawbacks
(Packet based transmission systems)
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Forward vs. Backward Adaptive Systems

Compuation
of adaptation
signal

Forward Adaptation

T

Source
symbols

Delay ——» Encoding

[auueyd

|

>

Decoding —»

Backward Adaptation

Reconstructed
symbols

Computation Computation
Delay »of adaptation - of ad_aptatlonH Delay
signal > signal
I L % i I
>
@
Source » Encoding > Decoding >Reconstructed
symbols symbols
| H
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Summary

» Shannon’s information theory vs. practical systems

= Source coding principles: redundancy & irrelevancy reduction

= | ossless vs. lossy coding

» Redundancy reduction exploits the properties of the signal source.

= Entropy is the lower bound for the average code word length.

» Huffman code is optimum entropy code.

» Huffman coding: needs code table.

= Arithmetic coding is a universal method for encoding strings of
symbols.

= Arithmetic coding does not need a code table.

= Adaptive entropy coding: gains for sources that are not stationary
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