Rate Distortion Theory & Quantization

» Rate Distortion Theory

» Rate Distortion Function

= R(D*) for Memoryless Gaussian Sources
= R(D*) for Gaussian Sources with Memory
= Scalar Quantization

» Lloyd-Max Quantizer

» High Resolution Approximations

» Entropy-Constrained Quantization

= Vector Quantization
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Rate Distortion Theory

» Theoretical discipline treating data compression from
the viewpoint of information theory.

» Results of rate distortion theory are obtained without
consideration of a specific coding method.

» Goal: Rate distortion theory calculates minimum

transmission bit-rate R for a given distortion D and
source.
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Transmission System

/ Distortion D \

Source v » Coder T Decoder —V> Sink

Bit-Rate R

= Need to define U, V, Coder/Decoder, Distortion D, and
Rate R

* Need to establish functional relationship between U
V; D, and R
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Definitions

= Source symbols are given by the random sequence {U, }

« Each U, assumes values in the discrete set v = {u,,u,,...,u,, }
- For a binary source: U ={0,1}

- For a picture: U ={0,1....,255}

« For simplicity, let us assume U, to be independent and
identically distributed (i.i.d.) with distribution {P(u),u € U}

» Reconstruction symbols are given by the random sequence Vet
with distribution {P(v),v € v}
« Each V assumes values in the discrete set v ={v,,V,,...,Vy_
 The sets vand vneed not to be the same
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Coder / Decoder

= Statistical description of Coder/Decoder, i.e. the mapping of the
source symbols to the reconstruction symbols, via

O={0vlu),ucev,y v}

= |s the conditional probability distribution over the letters of the
reconstruction alphabet v given a letter of the source alphabet v
* Transmission system is described via
Joint pdf:  P(u,v)

P(u) = Ep(u,v)

vEV

Pv) = EP(u,v)
P(u,v)=P(u)-O(vIlu) (Bayes'rule)
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Distortion

» To determine distortion, we define a non-negative cost function

d(u,v),d(.,.): v xv —[0,00)

= Examples for d

0, for u=v
« Hamming distance: d(u,v) =

I, for u=v

« Squared error: d(u,v) = |u- V‘z

= Average Distortion D(Q) = E E!’(u)- O(v qu. d(u,v)

ucv vev P(u,v)
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Mutual Information

» Shannon average mutual information
I=HU)-HUIV)

==Y P(w)-1d P(u)+ Y ¥ P(uv)-1d P(ulv)

- - Y S P@v)-1dPw+ Y Y Puy)-1d P(? j)
ucvveyv ucvveyv V
_ . P(u,v)
=2 2P

= Using Bayes' rule

_ , g Q01w
Q)= Y Y Pw) O lu): 1d =

ucvvev p(Z’v) (V)

with P(v) = Y P(u) Q(v lu)

ucv
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Rate

» Shannon average mutual information expressed via
entropy

IUV)=HU)-HUIV)
i 1

Source entropy  Equivocation: conditional entropy

= Equivocation:
e The conditional entropy (uncertainty) about the
source U given the reconstruction V
* A measure for the amount of missing [quantized]
iInformation in the received signal V
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Rate Distortion Function

= Definition: R(D¥) = Q:]gr(bi)tle* {1(0)}

* For a given maximum average distortion D, the rate
distortion function R(D*)is the lower bound for the
transmission bit-rate.

* The minimization is conducted for all possible

mappings QO that satisfy the average distortion
constraint.

» R(D*%)is measured in bits for 1d.
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Discussion

* |n information theory: maximize mutual information for efficient
communication

* |n rate distortion theory: minimize mutual information
* |n rate distortion theory: source is given, not the channel
* Problem which is addressed:

Determine the minimum rate at which information about the source
must be conveyed to the user in order to achieve a prescribed
fidelity.

= Another view: Given a prescribed distortion, what is the channel
with the minimum capacity to convey the information.

= Alternative definition via interchanging the roles of rate and
distortion
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Distortion Rate Function

= Definition: D(R*)= min {d(Q)}
Q:I(Q)=R*

» For a given maximum average rate R, the distortion
rate function R(D*) is the lower bound for the average
distortion.

» Here, we can set R(D*)to the capacity C of the
transmission channel and determine the minimum
distortion for this ideal communication system
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Properties of the Rate Distortion Function, |

A R(D) for a discrete amplitude source

(HU),D,, =0) —>

(HU)-HUIV)=0,D,)

l D
0 1 > /
O 1 Dmax

D

max )

= R(D)is well defined for D& (D

min °
» For discrete amplitude sources, D

min O
» R(D)=0,1tD>D__
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Properties of the Rate Distortion Function, I

» R(D)is always positive
O0<I(U;V)=sHU)

= R(D)is non-increasing in D
» R(D)is strictly convex downward in the range (D_
* The slope of R(D)is continous in the range (D,

D)

in°"—~ max

D)

in°"—~ max

A R(D)

0 '| > %
O max
e !
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Shannon Lower Bound

= |t can be shown that |[H{U-VIV)=HU V)

R(D¥*)= min ) {HU)-HUIV)}
= Then we can write QD=b

~H(U)- max {H(UIV)}
=HU)- max {HU-V1V)}
Q:D(Q)=D*

= |deally, the source coder would produce distortions
u—v that are statistically independent from the
reconstructed signal v (not always possible!).

= Shannon Lower Bound: |R(D*)= H(U) - . nax HWU-V)
:D(Q)=D*
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R(D*) for a Memoryless Gaussian Source
and MSE Distortion

= Gaussian source, variance o*°
= Mean squared error (MSE) D= E{(u-v)*}

1. o’ ,
R(D*¥)=—=log—; D(R*)=0?-2""" R=0
(D%)=Slog =5 DIRY)
0_2
SNR =10- log,, S=10- log,,2*" =6R [dB]

= Rule of thumb: 6 dB ~ 1 bit
= The R(D¥*)for non-Gaussian sources with the same
variance o“is always below this Gaussian R(D*)curve.
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R(D*) Function for Gaussian Source
with Memory |

= Jointly Gaussian source with power spectrum S, (w)
=MSE: D=E{(u-v)’}
= Parametric formulation of the R(D*) function

_ 1 (minD*
D 5 {mln[D S (w)]dw

S, (W)

D>I<

ldw

_ 1 1
R = 5 ~({'maX[O,z log

» R(D*) for non-Gaussian sources with the same power
spectral density is always lower.
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R(D*) Function for Gaussian Source
with Memory Il

) S..(w)
reconstruction error
spectrum
«— preserved spectrum S (w)
v
white[noise D~
D *
AN /

no signal transmitted
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R(D*) Function for Gaussian Source
with Memory l|

» ACF and PSD for a first order AR(1) Gauss-Markov
Process. Uln]=Z[n]+ pU[n -1]
o’(1-p?)
1-2pcosw + p°

R (k)=p"0%, S ()=

= Rate Distortion Function:

| S (o) D* 1-p
R(D*)=— 1o wo~ dw, <
(%) 4]‘5:{; =" px o’ 1+p

1 T 02(1_p2) 1 7
=E:I;log2 Py da)—ﬂ_j;logz(l—2pcosa)+ p*)dw

1, o*(1-p) 1, o’
=508 =%,
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R(D*) Function for Gaussian Source
with Memory IV

SNR [dB] 45 \
=10 log,, 0—2 40 D*<1—p //'0:0,99
b 35 o ey £=0,95
50 : o
25 :/// /???:350’,5
20 ,/E _ VA/ =0
15 /ﬁ.'???/
10 //%'b ,//
5 V/W/
0 & R [bits]

0 051 15 2 25 3 35 4
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Quantization

= Structure

» Quantizer >

= Alternative: coder (o) / decoder () structure

u ps l B v

* Insert entropy coding (y) and transmission channel

U i b b i

1 Vv
— | > Y » channel ——{y " — B l—
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Scalar Quantization

A
= Average distortion Output v §
N —_—
D=E {d (U ,V)} reconstruction i
levels :
N-11 Vi+1 |
=D Jdwv) fy@du T [ —
k=0 u, | Vi E :
* Assume MSE . i 'M AN
2 ! input
d(u,vk) = (u— Vk) S signal u
Nt ) N-1 decision
D= [(u-v,)* f,(u) du thresholds
k=0 u,

* Fixed code word length vs. variable code word length

R=1ogN vs. R=-E{log P(v)}
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Lloyd-Max Quantizer

0: Given: a source distribution f, (®)
a set of reconstruction levels{v,}
1. Encode given {v, } (Nearest Neighbor Condition):

a(u) = argmin {d(u,v,)} — u,=v,+v,,,)/2 (MSE)

2. Update set of reconstruction levels given (Centroid

Condition): )
Tu-fU(u)du
v, =argmin E{d(u,v,) la(u) =k} —=v, = ”’;k+l (MSE)
fo(u)du

3. Repeat steps 1 and 2 until convergence
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High Resolution Approximations

= Pdf of U Is roughly constant over individual cells C,
fU(u) =~ fka ue Ck

= The fundamental theorem of calculus

P =PrucC)= _kfo(“)' du=u,,, —u) f.=Af

Uy

= Approximate average distortion (MSE)

N-1U;, Ui

D= [(u=v,)"" f,(u) du= Efkf(u v,)du

k=0 u, Uy
=Ef k=1E_PA2
AR VAR Ve A

"H
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Uniform Quantization

= Reconstruction levels of quantizer {v,} , k€ K are
uniformly spaced

» Quantizer step size, i.e. distance v 4 A
between reconstruction levels: A : ]
= Average distortion _
N-1 A
YP =1 A=A ]
~ | | | ] 1 I I y
1 N-1 AZ N-1 Az |
D=_EPkA2k=_ Pk=_
12« 124 12 —

» Closed-form solutions for pdf-optimized uniform
guantizers for Gaussian RV only exist for N=2 and N=3
= Optimization of A is conducted numerically
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Panter and Dite Approximation

= Approximate solution for optimized spacing of
reconstruction and decision levels
= Assumptions: high resolution and smooth pdf A(u)

const
Ay (1)

» Optimal pdf of reconstruction levels is not the same as

for the input levels |
= Average Distortion D = ——
12N

» Operational distortion rate function for Gaussian RV

73

U ~ N(0,0%), D(R) ~ ——0g*27F

3
2
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Entropy-Constrained Quantization

» So far: each reconstruction level is transmitted with fixed code
word length
» Encode reconstruction levels with variable code word length
= Constrained design criteria:
min D,s.t. R<R, or minR,s.t. D<D,
» Pose as unconstrained optimization via Lagrangian formulation:
min D + A R

R A Lines of constant = For a given A, an optimum is obtained
slope: -1/\ corresponding to either R_or D,
= |[f A small, then D small and R large
if A large, then D large and R small
= Optimality also for functions that are
neither continuous nor differentiable
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Chou, Lookabaugh, and Gray Algorithm*

0: Given: a source distribution f,, (u)
a set of reconstruction levels {v}
a set of variable length code (VLC) words {y, }
with associated length ly,|

1: Encode given {v,} and {y,}:
ou(u) = argmin {d(u, v;) + Aly,l }

2: Update VLC given o(u,) and {v,}
Iy = -log P(au(u)=k)

3: Update set of reconstruction levels given a(x,) and {y,}
v, =argmin E { d(u, v,) | o(u)=k}

4. Repeat steps 1 - 3 until convergence

1989, has been proposed for Vector Quantization
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Entropy-Constrained Scalar Quantization:
High Resolution Approximations

= Assume: uniform quantization: P,= kA

R——EP log P, = Eka log (f,A)

k=0

f fu () 10g (f, (u))du ~log A f (1) du

Differential Entropy h(U) 1
=h(U)-log A
= Operational distortion rate function for Gaussian RV

U ~ N(,5°),D(R) =~ 6 o2k

= |t can be shown that for high resolution:
Uniform Entropy-Constrained Scalar Quantization is optimum

EAzfdu l E fiA log (f,) - kaAlog (A)
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Comparison for Gaussian Sources
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Vector Quantization

» So far: scalars have been guantized
» Encode vectors, ordered sets of scalars
» Gain over scalar quantization (Lookabaugh and Gray 1989)

« Space filling advantage
- Z lattice is not most efficient sphere packing in K-D (K>1)

- Independent from source distribution or statistical dependencies
- Maximum gain for K»o: 1.53 dB

- Shape advantage
- Exploit shape of source pdf
- Can also be exploited using entropy-constrained scalar
guantization
- Memory advantage
- Exploit statistical dependencies of the source
- Can also be exploited using DPCM, Transform coding, block
entropy coding
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Comparison for Gauss-Markov Source: p=0.9

SNR [dB]
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Vector Quantization I

» Vector quantizers can achieve R(D*) if K=»x
= Complexity requirements: storage and computation

* Delay
» Impose structural constraints that reduce complexity

» Tree-Structured, Transform, Multistage, etc.
= | attice Codebook VQ

2

Representative
vector

\ Amplitude

cell

Amplitude 1
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Summary

» Rate-distortion theory: minimum bit-rate for given distortion

= R(D*) for memoryless Gaussian source and MSE: 6 dB/bit

» R(D*) for Gaussian source with memory and MSE: encode
spectral components independently, introduce white noise,
suppress small spectral components

» | loyd-Max quantizer: minimum MSE distortion for given number of
representative levels

» Variable length coding: additional gains by entropy-constrained
guantization

= Minimum mean squared error for given entropy: uniform quantizer
(for fine quantization!)

» Vector quantizers can achieve R(D¥*) if K»« - Are we done ?

= No! Complexity of vector quantizers is the issue

Design a coding system with optimum rate distortion performance,
such that the delay, complexity, and storage requirements are met.
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