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Theoretical discipline treating data compression from

the viewpoint of information theory.

Results of rate distortion theory are obtained without

consideration of a specific coding method.

Goal: Rate distortion theory calculates minimum

transmission bit-rate    for a given distortion     and

source.

Rate Distortion TheoryRate Distortion Theory

R D
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Need to define   ,   , Coder/Decoder, Distortion   , and

Rate

Need to establish functional relationship between    ,

    ,   , and

Transmission SystemTransmission System

Coder DecoderSource Sink

Distortion

Bit-Rate

U V D
R

U

V D R

D

U V

R
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Source symbols are given by the random sequence

• Each       assumes values in the discrete set

- For a binary source:

- For a picture:

• For simplicity, let us assume       to be independent and

identically distributed (i.i.d.) with distribution

Reconstruction symbols are given by the random sequence

  with distribution

• Each     assumes values in the discrete set

• The sets     and     need not to be the same

DefinitionsDefinitions

{Uk}
Uk = {u0,u1,...,uM 1}

U = {0,1}
U = {0,1,...,255}

Uk
{P(u),u U}

{Vk}

{P(v),v }
Vk = {v0,v1,...,vN 1}
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Statistical description of Coder/Decoder, i.e. the mapping of the

source symbols to the reconstruction symbols, via

    is the conditional probability distribution over the letters of the

reconstruction alphabet    given a letter of the source alphabet

Transmission system is described via

Joint pdf:

Coder / DecoderCoder / Decoder

Q = {Q(v | u),u ,v }

P(u) = P(u,v)
v

P(v) = P(u,v)
u

P(u,v) = P(u) Q(v | u)

P(u,v)

(Bayes‘ rule)
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To determine distortion, we define a non-negative cost function

Examples for

• Hamming distance:

• Squared error:

Average Distortion

DistortionDistortion

d(u,v),d(.,.) : [0, )

d
d(u,v) =

0, for u v

1, for u = v

 
 
 

d(u,v) = u v
2

  

D(Q) =
u

P(u) Q(v | u)
P (u,v )

1 2 4 4 3 4 4 
v

d(u,v)
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Shannon average mutual information

Using Bayes‘ rule

Mutual InformationMutual Information

I = H(U) H(U |V )

= P(u) ld P(u) + P(u,v)
vuu

 ld P(u | v)

=  - P(u,v)
vu

 ld P(u) + P(u,v)
vu

 ld 
P(u,v)

P(v)

= P(u,v)
vu

 ld 
P(u,v)

P(u) P(v)

  

I(Q) = P(u) Q(v | u)
P(u,v )

1 2 4 4 3 4 4 
vu

 ld 
Q(v | u)

P(v)

with P(v) = P(u) Q(v | u)
u
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Shannon average mutual information expressed via

entropy

Equivocation:

• The conditional entropy (uncertainty) about the

source     given the reconstruction

• A measure for the amount of missing [quantized]

information in the received signal

RateRate

V

Source entropy Equivocation: conditional entropy

I(U;V ) = H(U) H(U |V )

VU
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Rate Distortion FunctionRate Distortion Function

Definition:

For a given maximum average distortion   , the rate

distortion function          is the lower bound for the

transmission bit-rate.

The minimization is conducted for all possible

mappings     that satisfy the average distortion

constraint.

         is measured in bits for     .

R(D*) =  min
Q:D(Q) D*

 {I(Q)}

D
R(D*)

Q

R(D*) ld
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DiscussionDiscussion

In information theory: maximize mutual information for efficient

communication

In rate distortion theory: minimize mutual information

In rate distortion theory: source is given, not the channel

Problem which is addressed:

Determine the minimum rate at which information about the source

must be conveyed to the user in order to achieve a prescribed

fidelity.

Another view: Given a prescribed distortion, what is the channel

with the minimum capacity to convey the information.

Alternative definition via interchanging the roles of rate and

distortion
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Distortion Distortion Rate Rate FunctionFunction

Definition:

For a given maximum average rate    , the distortion

rate function           is the lower bound for the average

distortion.

Here, we can set          to the capacity    of the

transmission channel and determine the minimum

distortion for this ideal communication system

D(R*) =  min
Q:I(Q) R*

 {d(Q)}

R(D*)

R(D*) C

R
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10
0

Properties Properties of of the the Rate Distortion FunctionRate Distortion Function, I, I

        is well defined for

For discrete amplitude sources,

(H(U),Dmin = 0)

R(D) for a discrete amplitude source

(H(U) H(U |V ) = 0,D
max
)

D
D

max

R(D) D (Dmin,Dmax )
Dmin = 0

R(D) = 0, if D > Dmax
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Properties Properties of of the the Rate Distortion FunctionRate Distortion Function, II, II

         is always positive

        is non-increasing in

        is strictly convex downward in the range

The slope of          is continous in the range

10
0

R(D)

R(D)
R(D) (Dmin,Dmax )

(Dmin,Dmax )R(D)

R(D)

D
Dmax

0 I(U;V ) H(U)

D
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Shannon Lower BoundShannon Lower Bound

It can be shown that

Then we can write

Ideally, the source coder would produce distortions

        that are statistically independent from the

reconstructed signal    (not always possible!).

 Shannon Lower Bound:

 

 
     

 

H(U V |V)=H(U |V )

R(D*) =  min
Q:D(Q) D*

 {H(U) H(U |V )}

        = H(U)  max
Q:D(Q) D*

{H(U |V )}

        = H(U)  max
Q:D(Q) D*

{H(U V |V )}

u v
v

R(D*) H(U)  max
Q:D(Q) D*

H(U V )
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  RR((D*D*)) for a  for a Memoryless Memoryless Gaussian SourceGaussian Source

and MSE Distortionand MSE Distortion

Gaussian source, variance

Mean squared error (MSE)

Rule of thumb: 6 dB ~ 1 bit

The           for non-Gaussian sources with the same
variance      is always below this Gaussian          curve.R(D*)

R(D*)

2

D = E{(u v)2}

2

R(D*) =
1

2
log

2

D*
;   D(R*) =

2 2 2 R*,R 0

SNR =10  log10 
2

D
=10  log1022 R 6R  [dB]



Thomas Wiegand: Digital Image Communication     RD Theory and Quantization   16

  RR((D*D*)) Function for Gaussian Source Function for Gaussian Source

with Memory Iwith Memory I

Jointly Gaussian source with power spectrum

MSE:

Parametric formulation of the             function

          for non-Gaussian sources with the same power

spectral density is always lower.

D = 1
2

min[D*,Suu( )]d

R = 1
2

max[0,
1
2

 log 
Suu( )
D*

]d

R(D*)

D = E{(u v)2}
Suu( )

R(D*)
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  RR((D*D*)) Function for Gaussian Source Function for Gaussian Source

with Memory IIwith Memory II

white noise

 reconstruction error 

spectrum 

no signal transmitted

Suu( )

D*

preserved spectrum Svv ( )

D*
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ACF and PSD for a first order AR(1) Gauss-Markov

process:

Rate Distortion Function:

RR((D*D*)) Function for Gaussian Source Function for Gaussian Source

with Memory IIIwith Memory III

U[n] = Z[n] + U[n 1]

Ruu(k) =
|k| 2,  Suu( ) =

2(1 2)

1 2 cos +
2

R(D*) =
1

4
log2

Suu( )

D*
d ,   

D*
2

1

1+

          =
1

4
log2

2(1 2)

D*
d

1

4
log2(1 2 cos +

2)d

          =
1
2

log2

2(1 2)
D*

=
1
2

log2
z
2

D*
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R [bits]
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=10 log10 
2

D
D*
2

1

1+
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QuantizationQuantization

Structure

Quantizer
u v

Alternative: coder ( ) / decoder ( ) structure

u i v

Insert entropy coding ( ) and transmission channel

u i vi 1channel
b b
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Scalar QuantizationScalar Quantization

Average distortion

Assume MSE

Fixed code word length vs. variable code word length

N-1 decision
thresholds

 

N 
reconstruction

levels 

input 
signal u

ui+1

vi+2

ui+1

vi+1

vi

ui

Output v

D = E{d(U,V )}

    = d(u,vk
uk

uk+1

k= 0

N 1

) fU (u) du

d(u,vk ) = (u vk )
2

D = (u vk
uk

uk+1

k= 0

N 1

)2 fU (u) du

R = logN  vs.  R = E{log P(v)}
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0: Given: a source distribution

a set of reconstruction levels

1: Encode given         (Nearest Neighbor Condition):

2: Update set of reconstruction levels given (Centroid

Condition):

3: Repeat steps 1 and 2 until convergence

Lloyd-Max Lloyd-Max QuantizerQuantizer

fU (u)
{vk}

{vk}

(u) =  argmin {d(u,vk )}      uk = (vk + vk+1) 2   (MSE)

vk = argmin E{d(u,vk ) | (u) = k} vk =

u fU (u)du
uk

uk+1

fU (u)du
uk

uk+1
  (MSE)
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High Resolution ApproximationsHigh Resolution Approximations

Pdf of U is roughly constant over individual cells Ck

The fundamental theorem of calculus

Approximate average distortion (MSE)

fU (u) fk,   u Ck

Pk = Pr(u Ck ) = fU
uk

uk+1

(u) du (uk+1 uk ) fk = k fk

D = (u vk )
2

uk

uk+1

k= 0

N 1

fU (u) du = fk (u vk )
2

uk

uk+1

k= 0

N 1

du

    = fk
k= 0

N 1
k
3

12
=

1

12
Pk

k= 0

N 1

k
2
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Uniform QuantizationUniform Quantization

Reconstruction levels of quantizer                     are

uniformly spaced

Quantizer step size, i.e. distance
between reconstruction levels: 

Average distortion

Closed-form solutions for pdf-optimized uniform

quantizers for Gaussian RV only exist for N=2 and N=3
Optimization of  is conducted numerically

v

u

{ k} , k K

Pk
k= 0

N 1

=1,  k =

D =
1

12
Pk k

2

k= 0

N 1

=
2

12
Pk

k= 0

N 1

=
2

12
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Panter Panter and and Dite Dite ApproximationApproximation

Approximate solution for optimized spacing of

reconstruction and decision levels
Assumptions: high resolution and smooth pdf (u)

Optimal pdf of reconstruction levels is not the same as

for the input levels

Average Distortion

Operational distortion rate function for Gaussian RV

(u) =
const

fU (u)3

D
1

12N 2 ( fU
1
3 (u) du)3

U ~ N(0, 2),  D(R)
3

2
22 2R
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Entropy-Constrained QuantizationEntropy-Constrained Quantization

So far: each reconstruction level is transmitted with fixed code

word length

Encode reconstruction levels with variable code word length

Constrained design criteria:

min D, s.t. R < Rc   or   min R, s.t. D < Dc

Pose as unconstrained optimization via Lagrangian formulation:
min D +  R

R

D

Lines of constant
slope: -1/

For a given , an optimum is obtained

corresponding to either Rc or Dc
If  small, then D small and R large

if  large, then D large and R small

Optimality also for functions that are

neither continuous nor differentiable
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0: Given: a source distribution fU (u)
a set of reconstruction levels {vk}
a set of variable length code (VLC) words { k}
with associated length | k|

1: Encode given {vk} and { k}:

(u) = argmin {d(u, vk) + | k| }

2: Update VLC given (uk) and {vk}
| k| = -log P( (u)=k)

3: Update set of reconstruction levels given (uk) and { k}
vk = argmin E { d(u, vk) | (u)=k}

4: Repeat steps 1 - 3 until convergence

*1989, has been proposed for Vector Quantization

Chou, Chou, LookabaughLookabaugh, and Gray Algorithm*, and Gray Algorithm*
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Entropy-Constrained Scalar Quantization:Entropy-Constrained Scalar Quantization:

High Resolution ApproximationsHigh Resolution Approximations

Assume: uniform quantization: Pk=fk 

Operational distortion rate function for Gaussian RV 

It can be shown that for high resolution:

Uniform Entropy-Constrained Scalar Quantization is optimum

du

  

R = Pk
k= 0

N 1

 log Pk = fk
k= 0

N 1

 log ( fk )

   = fk
k= 0

N 1

 log ( fk ) fk
k= 0

N 1

 log ( )

   fU (u) log ( fU (u))du

Differential Entropy h(U )
1 2 4 4 4 4 3 4 4 4 4 

log fU (u) du

1
1 2 4 3 4 

   = h(U) log 

U ~ N(0, 2),D(R)
e

6
22 2R
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Comparison for Gaussian SourcesComparison for Gaussian Sources
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Vector QuantizationVector Quantization

So far: scalars have been quantized

Encode vectors, ordered sets of scalars

Gain over scalar quantization (Lookabaugh and Gray 1989)

• Space filling advantage
- Z lattice is not most efficient sphere packing in K-D (K>1)
- Independent from source distribution or statistical dependencies
- Maximum gain for K : 1.53 dB

•  Shape advantage
- Exploit shape of source pdf

- Can also be exploited using entropy-constrained scalar

quantization

•  Memory advantage
- Exploit statistical dependencies of the source

- Can also be exploited using DPCM, Transform coding, block

entropy coding



Thomas Wiegand: Digital Image Communication     RD Theory and Quantization   31

Comparison for Gauss-Markov Source: Comparison for Gauss-Markov Source: =0=0.9.9
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Vector Quantization IIVector Quantization II

Vector quantizers can achieve R(D*) if K
Complexity requirements: storage and computation

Delay

Impose structural constraints that reduce complexity

Tree-Structured, Transform, Multistage, etc.

Lattice Codebook VQ

• 

• 

• • • • • • • 

• • • • • • • • 

• • •  • • • • 

• • • • • • • • • 

• • • • • • • • 

• • • • • • • 

• • • • • • • 

• 

• 

• 
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A
m

p
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vector 
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SummarySummary

Rate-distortion theory: minimum bit-rate for given distortion

R(D*) for memoryless Gaussian source and MSE: 6 dB/bit

R(D*) for  Gaussian source with memory and MSE: encode

spectral components independently, introduce white noise,

suppress small spectral components

Lloyd-Max quantizer: minimum MSE distortion for given number of

representative levels

Variable length coding: additional gains by entropy-constrained

quantization

Minimum mean squared error for given entropy: uniform quantizer

(for fine quantization!)
Vector quantizers can achieve R(D*) if K  - Are we done ?

No! Complexity of vector quantizers is the issue

Design a coding system with optimum rate distortion performance,

such that the delay, complexity, and storage requirements are met.


