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ABSTRACT

We present an interactive and multimodal-based augmented real-
ity system for computer-assisted surgery in the context of ear, nose
and throat (ENT) treatment. The proposed processing pipeline uses
fully digital stereoscopic imaging devices, which support multi-
spectral and white light imaging to generate high resolution image
data, and consists of five modules. Input/output data handling, a hy-
brid multimodal image analysis and a bi-directional interactive aug-
mented reality (AR) and mixed reality (MR) interface for local and
remote surgical assistance are of high relevance for the complete
framework. The hybrid multimodal 3D scene analysis module uses
different wavelengths to classify tissue structures and combines this
spectral data with metric 3D information. Additionally, we propose
a zoom-independent intraoperative tool for virtual ossicular pros-
thesis insertion (e.g. stapedectomy) guaranteeing very high metric
accuracy in sub-millimeter range (1/10 mm). A bi-directional in-
teractive AR/MR communication module guarantees low latency,
while consisting surgical information and avoiding informational
overload. Display agnostic AR/MR visualization can show our an-
alyzed data synchronized inside the digital binocular, the 3D dis-
play or any connected head-mounted-display (HMD). In addition,
the analyzed data can be enriched with annotations by involving
external clinical experts using AR/MR and furthermore an accurate
registration of preoperative data. The benefits of such a collabora-
tive surgical system are manifold and will lead to a highly improved
patient outcome through an easier tissue classification and reduced
surgery risk.

Index Terms: H.5.1 [Information Interfaces And Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
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tual realities; I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Medicine and science; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding—3D/stereo scene analysis; I.4.8
[Image Processing And Computer Vision]: Scene Analysis—
Stereo; J.3 [Computer Applications]: Life And Medical Sciences—
Medical information systems;

1 INTRODUCTION

During surgery, a surgeon differentiates between healthy tissue
structures, which have to be maintained, and abnormal or damaged
tissue, which has to be removed, replaced or reconnected. This con-
tinuous differentiation is based on his experience and knowledge
only and entails great risk because injuring important structures, as
nerves, can cause permanent damage to the patient’s health. Nowa-
days, optical devices, like magnifying glasses, surgical microscopes
and endoscopes, are used to support the surgeon in more than every
second surgery [17]. In some medical fields the number increases
up to 80% usage [24], as a three dimensional optical magnification
of the operating field allows more complicated and complex surg-
eries. The general working principle of surgical microscopes has
been consistent during the last decades, distinguishing between the
Greenough principle using two separate objectives and the Com-
mon Main Objective (CMO) / telescope principle using one shared
main objective (Fig. 1). Such microscopic systems have always
been using analogous optical imaging systems and are well under-
stood.

Nonetheless, a simple analog and purely optical magnification
does not give information about the accurate scale of the tissue
structures and tissue characteristics, as such systems show sev-
eral drawbacks as soon as modern computer vision algorithms or
medical augmented reality (AR)/ mixed reality (MR) applications
shall be applied. First, a beam splitter is obligatory to digitize
the analog input signal, resulting in lower image quality in terms
of contrast and resolution. Additionally, the captured perspective
differs from the surgeon’s field-of-view. Further, system calibra-
tion and preoperative data registration is complicated and suffers
from low spatial accuracy. Besides these limiting imaging fac-
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Figure 1: Microscope optical path - simplified visualization: (a)
CMO principle (b) Greenough principle

tors, current medical AR systems rely on external tracking hard-
ware, e.g. electro-magnetic tracking (EMT) or optical tracking sys-
tems based on infrared light using fiducial markers. These systems
hold further challenges, as EMT can suffer from signal interference
and optical tracking systems need a line-of-sight to work properly
[40, 19, 7]. The configuration of such a system is time-consuming,
complicated, error-prone and can easily interrupt the ongoing sur-
gical procedure.

As the possibilities resulting from digitization are of increas-
ing importance, digital microscopes and endoscopes are increas-
ingly being used. Such fully digital devices consist of a complete
digital processing chain enabling new forms of integrated image
processing algorithms, intraoperative assistance and surgical aware
AR/MR information visualization. The display technology is cho-
sen depending on the intended surgical use. In the presented ap-
plication, we use the digital binocular as the primary display for
visualization, nonetheless augmented data can be distributed to any
external 2D/3D display or remote VR/AR visualization unit e.g.
AR glasses, HMD. Thus, consulting external experts using AR/MR
communication during surgery becomes more feasible. A detailed
overview for endoscopic and microscopic AR applications can be
found in [25, 23, 9, 20].

In this interdisciplinary project, we outline an entirely AR/MR
image-based multimodal processing chain using white light and
multispectral imaging in the context of ear, nose and throat (ENT)
surgery. This includes stereoscopic 3D reconstruction of the surgi-
cal area to measure the correct scale as well as multispectral scene
analysis to capture optical tissue behavior not visible under white
light illumination in the RGB-space. In detail, 3D point clouds of
specific anatomical structures at varying time points are generated.
3D measurements and the documentation of tumor dimensions or
any other tissue-of-interest (TOI) allow true-scale comparison to
preoperative data, while multispectral tissue analysis allows accu-
rate tissue classification. These metric and spectral measurements
as well as anatomical 3D representations can be used for intraoper-
ative assistance by augmenting anatomical structures with enriched
surgical data. In addition, such surgical data sets are valuable for
the documentation of interventions and for the creation of annotated
videos for surgical training [28, 16].

The advanced multimodal imaging and analysis unit is extended
by an interactive collaboration interface offering bi-directional
communication to support local and remote surgical assistance for
collaboration between internal and remote experts. Additionally,
the proposed pipeline is source agnostic as it is applicable to 3D
endoscopy, 3D microscopy and other stereoscopy imaging devices.

2 EXPOSITION

Our proposed system consists of five major modules. Fig. 3 de-
picts the complete system architecture. Two in-/output modules

Figure 2: Digital binocular and high resolution imaging unit of mi-
croscopic head.

(I/O) handle the multimodal image input (Fig. 3 yellow parts, see
Sec. 2.1) and output (Fig. 3 green parts, see Sec. 2.5) and its AR/MR
visualization in the context of remote surgical assistance. The
third module implements a bi-directional communication interface
(Fig. 3 red parts) which connects the I/O modules (see Sec. 2.4).

The two remaining modules are part of a multimodal-based
image analysis interface (Fig. 3 purple parts): 3D reconstruc-
tion (zoom-independent stereo calibration, image-based measure-
ment, MR-assisted stapedectomy, see Sec. 2.2) and tissue classifi-
cation using multispectral imaging (see Sec. 2.3), feeding enriched
data into visualization unit within the bi-directional communication
module. In the following subsection the specific challenges of all
modules are outlined.

2.1 Imaging Input

2.1.1 Microscopic Input

The microscope used in this work1 (Fig. 2) is the first digital sur-
gical microscope which has received medical approval for ENT
surgery in the European Union (EU) [1]. The microscopic speci-
fications are presented in Tab. 1. The images are captured by a high
resolution digital camera sensor (2×1920×1080) with 60 fps. The
optical system is motor controlled allowing an accurate and pre-
cise positioning of specific focal lengths and focus positions which
is crucial for a high accuracy zoom-independent calibration, see
Sec. 2.2.1. Captured images are displayed inside a digital binocu-
lar using a high-resolution OLED display. As a consequence, these
images can be analyzed before being shown to the surgeon with-
out any additional temporal latency or spatial registration errors.
Therefore, analyzed data, like classified tissue regions or resulting
image-based 3D measurements, can be augmented with high spatial
accuracy directly into the surgeon’s field of view (FoV). The dig-
ital binocular allows layered overlays including preoperative data
(e.g. CT or MRT images), vital signs of the patient and augmenta-
tions of the scene analysis (Sec. 2.2 and Sec. 2.3) or of an external
expert into the surgeon’s view. This results in a direct intraoper-
ative surgical assistance without interfering with existing surgical
workflows and resulting in lower surgical risk as well as reduced
procedure times [31]. In contrast to the complex system setup of
existing AR solutions, our proposed system only requires a one-
time calibration, configuration of additional tracking hardware for
surgical navigation is not necessary.

The camera sensor consists of three channels (red - R, green - G
and blue - B). Fig. 5 shows the sensitivity of all three channels. To
achieve a balanced white light illumination, the illumination unit

1ARRISCOPE, ARRI Medical GmbH, Munich, Germany
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Figure 3: Pipeline for a multimodal AR/MR framework using multispectral and white light imaging.

Table 1: Microscope specifications

Sensor specifications

CMOS sensor 3392×2200 px
Output resolution 2× Full HD 2×1920×1080 px
Mechanical dimension 23.76×13.365 mm2

Diagonal dimension 29.26 mm (1.7”)
Frame rate 60 fps

Camera optics specifications

Beam angle Wide-angle 16.52◦

Zoom 6.26◦

Focal length Mean 58.237 mm
Wide-angle 64.523 mm

Zoom 65.220 mm
Field of View (FoV) max. 27 mm x 48 mm
at 210 mm WD min. 13 mm x 23 mm
Magnification 1.6× up to 9.6×

of the microscope uses the spectral combination of four different
light-emitting diodes (LED), a red LED, a warm white (yellowish)
LED, a green LED and a cold white LED. Each LED can be ad-
justed independently in terms of intensity to mix the emitted light
for a uniform white impression. The energy spectra of the four
LEDs are presented in Fig. 4. Due to the fact, that the illumination
unit uses four independently controlled LEDs, multispectral imag-
ing becomes possible, see Sec. 2.3. Using different illumination
spectra together with the responses of the three different spectral
RGB channels of the sensor allows spectral reconstruction of the
captured object.

2.1.2 Endoscopic Input

In contrast to digital microscopes, 3D endoscopes have to deal with
many limitation and restrictions as they are used for non open pro-
cedures, namely minimally-invasive surgery (MIS). The dimension
of a 3D endoscopy tube is limited by the anatomy of the related
body cavities, like the nostril and auditory canal for ENT or the
size of the trocar for abdominal surgery. Therefore, optical parts
need to be heavily miniaturized. This influences directly the sensor
size resulting in noisy and low contrast images. In addition, en-
doscopic images suffer from difficult light conditions, soiled lens
(blood, water, smoke) and motion blur.

Tab. 2 contains relevant selected technical values from different
manufacturers for 3D laparoscopes currently used in MIS and rele-
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Figure 4: This plot shows the energy spectra of the four channel
LED illumination unit of the microscope, used in this project.
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Figure 5: This plot shows the sensitivity of the CMOS sensor of the
RGB channels.



Table 2: Selected 3D endoscope specifications

Output resolutions
interlaced /

up to 1920×1080 px
progressive

Frame rate 25 or 30 fps
Interaxial distance approx. 3.5 - 4.5 mm
Endoscope diameter approx. 8.0 - 9.5 mm

vant for this project. Within this project a 3D laparoscope2 is used
for preliminary endoscopic analysis.

2.2 3D Reconstruction

For 3D reconstruction and surgical AR/MR applications a calibra-
tion of the stereoscopic system is crucial, to get a real world rep-
resentation of the surgical scene and the underlying optical system.
Therefore, a zoom-independent calibration scheme is defined, to
allow image-based measurements resulting in metric and 3D data
representation in Sec. 2.2.1. This 3D data serves as a basis for
high-level surgical AR/MR assistance functions as described for
stapedectomy in Sec. 2.2.2 and for tissue classification in Sec. 2.3.

2.2.1 Zoom-independent Calibration & 3D Measurement

The calibration of optical 3D systems for photogrammetric appli-
cations and stereo image processing algorithms are highly coupled.
Both topics will be discussed in the subsequent paragraphs. The
first paragraph will focus on the principle consideration when it
comes to the calibration of very long focal lengths. The second
paragraph outlines a real-time stereo processing pipeline for image-
based 3D measurements which extends the calibration topic by out-
lining the benefit of a quasi auto calibration for stereoscopic sys-
tems using zoom lenses.

Zoom-independent Calibration
Camera calibration techniques using checkerboards have been in-
tensively discussed for many applications including medical sce-
narios in [36, 43, 2, 12, 29] and are widely accepted within the
computer vision community. Nonetheless, these methods do not
address the problem of calibrating optical imaging systems which
have varying focus and zoom settings. Especially, the calibration
of very long focal lengths is still a difficult problem. The works of
Stamatopoulos et al. [34, 33] are the most recent works which ac-
tually investigate zoom lenses for photogrammetry tasks and give
valuable insights when it comes to the calibration of long focal
lengths. His observations are based on a single DSLR camera,
which uses a macro lens of 105mm. This is comparable to some
extent to our lens specification. In our case the maximum zoom
level has a focal length of 348mm. The usage of different calibra-
tion patterns for different zoom settings is quite cumbersome be-
cause of a small field-of-view and a decreasing depth-of-field for
high magnification factors. For these practical reasons, we use a
hybrid calibration target, which can be used for any zoom/focus
combination. Fig. 6 shows this hybrid target captured with varying
zoom levels, guaranteeing crisp and high-resolution checkerboard
features. The calibration method follows a model-based approach
using synthesized images and applying an image registration via
gradient-descent as described in [6]. The combination of the hybrid
synthesized image registration and the motorized control unit, to
adjust specific zoom/focus settings, facilitates significantly the cru-
cial calibration process. Fig. 7 shows a possible calibration strategy
consisting of 21 defined calibration positions.

For every calibration point 10 images are captured, resulting in
210 calibration images. This suggests to be a good trade-off be-
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tween the amount of calibration data acquisition and expected cali-
bration quality. Based on these calibration images, we derive inde-
pendently the intrinsic and extrinsic parameters of the microscopic
system for each lens left and right, namely: the focal length fx, fy,
three radial distortion parameters r2,r4,r6 and the principal point
Cx,Cy. Afterwards, we calibrate the stereo system by calculating
the orientation of both lenses to each other based on their extrinsic
pose in relation to the calibration target, generating a rotation matrix
R3x3 and a translation vector~t3. Hence, we will derive 21 projec-
tion matrices P for known zoom/focus positions. For intermediate
zoom/focus positions, we interpolate our optical parameters using a
look-up-table holding calibrated system values and the current mo-
tor position.

The overall evaluation of different zoom/focus settings and the
automation of the presented calibration strategy will be performed,
as the overall goal is to develop a calibration toolchain which can
be easily integrated and maintained into a demanding environment
like the operating room.

3D Measurement
A successful calibrated system enables us to perform image-based
measurements in any zoom level with varying focus settings if
we can determine reliable sub-pixel correspondence of left points
pl(x,y) and right points pr(x,y) in stereoscopic views, namely the
left image IL and the right image IR, respectively. Therefore, a
real-time capable stereo image processing pipeline is applied [30],
which has been successfully used for simple point-to-point distance
measurements inside the tympanic cavity. This basic measurement
tool consists of two steps: First, it applies a quasi auto calibra-
tion by a scene dependent rectification of image pairs via detection
of robust feature points (e.g. comparable to BRIEF features [4]).
During this auto calibration the authors constantly calculate a 3x3
homography matrix H̃ from the feature point correspondences. In
this way, zoom setting changes can be detected when the homogra-
phy changes noticeably. This is of high importance in our scenario
as this feature functions as an online stereoscopic geometry qual-
ity control tool. However, if a zoom change occurs, the following
stereoscopic misalignments caused by left/right zoom offset, verti-
cal, tilt, keystone or rotation errors are corrected. Hence, the au-
thors obtain a rectified image pair P̂ (ÎL, ÎR) by warping only IR and
keeping IL unchanged as follows:

ÎL = IL ∗ Ĩ3x3 with Ĩ = identity matrix (1)

ÎR = IR ∗ H̃3x3 (2)

Second, a highly parallelized sub-pixel dense disparity estima-
tion (comparable to SGBM [15]) on a GPU is performed. The
disparity estimator is feed with P̂ (ÎL, ÎR) as input. Now, the cor-
respondence problem can be reduced to a one dimensional search
resulting in a fast and robust stereo estimation of correspondences.
Within the pipeline, this measurement tool serves as a core process-
ing unit for additional measurement modules, which directly relates
to the outlined high-level surgical measurement task, cf. Sec. 1.

As next steps, a registration of CT/MRI data to the live view as
well as the tracking of anatomical features or landmarks related to
high-level surgical tasks will be build upon the existing stereo core
processing pipeline.

2.2.2 MR-assisted Stapedectomy

The aim of a stapedectomy treatment is to recover lost hearing abil-
ity caused by otosclerosis. Therefore, damaged parts of the stapes
within the ossicular chain are replaced with a micro prosthesis. For
reference, Fig. 9a shows the complete middle ear anatomy also indi-
cating the stapes location and Fig. 9b shows a snapshot of an actual
procedure of a prosthesis insertion.

During the intervention, the surgeon needs to choose a patient
specific appropriate-sized prosthesis which ranges from 2.5 mm to
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Figure 6: Hybrid calibration pattern: (a) Minimum zoom level (b) Mid zoom level (c) Maximum zoom level

Figure 7: Overview of defined calibration points ranging from min-
imum zoom to maximum zoom consisting of 7 zoom positions
whereas every zoom position considers 3 steps to model focus vari-
ations and decreased depth-of-field effect.

Figure 8: Dual view of a 3D model stapes prosthesis which will be
used for virtual augmentation to derive the correct prosthesis size.

10.0 mm with a given stepsize of 0.25 mm. An accurate measure-
ment of the incus-footplate distance can improve the hearing out-
come significantly as reported in [31]. But current surgical mea-
surement solutions are limited in the following ways: Instruments
are inaccurate (stepsize > 0.5 mm) and unhandy, plastic dummy
prosthesis are deformable and in general the surgeon runs always
the risk of unwanted and harmful tissue contact. Therefore, our
proposed idea for an MR-stapedectomy procedure will focus on the
true-scale insertion of a virtual 3D prosthesis model into the situs to
simulate the replacement of the damaged stapes within the ossicular
chain. The interaction between the real world and the positioning
of the virtual prosthesis will be implemented using two joysticks
integrated in the microscopic handle. Fig. 8 shows a 3D model of
such a prosthesis.

Based on this true-scale prosthesis representation the surgeon
will be able to choose the best possible prosthesis size without
touching any tissue before the final insertion. From this approach
two main benefits arise: (1) the risk of complications caused by
harmful tissue contact is reduced and (2) a patient-tailored stapes
prosthesis can be inserted to recover his hearing capability in the
best possible way.

Future work will evaluate the true scale representation of the vir-
tual prosthesis taking into account the calibration results in terms
of accuracy and precision. In addition, a seamless integrated joy-
stick interface will allow the MR interaction the between the real

stapes

(a) (b)

Figure 9: (a) Drawing of middle ear anatomy and the ossicu-
lar chain. Source: Blausen.com staff (2014). "Medical gallery
of Blausen Medical 2014". WikiJournal of Medicine 1 (2).
DOI:10.15347/wjm/2014.010. ISSN 2002-4436. (b) Snapshot of
a stapedectomy intervention showing a prosthesis near the ossicu-
lar chain.

world and the virtual prosthesis. It is also noteworthy, that the same
technique can be applied for other types of ear prosthesis such as
partial/total ossicular chain replacement prostheses (PORP/TORP)
and can be useful for drilling the cavity for cochlear implant pro-
cessors.

2.3 Multispectral Tissue Analysis

Multispectral imaging (MSI) is used in biomedicine and food sci-
ence for cell segmentation, skin and meat analysis [21, 26, 18]. For
intraoperative medical therapy, few authors have shown the feasi-
bility [45, 44, 42, 41], but MSI is not established [21]. In princi-
ple, different techniques exists to acquire the multispectral data of
a scene: hyperspectral cameras can be used with linescan or snap-
shot mode to acquire the dataset in a short amount of time but with
small resolution [13, 22, 41]. Alternatively, a filter-wheel in front of
the sensor or after the light source can step through the hyperspec-
tral space [11, 3]. However, this technique is very time-consuming
in terms of acquisition and image postprocessing [42]. Therefore,
these techniques are not eligible for the targeted application due to,
e.g. no real-time capability and expensive postprocessing steps.

This project follows the idea to extract multispectral tissue
data combining wide-band LEDs as illumination unit and a RGB-
camera as three-channel acquisition device. The image scene will
be illuminated using all available LEDs consecutively and acquire
images synchronized to the illumination sequence. This illumina-
tion modality covers the visual spectrum (approx. 400 nm to 780
nm).
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Figure 10: Concept of a multispectral imaging. (a) The four RGB
camera responses acquired under different light conditions. (b) The
twelve extracted spectral bands from the multispectral imaging.

2.3.1 Spectral Calibration

To make the sensor data usable for multispectral analysis, spectral
calibration is required. As the LED illumination changes rapidly
and only takes 200 ms for a complete sequence, it is supposed that
all RGB responses include exactly the same view.

The denoising and conversion of raw image data Iraw to re-
flectance Ires is achieved using

Ires =
Iraw − Idark

Iwhite − Idark

, (3)

where Iraw is the measured pixel information and Idark contains the
information of a dark reference image. This includes white balance
alignment and dark current correction as well. This method requires
a white reference calibration board to be scanned in all illumination
settings to acquire Iwhite for white balance alignment. This step is
a one point calibration method, where only one reference target is
measured [27].

Further, the distances δ1 between illumination source and inves-
tigated surface as well as δ2 between surface and camera sensor
have an impact on the sensor response [41]. Due to the system de-
sign, both distances show always the same ratio, i.e. a microscope
and an endoscope hold the sensor and illumination source in the
same mounting head. Therefore, one proportionality constant α

can describe the relation between irradiation intensity and sensor
signal. Remains the distance between mounting head and object
constant, a one-time calibration would be sufficient. However, in
clinical routine, α changes several times during a single surgery.
Therefore, an adaptive α adjustment is needed. This will be solved
using the described 3D measurements, since it can determine the
object to camera distances δ , c.f. Sec. 2.2.1.

2.3.2 Spectral Reconstruction

The reconstruction of in-situ reflectivity functions (high-
dimensionally) from a low-dimensional digital camera response is
a challenging requirement, as it is generally an ill-posed problem
[38, 39]. In literature, various spectral reconstruction methods
are presented to manage this problem. A common strategy of
overcome the ill-posed character of reflectance estimation is to
utilize additional information of the underlying acquisition process
to obtain reasonable results. One of the major and mostly used
reconstruction methods is the Wiener filter [14, 32, 35, 38, 39]. The
main problem using the Wiener filter is, usually more than three
camera responses (R, G and B) are needed for an accurate spectral
reconstruction [5]. This problem can be reduced if several images
of the same view using different illumination settings (see Fig. 4)
are acquired. Thus, the dimension of the input data is increased to
allow a more accurate reconstruction [37].

The usage of different illumination settings I1, I2, I3, I4 of the
same scene (see Fig. 10a) will allow to calculate twelve spectral
bands (see Fig. 10b). The individual optical tissue behaviors are
extracted using these twelve bands.

2.3.3 Classification and Visualization

The different reflection spectra of the different tissue types are
not visually recognized, as the differences of the reflections are
marginal if the complete visual range is considered. Therefore, the
challenge is to classify different reconstructed spectra (many inputs
over the complete visual range) into several tissue categories (few
outputs). For large data and the absence of classification rules, as
in our case, machine learning is a potential method for modeling
the data. Therefore, one aim of the project is to build up a tissue
database including the optical behavior of several tissue types and a
large patient cohort. This will facilitate the classification problem.

Further, it will be is investigated, whether it would not be sim-
pler and more reasonable to drop classification while simply adapt
AR/MR visualization. As, one obstacle will be AR/MR visualiza-
tion of the high dimensional tissue data, it seems possible to mod-
ify the color space representation in a way that the small reflection
differences between the tissue types emerge prominently. Using
the high dimensional spectral data, a normal RGB-image with high
color-fidelity has to be extracted and by modifying the color repre-
sentation, additional tissue information can highlighted without loss
of other important image information. In this approach, the surgeon
arrives on the classification on his own, which will simplify ethical
and legal impacts.

2.4 Interactive Remote Surgical Assistance

For remote surgical assistance, it needs to be assured that all sur-
geons can rely and work on consistent data. Furthermore, the entire
pipeline needs to run in real-time without any noticeable latency.
Meaning, the low-latency communication software needs to be able
to handle interactive scribblings, large 3D data sets, preoperative
data and vital parameters of the patient fulfilling these constraints.

Therefore, a technology currently used for a major European
football league will be adapted and extended for the surgical use
case. So far, this system transmits de-centralized live data of game
statistics (e.g. game score, game highlights, football player statis-
tics, etc.) into a centralized information news ticker in real-time.
The communication interface targets three network architectures:
(1) a wired local are network (LAN) inside the hospital, (2) a wire-
less local are network (WiFi) in the operating room and (3) a wide
area network (WAN) which offers prioritized and secured telematic
infrastructure for physicians in that European country.

For any of these network scenarios, we address a low-latency in-
teractive bi-directional communication user interface, which allows
medicolegal consultations between surgical experts or detailed pa-
tient counseling before the intervention.

2.5 AR/MR Output & Visualization

For the output module in Fig. 3, it has to be investigated to what
extent it is possible to calculate an accurate high-resolution image
by use of correlations between position, time and spectral range on
all visualization devices. Nonetheless, the format agnostic imaging
pipeline allows us an adaptive presentation of the underlying mu-
tual information. This might be an external display showing overall
information related to the ongoing procedure, the binocular and a
remote HMD allowing interaction with specific virtual objects for
communication between surgeons or video streaming including au-
dio comments and annotation into a lecture room for trainee sur-
geons or medical students.

Additionally, the expansion of classical image analysis methods
like image registration, tracking of multispectral imaging data, and
inclusion of preoperative images results in a high degree of robust-
ness and stability. Nonetheless, current results for image-based
measurements and the extraction of high-level features using for
intraoperative assistance look promising. First AR/MR visualiza-
tion ideas from 3D reconstruction results are shown in Fig. 11 and
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Figure 11: (a) Results of image-based measurement for a test spec-
imen with known dimensions. The magnification factor is 8.1×
(b) Sub-pixel registered AR overlay of related color-encoded depth
information. (c) Depth scale ranging from near (blueish) to far (red-
dish).

(a) (b) (c)

Figure 12: (a) Results of in-vivo image-based measurement (b)
Sub-pixel registered AR overlay of related color-encoded depth in-
formation. (c) Depth scale ranging from near (blueish) to far (red-
dish).

Fig. 12 for a test specimen and an in-vivo example with large mag-
nification. In addition, Fig. 13 shows augmentation results of clas-
sified blood vessels as classical AR color overlay. As introduced in
Sec. 2.3.3, further visualization options, e.g. adapted color space,
are possible for the presentation of the spectral analysis.

3 CONCLUSION

We proposed a unique and integrated multimodal AR/MR frame-
work using a fully digital surgical microscope for ENT surgery
supporting local and remote assistance for intraoperative decision
support.

The technological and market potential is very large for a product
development based on our idea. Surgeries are the primary source
(up to 50%) of errors in the health care sector [8]. These errors and

Figure 13: In this visualization example classified blood vessels
(vein in green and arteria in red) are presented as AR overlay.

related harm to the patient causes follow-up surgeries and treat-
ments, which lead to additional costs [10]. A volumetric tissue dif-
ferentiation and visualization tool, which can highlight and separate
important anatomical structures in combination with an interactive
remote assistance interface, will have a promising potential to de-
crease related expenses and number of accidental organ damage for
the best patient outcome and safety.
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