BIFOLD Welcome Days 19-21th Oct.

Talk by Leila Arras

XAI in Epidemiology

Exploring Interacting Causes of a Health Outcome with CoOL (**C**auses **o**f **O**utcome **L**earning)

Causes of Outcome Learning - paper:

Collaboration with Andreas Rieckmann (Section of Epidemiology,

Dept. of Public Health, University of Copenhagen) & other Co-authors !

Volume 51, Issue 5 October 2022

Article Contents

Abstract

Introduction

The CoOL approach

Real-life application

Discussion

Conclusion

JOURNAL ARTICLE

Causes of Outcome Learning: a causal inferenceinspired machine learning approach to disentangling common combinations of potential causes of a health outcome Andreas Rieckmann ∞, Piotr Dworzynski, Leila Arras, Sebastian Lapuschkin, Wojciech Samek, Onyebuchi Aniweta Arah, Naja Hulvej Rod, Claus Thorn Ekstrøm International Journal of Epidemiology, Volume 51, Issue 5, October 2022, Pages

1622–1636, https://doi.org/10.1093/ije/dyac078 Published: 08 May 2022 Article history ▼

👃 PDF 📲 Split View 🛛 🎸 Cite 🎤 Permissions < Share 🔻

Abstract

Nearly all diseases are caused by different combinations of exposures. Yet, most epidemiological studies focus on estimating the effect of a single exposure on a health outcome. We present the Causes of Outcome Learning approach (CoOL),

XAI Research Group Dept. of Artificial Intelligence Fraunhofer HHI

What is Epidemiology?

Definition:

Study of the **distribution** (frequency, pattern) and **determinants** (causes, risk factors) of **health-related states and events** (not just diseases) in **specified populations** (country, global).

Derived from Greek:

epi 'upon, among' + demos 'people, district' + logos 'study, word, discourse'

= 'the study of what is upon the people'

Not only about epidemic/infectious diseases! But various studies on healthrelated issues (e.g. pollution, cancer, natural disaster, clinical trials,...).

> [www.cdc.gov/careerpaths/k12teacherroadmap/epidemiology.html, en.wikipedia.org/wiki/Epidemiology]

Goal: Discover exposures associated with an outcome

Challenges: - In practice exposures often interact (no single-cause disease)

- Numerous sources of exposures (individual's genetic characteristics, environmental factors, lifestyle...), potentially all exposures from conception to death (exposome)

> [Patel 2017, Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with Phenotypes in the Exposome Era, Curr Epidemiol Rep, doi.org/10.1007/s40471-017-0100-51

Synergy - Interaction on an additive scale

Absolute risks of lung cancer: $X_1=0$ $X_1=1$ $P(Y=1|X_1, X_2)$ No AsbestosAsbestos $X_2=0$ Non-Smoker0.11%0.67% $X_2=1$ Smoker0.95%4.50%IC > 0 positive interactionIC < 0 negative interaction</td>IC = 0 no interaction

Interaction coefficient: Defined as difference of risks w.r.t. baseline risk $IC = (R_{AS} - R_{\overline{AS}}) - [(R_{AS} - R_{\overline{AS}}) + (R_{\overline{AS}} - R_{\overline{AS}})]$ $= R_{AS} - R_{A\overline{S}} - R_{\overline{AS}} + R_{\overline{AS}}$ = 4.5 - 0.67 - 0.95 + 0.11 = 2.99

=> positive interaction between smoking and asbestos

=> identify subgroup for public health intervention

[VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, doi.org/10.1515/em-2013-0005]

Synergy - Interaction on an additive scale

Absolute risks of lung cancer: $X_1=0$ $X_1=1$ $P(Y=1|X_1,X_2)$ No AsbestosAsbestos $X_2=0$ Non-Smoker0.11 %0.67 % $X_2=1$ Smoker0.95 %4.50 %IC > 0 positive interaction

IC < 0 negative interaction IC = 0 no interaction

=> identify subgroup for public health intervention

Interaction coefficient: Defined as difference of risks w.r.t. baseline risk $IC = (R_{AS} - R_{\overline{AS}}) - [(R_{AS} - R_{\overline{AS}}) + (R_{\overline{AS}} - R_{\overline{AS}})]$ $= R_{AS} - R_{A\overline{S}} - R_{\overline{AS}} + R_{\overline{AS}}$ = 4.5 - 0.67 - 0.95 + 0.11 = 2.99

=> positive interaction between smoking and asbestos

Can we discover interaction with machine learning?

[VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, doi.org/10.1515/em-2013-0005]

Standard approach: "linear" regression

Model:

 $P(Y|X_1=x_1, X_2=x_2) = c_0 + c_1 \cdot x_1 + c_2 \cdot x_2 + c_3 \cdot x_1 x_2$

regression terms = all possibles combinations of input variables

where $c_0 = P(Y|X_1=0, X_2=0)$ baseline risk $c_1 = P(Y|X_1=1, X_2=0) - P(Y|X_1=0, X_2=0)$ risk diff due to X1 alone $c_2 = P(Y|X_1=0, X_2=1) - P(Y|X_1=0, X_2=0)$ risk diff due to X2 alone $c_3 = P(Y|X_1=1, X_2=1) - P(Y|X_1=1, X_2=0) - P(Y|X_1=0, X_2=1) + P(Y|X_1=0, X_2=0)$

risk diff due to additive interaction between X1 and X2

[VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, doi.org/10.1515/em-2013-0005]

Linear regression for higher-order interactions?

<u>N binary exposures:</u> 2^N regression terms

<u>11 binary exposures:</u> 2048 regression terms

Drawbacks:

- Model overfitting, study not reproducible
- Require large sample
- Computationally challenging
- Hard to interpret interactions with overlapping sets of variables
- Results can be misleading even if p-value of regression coefficients is low

Solution: reduce the number of tested interactions. Alternative: use CoOL

[Patel 2017, Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with Phenotypes in the Exposome Era, Curr Epidemiol Rep, doi.org/10.1007/s40471-017-0100-5]

Our approach: neural network + XAI + clustering

Model assumptions for synergy detection

<u>Positive Monotonicity:</u> e.g. sufficient-component-cause framework Each exposure either increases risk or has no effect for all individuals in the population (i.e. regardless of other exposures) as its value changes from 0 to 1

```
if "risk diff for X_1 in strata X_2=1" > "risk diff for X_1 in strata X_2=0"
```

then synergy

Relaxed Monotonicity: CoOL framework

Each exposure either increases risk or has no effect on each individual separately (i.e. depending on other exposures) with no pre-defined direction

In practice: one-hot encoding of inputs (even for exposures with 2 categories) allows to discover e.g. that "drug A only harmful for women" and "drug B only harmful for men"

if "combined risk of exposures" > "sum of risks due to standalone exposures" then synergy

[VanderWeele and Robins 2007, *The Identification of Synergism in the Sufficient-Component-Cause Framework*, Epidemiology, doi.org/10.1097/01.ede.0000260218.66432.88]

Step 1: Model fitting

- Training via <u>Stochastic Gradient Descent</u> (update model one individual at a time)
- Minimize squared prediction error (data loss $(Y_{true} \hat{P}_{Model}(Y|X))^2$)
- Weight regularization through squared L2-norm penalty, to avoid overfitting on noise (regularization loss $\|\boldsymbol{\beta}\|^2$)
- <u>Initialization</u> of baseline risk R^{b+} with mean risk of the outcome $E[Y_{true}]$
- Split data in train & internal validation sets to assess reproducibility of found risk factors
- Even though overall discriminative performance (AUC) is low, the model can still capture • important sets of causes for particular subgroups! (e.g. improved prediction on subgroups with rare risk factors that have strong effects)

[Janssens and Martens 2020, Reflection on modern methods: Revisiting the area under the ROC Curve, Int | Epidemiol, doi.org/10.1093/ije/dyz274]

Step 2: Decompose prediction into risk contributions

[Bach et al. 2015, *On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation*, PLOS ONE, doi.org/10.1371/journal.pone.0130140]

Step 2: Decompose prediction into risk contributions

Advantages:

- overall risk conserved, no risk assigned to the hidden layer intercepts
- explains which exposures might by be "causing" the outcome, rather than what would be the impact of modifying certain exposures (sensitivity-based, perturbation-based XAI)
- model design fully matches the theory behind LRP: deep Taylor decomposition

[Montavon et al. 2017, Explaining nonlinear classification decisions with deep Taylor decomposition, Pattern Recognition, doi.org/10.1016/j.patcog.2016.11.008]

Step 3: Clustering risk contributions

- <u>Hierarchical clustering</u> of individuals based on risk contributions (using the Ward's algorithm and Manhattan distances)
- Visualize clustering hierarchy as <u>dendrogram to decide on the number of</u> <u>clusters/subgroups</u>
- For each subgroup compute <u>risk contributions (mean and std)</u>

1) mean risk vs. prevalence plot
=> "area above baseline" indicates public health impact of subgroup
2) mean risk table

=> "sum of standalone risks < combined risk" indicates synergism

[Strauss and Maltitz 2017, *Generalising Ward's Method for Use with Manhattan Distances*, PLOS ONE doi.org/10.1371/journal.pone.0168288]

Step 3: Clustering risk contributions

Leila Arras | 21.10.2022

🗾 Fraunhofer

BIFOLD

Step 3: Clustering risk contributions

Mean risk (std) per subgroup and per exposure

Mean risk contributions by sub-group (Standard deviation) [mean risk contribution if other exposures are set to 0]	Baseline_risk	sex_0	sex_1	drug_a_0	drug_a_1	drug_b_0	drug_b_1	
Sub-group 1: n=8038, e=393,Prev=80.4%, risk=4.9%, excess=3.4%, Obs risk=4.9% (4.4-5.4%) Risk based on the sum of individual effects =4.9%	4.6% (0.0%) [4.6%]							
Sub-group 2: n=950, e=194,Prev=9.5%, risk=20.3%, excess=18.8%, Obs risk=20.4% (17.9-23.2%) Risk based on the sum of individual effects =4.6%	4.6% (0.0%) [4.6%]		(7.7% (0.0%) [0.0%]				7.7% (0.0%) [0.0%]	
Sub-group 3: n=1012, e=208,Prev=10.1%, risk=20.4%, excess=20.2%, Obs risk=20.6% (18.1-23.2%) Risk based on the sum of individual effects =5.2%	4.6% (0.0%) [4.6%]	8% (0.1%) [0.0%]			7.7% (0.0%) [0.0%]			
If [mean risk contrib. of exposure X _i with other exposures set to 0] < mean risk contrib of exposure X _i								
Then synergy of X_i with other exposures in the subgroup!								

Complex simulation example

Ground truth:

P(Y) = 5,4 % mean prediction

P(Y | U) = 5% baseline risk

P(Cause 1) = 1,8 % prevalence P(Y | Cause 1) = 15 % increased risk P(Y, Cause 1)/P(Y) = 4,9 % excess fraction

P(Cause 2) = 1,2 % P(Y | Cause 2) = 10 % P(Y, Cause 2)/P(Y) = 2,3 %

CoOL results

More information about CoOL

- Tutorial and demo see project page: https://www.causesofoutcomelearning.org
- Open source R package to reproduce results (including plots): https://cran.r-project.org/package=CoOL
- Supplementary material of the paper (including various controlled simulations, robustness checks and a real-world example): https://doi.org/10.1093/ije/dyac078

