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What is Epidemiology?

Definition: 

Study of the distribution (frequency, pattern) and determinants (causes, risk factors) 
of health-related states and events (not just diseases) in specified populations 
(country, global).

Derived from Greek:

 epi  'upon, among'  +  demos  'people, district'  +  logos  'study, word, discourse'

       = 'the study of what is upon the people'

Not only about epidemic/infectious diseases! But various studies on health-
related issues (e.g. pollution, cancer, natural disaster, clinical trials,…).

                                       [www.cdc.gov/careerpaths/k12teacherroadmap/epidemiology.html, 
                                                                                        en.wikipedia.org/wiki/Epidemiology]

http://www.cdc.gov/careerpaths/k12teacherroadmap/epidemiology.html
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Goal: Discover exposures associated with an outcome

X i

 [Patel 2017, Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with 
  Phenotypes in the Exposome Era, Curr Epidemiol Rep, doi.org/10.1007/s40471-017-0100-5]

Binary Exposures:

- sex (male/female)
- age category
- taking drug A
- physically active
- smoking
- high BMI
- high blood pressure
- exposed to pollutant A
- ...

Health Outcome:

Disease (1=Yes or 0=No)

                 Questions:

- Which exposures cause an
   increased risk?

- Do they act alone or in synergy?

    Challenges: - In practice exposures often interact (no single-cause disease)
- Numerous sources of exposures (individual’s genetic characteristics, environmental         

                           factors, lifestyle…), potentially all exposures from conception to death (exposome)

Y
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Synergy - Interaction on an additive scale

 [VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, 
  doi.org/10.1515/em-2013-0005]

Absolute risks of lung cancer:

No Asbestos Asbestos

Non-Smoker 0.11 % 0.67 %

Smoker 0.95 % 4.50 %

P(Y=1∣X1 , X 2)

Interaction coefficient:

Defined as difference of risks w.r.t. baseline risk

IC = (R AS−R A S)− [(RA S−RA S) + (R AS−R A S)]

= 4.5 − 0.67 − 0.95 + 0.11 = 2.99
IC > 0  positive interaction
IC < 0  negative interaction
IC = 0  no interaction

=> identify subgroup for public health intervention

=> positive interaction between smoking and asbestos

X1=0 X1=1

X 2=0

X 2=1

baseline risk 

= R AS − RA S − R A S + R A S
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Synergy - Interaction on an additive scale

 [VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, 
  doi.org/10.1515/em-2013-0005]

Absolute risks of lung cancer:

No Asbestos Asbestos

Non-Smoker 0.11 % 0.67 %

Smoker 0.95 % 4.50 %

P(Y=1∣X1 , X 2)

Interaction coefficient:

Defined as difference of risks w.r.t. baseline risk

IC = (R AS−R A S)− [(RA S−RA S) + (R AS−R A S)]

= 4.5 − 0.67 − 0.95 + 0.11 = 2.99
IC > 0  positive interaction
IC < 0  negative interaction
IC = 0  no interaction

=> identify subgroup for public health intervention

=> positive interaction between smoking and asbestos

X1=0 X1=1

X 2=0

X 2=1

baseline risk 

= R AS − RA S − R A S + R A S

Can we discover interaction 
with machine learning?
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where                                            baseline risk  

                                                                                     risk diff due to X1 alone

                                                                                     risk diff due to X2 alone

                                                                                  
                   

                             risk diff due to additive interaction between X1 and X2

                                                                                                         

Standard approach: “linear” regression

 [VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, 
  doi.org/10.1515/em-2013-0005]

Model:

P(Y∣X1=x1 , X2=x2) = c0 + c1⋅x1 + c2⋅x2 + c3⋅x1 x2

c0 = P(Y∣X1=0, X2=0)

c1 = P(Y∣X1=1, X 2=0) − P (Y∣X1=0, X 2=0)

c2 = P(Y∣X1=0, X2=1) − P(Y∣X1=0, X2=0)

c3 = P(Y∣X1=1, X2=1) − P(Y∣X1=1, X2=0)− P (Y∣X 1=0, X 2=1) + P(Y∣X1=0, X2=0)

regression terms 
= all possibles 
combinations of           
input variables
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Linear regression for higher-order interactions?

 [Patel 2017, Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with       
  Phenotypes in the Exposome Era, Curr Epidemiol Rep, doi.org/10.1007/s40471-017-0100-5]

N binary exposures: 2N regression terms

11 binary exposures: 2048 regression terms

Drawbacks:
- Model overfitting, study not reproducible
- Require large sample
- Computationally challenging
- Hard to interpret interactions with overlapping sets of variables
- Results can be misleading even if p-value of regression coefficients is low

Solution: reduce the number of tested interactions. Alternative: use CoOL
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Our approach: neural network + XAI + clustering

 

 

baseline risk 

Non-linear hidden layer can 
modelize any higher-order 
additive interaction (no 
more need to test all of 
them explicitly!), as well as  
standalone exposure 
effects without interaction

P(Y=1∣X1 , X 2 , ...) = ∑
j

( ReLU (∑
i

X i⋅βi , j
+

+α j
−
)

⏟
hidden layer activations S j

+

) + Rb+
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Model assumptions for synergy detection

 

 

Positive Monotonicity: e.g. sufficient-component-cause framework 
Each exposure either increases risk or has no effect for all individuals in the population 
(i.e. regardless of other exposures) as its value changes from 0 to 1

  if  “risk diff for X1 in strata X2=1” > “risk diff for X1 in strata X2=0” 

  then synergy 

Relaxed Monotonicity: CoOL framework
Each exposure either increases risk or has no effect on each individual separately (i.e. 
depending on other exposures) with no pre-defined direction 
In practice: one-hot encoding of inputs (even for exposures with 2 categories) allows to discover
e.g. that “drug A only harmful for women” and “drug B only harmful for men”

  if  “combined risk of exposures” > “sum of risks due to standalone exposures” 
  then synergy 

 [VanderWeele and Robins 2007, The Identification of Synergism in the Sufficient-Component-Cause         
  Framework, Epidemiology, doi.org/10.1097/01.ede.0000260218.66432.88]
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Step 1: Model fitting

 

 

● Training via Stochastic Gradient Descent (update model one individual at a time)

● Minimize squared prediction error (data loss                                   )

● Weight regularization through squared L2-norm penalty, to avoid overfitting on noise 
(regularization loss        )

● Initialization of baseline risk        with mean risk of the outcome
  

● Split data in train & internal validation sets to assess reproducibility of found risk factors

● Even though overall discriminative performance (AUC) is low, the model can still capture 
important sets of causes for particular subgroups! 
(e.g. improved prediction on subgroups with rare risk factors that have strong effects)

 [Janssens and Martens 2020, Reflection on modern methods: Revisiting the area under the ROC Curve,   
  Int J Epidemiol, doi.org/10.1093/ije/dyz274]

(Y true−P̂Model(Y∣X ))
2

‖β‖
2

Rb+ E [Y true]
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Y predicted = PModel(Y=1∣X) = ∑
j

( ReLU (∑
i

X i⋅βi , j
+ +α j

−)
⏟

hidden layer activations S j
+

) + Rb+

Step 2: Decompose prediction into risk contributions

 

 

 [Bach et al. 2015, On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise                
  Relevance Propagation, PLOS ONE, doi.org/10.1371/journal.pone.0130140]

2.  Backward pass
     [explain prediction]

1.  Forward pass
     [predict]

X i

PModel(Y=1∣X) = Rb+
+ ∑

i

Ri

exposures

               risk contribution for             
  

exposures

X iRi

For each individual 
do:

baseline risk

start

end

As an explainable artificial 
intelligence (XAI) method 
we use Layer-wise 
Relevance Propagation (LRP)
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Step 2: Decompose prediction into risk contributions

 

 

 [Montavon et al. 2017, Explaining nonlinear classification decisions with deep Taylor decomposition,       
  Pattern Recognition, doi.org/10.1016/j.patcog.2016.11.008]

baseline risk

Advantages:
- overall risk conserved, no risk assigned to the hidden layer intercepts
- explains which exposures might by be “causing” the outcome, rather than what would be the            
  impact of modifying certain exposures (sensitivity-based, perturbation-based XAI)
- model design fully matches the theory behind LRP: deep Taylor decomposition

R jRi

Rtotal

Rtotal = PModel (Y=1∣X) − Rb+
Output layer:

Hidden layer:

Input layer:

R j =
S j

∑
j ´

S j ´

R total

Ri = ∑
j

X i⋅βi , j
+

∑
i´

X i '⋅βi ´ , j
+

R j

We use the 

decomposition rule

LRPα=1,β=0
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Step 3: Clustering risk contributions

  [Strauss and Maltitz 2017, Generalising Ward’s Method for Use with Manhattan Distances, 
  PLOS ONE doi.org/10.1371/journal.pone.0168288]

● Hierarchical clustering of  individuals based on risk contributions (using the 
Ward’s algorithm and Manhattan distances)

● Visualize clustering hierarchy as dendrogram to decide on the number of 
clusters/subgroups

● For each subgroup compute risk contributions (mean and std)
 

1) mean risk vs. prevalence plot
=> “area above baseline” indicates public health impact of subgroup
2) mean risk table
=> “sum of standalone risks < combined risk” indicates synergism
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Step 3: Clustering risk contributions

 

                 Mean risk vs. prevalence by subgroup

baseline subgroup V
with mean risk = baseline risk
(typically largest prevalence)

a subgroup Z with increased risk 
i.e. with mean risk > baseline risk
and a corresponding set of exposures xZ

(typically low prevalence)

another subgroup W 
with increased risk

Excess fraction for subgroup Z:

=> public health impact

 

P (Y=1∣X=xZ) − Rb+

P(Y=1)
=
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Step 3: Clustering risk contributions

 

                Mean risk (std) per subgroup and per exposure

If  [mean risk contrib. of exposure Xi with other exposures set to 0]  <  mean risk contrib of exposure Xi

Then synergy of Xi with other exposures in the subgroup!
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Complex simulation example

       

Ground truth:

P(Y) = 5,4 % mean prediction

P(Y | U) = 5 % baseline risk

P(Cause 1) = 1,8 % prevalence
P(Y | Cause 1) = 15 % increased risk
P(Y, Cause 1)/P(Y) = 4,9 % excess fraction

P(Cause 2) = 1,2 %
P(Y | Cause 2) = 10 %
P(Y, Cause 2)/P(Y) = 2,3 %

Cause 1: 

Cause 2: 
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CoOL results

       

Ground truth:

P(Y | U) = 5 % baseline risk

P(Cause 1) = 1,8 % prevalence
P(Y | Cause 1) = 15 % increased risk
P(Y, Cause 1)/P(Y) = 4,9 % excess fraction

P(Cause 2) = 1,2 %
P(Y | Cause 2) = 10 %
P(Y, Cause 2)/P(Y) = 2,3 %

∑i
RX i

Rb
= baseline risk

= increased risk

whole surface = P(Y) 

prevalence

m
ea

n
 r

is
k
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More information about CoOL

 

● Tutorial and demo see project page: 
https://www.causesofoutcomelearning.org

● Open source R package to reproduce results (including plots):       
https://cran.r-project.org/package=CoOL 

● Supplementary material of the paper (including various controlled 
simulations, robustness checks and a real-world example):
https://doi.org/10.1093/ije/dyac078

https://www.causesofoutcomelearning.org/

