BIFOLD Welcome Days $19-21^{\text {th }}$ Oct.

Talk by Leila Arras

XAI in Epidemiology
Exploring Interacting Causes of a Health Outcome with CoOL (Causes of Outcome Learning)

Causes of Outcome Learning - paper:

Collaboration with Andreas Rieckmann (Section of Epidemiology,
Dept. of Public Health, University of Copenhagen) \& other Co-authors !

Volume 51, Issue 5 October 2022

Article Contents

Abstract
Introduction
The CoOL approach
Real-life application
Discussion
Conclusion

- journal article

Causes of Outcome Learning: a causal inference-
inspired machine learning approach to
disentangling common combinations of potential causes of a health outcome
Andreas Rieckmann 쓴, Piotr Dworzynski, Leila Arras, Sebastian Lapuschkin. Wojciech Samek, Onyebuchi Aniweta Arah, Naja Hulvej Rod, Claus Thorn Ekstrøm

International Journal of Epidemiology, Volume 51, Issue 5, October 2022, Pages 1622-1636, https://doi.org/10.1093/ije/dyac078
Published: 08 May 2022 Article history v
(A) PDF
$\|$ Split View

66 Cite
P Permissions
\because Share v

Abstract

Nearly all diseases are caused by different combinations of exposures. Yet, most epidemiological studies focus on estimating the effect of a single exposure on a health outcome. We present the Causes of Outcome Learning approach (CoOL),

- XAI Research Group

Dept. of Artificial Intelligence Fraunhofer HHI

What is Epidemiology?

Definition:

Study of the distribution (frequency, pattern) and determinants (causes, risk factors) of health-related states and events (not just diseases) in specified populations (country, global).

Derived from Greek:
epi 'upon, among' + demos 'people, district' + logos 'study, word, discourse'
$=$ 'the study of what is upon the people'
Not only about epidemic/infectious diseases! But various studies on healthrelated issues (e.g. pollution, cancer, natural disaster, clinical trials,...).

Goal: Discover exposures associated with an outcome

Binary Exposures: X_{i}

- sex (male/female)
- age category
- taking drug A
- physically active
- smoking
- high BMI
- high blood pressure
- exposed to pollutant A
- ...

Challenges: - In practice exposures often interact (no single-cause disease)

- Numerous sources of exposures (individual's genetic characteristics, environmental factors, lifestyle...), potentially all exposures from conception to death (exposome)
[Patel 2017, Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with
Phenotypes in the Exposome Era, Curr Epidemiol Rep, doi.org/10.1007/s40471-017-0100-5]

Synergy - Interaction on an additive scale

Absolute risks of lung cancer:

	$X_{1}=0$	$X_{1}=1$
	$P\left(Y=1 \mid X_{1}, X_{2}\right)$	No Asbestos

IC >0 positive interaction
IC <0 negative interaction
IC $=0$ no interaction

Interaction coefficient:

Defined as difference of risks w.r.t. baseline risk

$$
\begin{aligned}
I C & =\left(R_{A S}-R_{A S}\right)-\left[\left(R_{A S}-R_{A S}\right)+\left(R_{\overline{A S}}-R_{\overline{A S}}\right)\right] \\
& =R_{A S}-R_{A S}-R_{\overline{A S}}+R_{\overline{A S}} \\
& =4.5-0.67-0.95+0.11=2.99
\end{aligned}
$$

=> positive interaction between smoking and asbestos
=> identify subgroup for public health intervention
[VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, doi.org/10.1515/em-2013-0005]

Synergy - Interaction on an additive scale

Absolute risks of lung cancer:

	$X_{1}=0$	$X_{1}=1$
	$P\left(Y=1 \mid X_{1}, X_{2}\right)$	No Asbestos

IC >0 positive interaction IC <0 negative interaction IC $=0$ no interaction

Interaction coefficient:

Defined as difference of risks w.r.t. baseline risk

$$
\begin{aligned}
I C & =\left(R_{A S}-R_{\overline{A S}}\right)-\left[\left(R_{A \bar{S}}-R_{\overline{A S}}\right)+\left(R_{\overline{A S}}-R_{\overline{A S}}\right)\right] \\
& =R_{A S}-R_{A \bar{S}}-R_{\overline{A S}}+R_{\bar{A} \bar{S}} \\
& =4.5-0.67-0.95+0.11=2.99
\end{aligned}
$$

=> positive interaction between smoking and asbestos
Can we discover interaction with machine learning?
=> identify subgroup for public health intervention
[VanderWeele and Knol 2014, A Tutorial on Interaction, Epidemiol Methods, doi.org/10.1515/em-2013-0005]

Standard approach: "linear" regression

Model:

$P\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=c_{0}{ }^{4}+c_{1} \cdot x_{1}^{4}+c_{2} \cdot X_{2}{ }^{4}+c_{3} \cdot X_{1} \hat{X}_{2}$
where $\quad c_{0}=P\left(Y \mid X_{1}=0, X_{2}=0\right) \quad$ baseline risk

$$
\begin{array}{lc}
c_{1}=P\left(Y \mid X_{1}=1, X_{2}=0\right)-P\left(Y \mid X_{1}=0, X_{2}=0\right) & \text { risk diff due to X1 alone } \\
c_{2}=P\left(Y \mid X_{1}=0, X_{2}=1\right)-P\left(Y \mid X_{1}=0, X_{2}=0\right) & \text { risk diff due to X2 alone } \\
c_{3}=P\left(Y \mid X_{1}=1, X_{2}=1\right)-P\left(Y \mid X_{1}=1, X_{2}=0\right)-P\left(Y \mid X_{1}=0, X_{2}=1\right)+P\left(Y \mid X_{1}=0, X_{2}=0\right)
\end{array}
$$

risk diff due to additive interaction between X1 and X2

Linear regression for higher-order interactions?

N binary exposures: $\quad 2^{\mathrm{N}}$ regression terms

11 binary exposures: 2048 regression terms

Drawbacks:

- Model overfitting, study not reproducible
- Require large sample
- Computationally challenging
- Hard to interpret interactions with overlapping sets of variables
- Results can be misleading even if p-value of regression coefficients is low

Solution: reduce the number of tested interactions. Alternative: use CoOL

Our approach: neural network + XAI + clustering

$$
P\left(Y=1 \mid X_{1}, X_{2}, \ldots\right)=\sum_{j}(\underbrace{\operatorname{ReLU}\left(\sum_{i} X_{i} \cdot \beta_{i, j}^{+}+\alpha_{j}^{-}\right)}_{\text {hidden layer activations } S_{j}^{+}})+R^{b+}
$$

baseline risk

Non-linear hidden layer can modelize any higher-order additive interaction (no more need to test all of them explicitly!), as well as standalone exposure effects without interaction

Model assumptions for synergy detection

Positive Monotonicity: e.g. sufficient-component-cause framework

Each exposure either increases risk or has no effect for all individuals in the population (i.e. regardless of other exposures) as its value changes from 0 to 1

```
if "risk diff for }\mp@subsup{X}{1}{}\mathrm{ in strata }\mp@subsup{X}{2}{}=1"> "risk diff for X X in strata X X =0"
```

then synergy

Relaxed Monotonicity: CoOL framework

Each exposure either increases risk or has no effect on each individual separately (i.e. depending on other exposures) with no pre-defined direction
In practice: one-hot encoding of inputs (even for exposures with 2 categories) allows to discover e.g. that "drug A only harmful for women" and "drug B only harmful for men"
if "combined risk of exposures" > "sum of risks due to standalone exposures"
then synergy

Step 1: Model fitting

- Training via Stochastic Gradient Descent (update model one individual at a time)
- Minimize squared prediction error (data loss $\left(Y_{\text {true }}-\hat{\boldsymbol{P}}_{\text {Model }}(Y \mid \boldsymbol{X})\right)^{2}$)
- Weight regularization through squared L2-norm penalty, to avoid overfitting on noise (regularization loss $\|\boldsymbol{\beta}\|^{2}$)
- Initialization of baseline risk R^{b+} with mean risk of the outcome $E\left[Y_{\text {true }}\right]$
- Split data in train \& internal validation sets to assess reproducibility of found risk factors
- Even though overall discriminative performance (AUC) is low, the model can still capture important sets of causes for particular subgroups!
(e.g. improved prediction on subgroups with rare risk factors that have strong effects)
[Janssens and Martens 2020, Reflection on modern methods: Revisiting the area under the ROC Curve, Int J Epidemiol, doi.org/10.1093/ije/dyz274]

Step 2: Decompose prediction into risk contributions

For each individual do:
start X_{i} exposures

1. Forward pass [predict]

$$
Y_{\text {predicted }}=P_{\text {Model }}(Y=1 \mid \boldsymbol{X})=\sum_{j}(\underbrace{\operatorname{ReLU}\left(\sum_{i} X_{i} \cdot \beta_{i, j}^{+}+\alpha_{j}^{-}\right)})+R^{b+}
$$

hidden layer activations S_{j}^{+}

baseline risk
end $\quad R_{i}$ risk contribution for X_{i}

$$
\begin{aligned}
& \text { (2.) Backward pass } \\
& \text { [explain prediction] }
\end{aligned} P_{\text {Model }}(Y=1 \mid \boldsymbol{X})=R^{b+}+\sum_{i} R_{i}
$$

As an explainable artificial intelligence (XAI) method we use Layer-wise Relevance Propagation (LRP)

Step 2: Decompose prediction into risk contributions

Output layer:

$$
R_{\text {total }}=P_{\text {Model }}(Y=1 \mid \boldsymbol{X})-R^{b+}
$$

Hidden layer: $\quad R_{j}=\frac{S_{j}}{\sum_{j^{\prime}} S_{j^{\prime}}} R_{\text {total }}$
Input layer: $\quad R_{i}=\sum_{j} \frac{X_{i} \cdot \beta_{i, j}^{+}}{\sum_{i^{\prime}} X_{i^{\prime}} \cdot \beta_{i^{\prime}, j}^{+}} R_{j}$
Advantages:

- overall risk conserved, no risk assigned to the hidden layer intercepts
- explains which exposures might by be "causing" the outcome, rather than what would be the impact of modifying certain exposures (sensitivity-based, perturbation-based XAI)
- model design fully matches the theory behind LRP: deep Taylor decomposition

[^0]
Step 3: Clustering risk contributions

- Hierarchical clustering of individuals based on risk contributions (using the Ward's algorithm and Manhattan distances)
- Visualize clustering hierarchy as dendrogram to decide on the number of clusters/subgroups
- For each subgroup compute risk contributions (mean and std)

1) mean risk vs. prevalence plot
=> "area above baseline" indicates public health impact of subgroup
2) mean risk table
=> "sum of standalone risks < combined risk" indicates synergism

Step 3: Clustering risk contributions

Mean risk vs. prevalence by subgroup

another subgroup W with increased risk
ne subgroup V
with mean risk = baseline risk (typically largest prevalence)

$$
P(Y=1)=
$$

a subgroup Z with increased risk i.e. with mean risk > baseline risk and a corresponding set of exposures x_{z} (typically low prevalence)

$$
\sum_{i} R_{i}^{X_{z}}
$$

Excess fraction for subgroup Z:

$$
\frac{P\left(Y=1 \mid X=x_{Z}\right)-R^{b+}}{P(Y=1)}=
$$

=> public health impact

Fraunhofer

Step 3: Clustering risk contributions

Mean risk (std) per subgroup and per exposure

Mean risk contributions by sub-group (Standard deviation) [mean risk contribution if other exposures are set to 0]	Baseline risk	sex-	se^{x-1}	$\operatorname{arug}^{2}-0$	$\operatorname{drug}-2-1$	arug -	$\operatorname{arug}=1$
Sub-group 1: $n=8038, e=393$, Prev $=80.4 \%$, risk $=4.9 \%$, excess $=3.4 \%$, Obs risk=4.9\% (4.4-5.4\%) Risk based on the sum of individual effects $=4.9 \%$	$\begin{gathered} 4.6 \% \\ (0.0 \%) \\ {[4.6 \%]} \end{gathered}$						
Sub-group 2: $\mathrm{n}=950, \mathrm{e}=194$, Prev=9.5\%, risk=20.3\%, excess $=18.8 \%$, Obs risk=20.4\% (17.9-23.2\%) Risk based on the sum of individual effects $=4.6 \%$	$\begin{aligned} & 4.6 \% \\ & (0.0 \%) \\ & {[4.6 \%]} \end{aligned}$		$\begin{gathered} 7.7 \% \\ (0.0 \%) \end{gathered}$ $[0.0 \%]$				
Sub-group 3: n=1012, e=208,Prev=10.1\%, risk=20.4\%, excess $=20.2 \%$, Obs risk=20.6\% (18.1-23.2\%) Risk based on the sum of individual effects $=5.2 \%$	$\begin{aligned} & 4.6 \% \\ & (0.0 \%) \\ & {[4.6 \%]} \end{aligned}$	$\begin{gathered} \hline 8 \% \\ (0.1 \%) \\ {[0.0 \%]} \\ \hline \end{gathered}$			$\begin{gathered} 7.7 \% \\ (0.0 \%) \\ {[0.0 \%]} \end{gathered}$		

Fraunhofer

Complex simulation example

Ground truth:

$P(Y)=5,4 \%$ mean prediction
$P(Y \mid U)=5 \%$ baseline risk
$\mathrm{P}($ Cause 1) $=1,8$ \% prevalence
$P(Y \mid$ Cause 1) $=15$ \% increased risk
$\mathrm{P}(\mathrm{Y}$, Cause 1)/P(Y) = 4,9 \% excess fraction
$P($ Cause 2) $=1,2 \%$
$P(Y \mid$ Cause 2) $=10 \%$
$P(Y$, Cause 2) $/ P(Y)=2,3 \%$

CoOL results

Ground truth:

$\mathrm{P}(\mathrm{Y} \mid \mathrm{U})=5 \%$ baseline risk
$\mathrm{P}($ Cause 1) $=1,8 \%$ prevalence
$P(Y \mid$ Cause 1) = 15 \% increased risk
$\mathrm{P}(\mathrm{Y}$, Cause 1)/P(Y) = 4,9 \% excess fraction
$P($ Cause 2) $=1,2 \%$
$P(Y \mid$ Cause 2) $=10 \%$
$\mathrm{P}(\mathrm{Y}$, Cause 2)/P(Y) = 2,3 \%
F) Mean risk contributions by sub-group (Standard diviation)
[mean risk contribution if other exposures are set to 0]
Sub-group 1: $n=48564, e=2378$, Prev $=97.1 \%$, risk $=4.9 \%$
excess $=1.2 \%$, Obs risk $=4.9 \%(4.7-5.1 \%)$ excess $=1.2 \%$, Obs risk $=4.9 \%$ (4.7-5.1\%)
R.

Sub-group 2: $\mathrm{n}=560, \mathrm{e}=89$, Prev $=1.1 \%$, risk $=14.1 \%$ excess $=2.0 \%$, Obs risk $=15.9 \%(13.0-19.2 \%)$ Risk based on the sum of individual effects $=4.9 \%$
Sub-group 3: $n=876, e=183$, Prev $=1.8 \%$, risk $=19.5 \%$, excess $=4.8 \%$, Obs risk $=20.9 \%$ (18.3-23.8\%) Risk based on the sum of individual effects $=4.9 \%$

4.9%	4.1%		
(0.0%)	(0.1%)		
$[4.9 \%]$	$[0.0 \%]$	4.8%	4.8%
4.9%		(0.0%)	(0.0%)
(0.0%)		$[0.0 \%]$	$[0.0 \%]$
$[4.9 \%]$			

4.8\%
(0.0\%)
0.0%) [0.0\%]

Fraunhofer

More information about CoOL

- Tutorial and demo see project page:
https://www.causesofoutcomelearning.org
- Open source R package to reproduce results (including plots): https://cran.r-project.org/package=CoOL
- Supplementary material of the paper (including various controlled simulations, robustness checks and a real-world example): https://doi.org/10.1093/ije/dyac078

[^0]: [Montavon et al. 2017, Explaining nonlinear classification decisions with deep Taylor decomposition, Pattern Recognition, doi.org/10.1016/j.patcog.2016.11.008]

