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ABSTRACT

Image Cube Trajectory (ICT) analysis is a new and robust
method to estimate the 3D structure of a scene from a set of 2D
images. The motion of points in 3D space is represented by trajec-
tories in an image cube. The advantage of this method is that the
motion information of a single 3D point can be represented and
analyzed for all available images simultaneously. ICT analysis is
based on the definition of an occlusion compatible search strategy
in the image cube for known parametrized camera setups. In this
paper we derive rules for an optimized sampling of the considered
3D space. They can also be applied to many other 3D reconstruc-
tion approaches such as voxel coloring [1]. We will restrict our
discussion to a circular moving camera.

1. INTRODUCTION

The estimation of depth information from 2D images has received
much attention in the past decade. The basic problem of recover-
ing the 3D structure of a scene from a set of images is the corre-
spondence search [2]. Given a single point in one of the images its
correspondences in the other images need to be detected. Depend-
ing on the algorithm two or more point correspondences as well as
the camera geometry are used to estimate the depth of that point
[3]. However, for complex real scenes the correspondence detec-
tion problem is still not fully solved. Especially in the case of
homogeneous regions, occlusions, or noise, it still faces many dif-
ficulties. It is now generally recognized that using more than two
images can dramatically improve the quality of reconstruction.

One method for the simultaneous consideration of all available
views is Epipolar Image (EPI) analysis [4]. An Epipolar Image can
be thought of being a horizontal slice (or plane) in the so called im-
age cube [2, 5] that can be constructed by collating all images of
a sequence. It is defined for a linear equidistant camera movement
parallel to the horizontal axis of the image plane only. In this case
projections of 3D object points become a straight line called EPI
line. The principle of EPI analysis is the detection of all EPI-lines
(and their slopes which correspond to depth) in all available EPIs.
The advantage is the joint detection of point correspondences for
all available views. Occlusions as well as homogeneous regions
can be handled efficiently [5]. The big disadvantage of the algo-
rithm is its restriction to linear equidistant camera movements.

In [6, 7], we have proposed a new concept called Image Cube
Trajectory (ICT) analysis that overcomes the restriction of EPI
analysis and is able to jointly exploit all available views for more
general camera configurations, such as the circular camera move-
ment in fig. 2, left. For the special case of an inwards, tangen-
tial, or outwards facing circularly moving camera, we derived the
analytical shape of the almost sinusoidal object point trajectories.
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Fig. 1. Image cube representation for a sequence of a rotating
object, left) original ’tree’ sequence, right) image cube showing
several ICTs on a horizontal slice in the X − t domain.

(see fig. 1, right for an example) and proposed a new ICT match-
ing method for robust depth estimation. In addition, we have ana-
lyzed the influence of perspective distortion to the exact ICT shape.
Based on this we have introduced an efficient occlusion compatible
search strategy in the image cube. We have suggested an inverse
approach to the conventional way of EPI analysis where usually
the EPI lines are detected [4, 8] and then depth is computed from
the slopes of the lines. In contrast to that, we chose a 3D point,
determine its trajectory through the image cube (image cube tra-
jectory, ICT), and check the 3D point hypothesis by evaluating
color constancy along the entire trajectory [6]. The best matching
ICTs are considered to belong to the object surface. This inverse
approach allows the consideration of arbitrary camera movements
but requires the decision about a 3D space sampling. In this paper,
we derive some non-uniform sampling that minimizes the number
of ICT evaluations for a given camera resolution while maintaining
cylindrical coordinates that help to specify an optimal occlusion
compatible search order [6].

2. SAMPLING OF CYLINDER COORDINATES

The proposed ICT search strategy is based on the variation of ICT
parameters in the image cube (i.e. the ICTs amplitudes, phases,
and Y-coordinates). Therefore, we need to define an overall set of
considered ICTs for our search. This corresponds to a finite set of
discrete points in 3D space, i.e. a 3D sampling grid. Due to the
defined occlusion compatible search order [6, 7], we focus on a
circular sampling of the 3D space. A straight forward approach
for this task is an equidistant sampled cylinder coordinate system
as shown in fig. 2, right. Unfortunately, this solution is very ineffi-
cient, because it leads to a very high 3D resolution for small and a
very low resolution for large radii.
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Fig. 2. left) Circular rotating camera (turntable setup), right) reg-
ular sampling of 3D space based on cylinder coordinates
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Fig. 3. left) Projection of a 3D point P to the image plane IP
of a camera C, right) derivation of vertical 3D sampling grid for
cylinder coordinates

The task of this paper is to derive a more efficient circular
3D sampling representation which is based on an optimized image
cube representation of the ICTs. We will define a maximum set of
discrete ICTs (i.e. ICT parameters) which still can be resolved and
detected for a given image resolution. From this we will derive an
optimized sampling of 3D space.

In the following chapter we will discuss the quantization of
radii in 3D space first. Afterwards, we will consider the quanti-
zation of angles. Finally, we will define the vertical quantization
(height). Note, that for matter of simplicity we will consider a
fixed camera and a rotating scene in chapter 3.1, and vice versa, a
rotating camera and a fixed scene in chapter 3.2.

3. OPTIMIZED HORIZONTAL SAMPLING

The task of this chapter is to derive a 3D space sampling rule for
cylinder coordinates which is adapted to the properties of projec-
tive cameras. For linear, equidistant camera movement this prob-
lem can be solved applying the Plenoptic Sampling Theorem intro-
duced in [9]. The authors present the dependency between the dis-
tance of the cameras, the resolution of the image planes and the 3D
depth representation which is used to define a set of optimal depth
layers parallel to the image plane of the cameras. The defined set
of depth layers is the same for all considered cameras. In this chap-
ter we will show that for circular camera movement an equivalent
overall set of 3D layers does not exist. Rather, it highly depends
from the considered pair of cameras. Nevertheless, we will see that
it is still possible to define an overall maximum resolution bound
for all cameras simultaneously which is adapted to the image cube
resolution. Although this approach leads to an overestimated sys-
tem it still provides an optimized solution for ICT analysis which
is much more efficient than the equidistant approach illustrated in
fig. 2, right.

3.1. Optimized Sampling of Radii

A rule for an optimized sampling of radii can be derived from the
resolution of the image planes of the cameras. The projection of a
3D point P with the angle φP and radius RP to the image plane
IP of a camera C (see Fig. 3, left) can be defined as

Xp = f
Rp sin φP

RM − RP cos φP
(1)

where RM is the distance to the center of rotation M , f the focal
length and XP the resulting point on the image plane (see [6] for
a detailed derivation). The 3D point P is related to a specific tra-
jectory in the image cube (ICT) as the image cube represents the
time dependent collection of all camera image plains (see [6, 10]
for more details). If P is rotating around M 1 than the correspond-
ing ICT is determined by the projected point XP as a function of
the rotation angle φP . The amplitude A of the considered ICT de-
pends on the maximum deviation of XPmax . The projection ray
through XPmax is tangential to the circle defined by RP . For this
case the rotation angle φopt of point P can determined from the
derivative

∂Xp(φP )

∂φP

∣∣∣∣
φopt

= 0. (2)

The combination of equations (2) and (1) leads to

φopt = arccos
(
− RP

RM

)
. (3)

The angle φopt specifies the maximum deviation XPmax in the
image plane and such the maximal possible amplitude of a corre-
sponding ICT. For the ICT analysis algorithm the number of dif-
ferent ICT amplitudes which can be resolved in the image cube
is limited by the horizontal image resolution Nx. The projection
rays through each of the discrete pixels (Xi, Yi) are tangential to
the optimized circles in 3D (see fig. 4, left). Using eq. (3) the radii
of the optimized circles Ropti can be determined. We define an-

gle α as tan α = ∆X
f

and sin α =
Ropti
RM

where ∆X = wh
Nx

is
the horizontal pixel size, wh = 2f tan (FOVh/2) the horizontal
sensor width, f is the focal length, and i = 0, 1, 2, .., Nx/2 the
positive horizontal pixel index. Such, the optimal radius is defined
as

Ropti = 2
Rm tan(1/2FOVh)i√

4 (tan(1/2FOVh))2 i2 + Nx
2

(4)

The total number of radii samples NR is determined by the hor-
izontal image resolution in the image plain of the camera as
NR = Nx/2. Fig. 4, left illustrates the optimized radii at the ex-
ample of a camera image resolution of Nx = 14. The right graph
shows the corresponding ICTs in the X − Φ domain of the image
cube where the rotation angle φ is represented by the ICTs phase
Φ. It can be seen that the maximal amplitude of each ICT (which
was obtained from the optimal radius Ropti ) is sampled exactly in
the image resolution. The defined radii sampling grid represents
the maximal number of discrete ICT amplitudes which still can be
resolved and detected in the image cube and such the optimal radii
sampling for ICT analysis.

1Note, that for a static scene either a fixed scene and a rotating camera
or a fixed camera and a rotating scene can be considered.
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Fig. 4. left) Optimal radii grid in the 3D space, right) Optimal
sampling of the ICT amplitudes in the X − Φ plane of the image
cube

3.2. Optimized Sampling of Angles

In this chapter we will derive a rule for an optimized angular sam-
pling. Firstly, following the discussion in [9] we will show that in
case of a circular camera movement an optimal sampling does not
exist for all available cameras simultaneously. Unlike the linear
case, it is highly dependent on the considered cameras and the 3D
image points. Nevertheless, for large sets of cameras we will de-
rive an optimized rule that is based on the horizontal resolution of
the cameras and leads to more practical results.

For the matter of simplicity, we will consider in the following
a fixed 3D point P and a rotating camera C rather than a fixed
camera and a rotating scene (fig. 5, right). The rotation angle be-
tween two subsequent cameras C0 and C1 is denoted as φcam with
φC0 = 0. It corresponds to the ICT phase Φcam in the image cube.
The task of this chapter is to define the minimal discrete phase
φcammin which still can be resolved in the image cube. Such, we
will obtain the maximal set of detectable ICTs in dependency of
the image resolution and the camera setup. This corresponds to an
optimal angular sampling in the 3D space.

Fig. 5, right illustrates the problem. The 3D point P is pro-
jected to the image planes of two subsequent cameras C0 and
C1 with an angular distance φcam. The disparity d between the
two projected points XC0 and XC1 can be expressed as d =
X ′

C0 − XC1. Substituting eq. (1) relative to φcam we obtain the
dependency between the disparity d and the angles φP and φcam

for a constant radius RP

d = fRp

{
sin (φP − φcam)

RM − Rp cos (φP − φcam)
− sin φP

RM − Rp cos φP

}
.

(5)
For the case of a linear moving camera it is shown in [9] that an
optimal depth layering can be obtained by an equidistant sampling
of the continuous disparity space d. The authors adapted the sam-
pling interval ∆d to the image resolution. In our case the circular
camera movement leads to a non-linear solution which is illus-
trated in fig. 5, left. For the considered pair of cameras the corre-
sponding optimal angular resolution occurs for the shown discreet
angles φP1,2,3,... . It can be seen that it depends highly on φP ,
i.e. the position of point P . Further, it follows from eq. (5) that
the sampled angles φpi depend on the camera angles Φcami and
Φcami+1 , i.e. the chosen cameras Ci and Ci+1. As in the ICT
analysis approach we are dealing with a large set of cameras we
obtain a different angular sampling for each considered subsequent
camera pair.

Therefore, it is not possible to define an overall unique angu-
lar quantization format which is adapted optimally for all available
camera pairs. Nevertheless, it is still possible to find a compro-
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Fig. 5. Disparity d in dependency of the camera distance φcam and
the point P = (RP , φP ) for a fixed radius RP and a fixed cam-
era angle φcam, left) d as a function of φP , a uniformly sampled
disparity space leads to a non-uniformly angular resolution, right)
setup in 3D space
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Fig. 6. left), Optimized angle sampling in 3D space, right) Several
subsequent ICTs shifted by the derived optimized distance

mise. Because we are interested in resolving the ICTs phase shift
within the pixel grid we consider that ICT section which has the
highest slope as a reference. For such a section the ICTs amplitude
change in dependency of φcam will be maximal. This angle is de-
rived from the projection rays through the borders of the pixel clos-
est to the z-axis of the camera. We define the intersection of this
ray with the circle having an optimized radius Ropti as the min-
imal angular sampling distance φcammin . In this way we obtain
a different angular sampling for each considered radius. φcammin

can be derived by the application of trigonometric functions as:

φcammin = arcsin

(
RM

sin (αx1)

Ropti

)
− αx1 (6)

with αX1 = arctan ∆X
f

and ∆X = wh
NX

, where wh =

2f tan FOVh/2. The equation represents the dependency be-
tween the optimized angular sampling ∆ΦPR and the considered
optimized radius Ropti for a fixed camera setup.

Fig. 6, left illustrates the optimized angular sampling grid in
3D space. The right hand figure shows several subsequent ICTs
which are shifted by the defined optimized distance. It can be seen
that the maximum resolution change in the X-axis between two
subsequent ICTs is less or equal to the pixel size. Thus, an opti-
mized 3D angular sampling grid for the ICT analysis approach can
be defined.

4. OPTIMIZED VERTICAL SAMPLING

The optimal vertical sampling is straight forward. Again, the task
is to define a vertical quantization grid which can be resolved in the
image plane. Fig. 3, right illustrates the problem. The maximal



Fig. 7. Tree sequence, resolution optimized left) reconstructed
depth map, right) reconstructed 3D model.

vertical deviation occurs clearly for the points P1, P2 which are
closest to the camera. The deviation for any other point, such as
P4,5 in the example is smaller. The considered radius Rmax is the
maximal used radius within the whole analysis and can be derived
from eq. (4) for i = Nx/2. The vertical sampling interval ∆y is
determined by the vertical pixel spacing ∆Y . It can be defined as

∆y =
∆Y (RM − Rmax)

f
. (7)

Note, that at the image border the sampling interval ∆y could
be slightly increased due to the limited sensor width (see point P3).
For the matter of simplicity we do not consider this effect which
leads to a slight overestimation.

5. EXPERIMENTAL RESULTS

In order to prove the theoretical insights we have analyzed the nat-
ural tree sequence shown in fig. 1. We have used a turntable setup
with 360 different positions corresponding to 360 cameras. The
chosen image resolution was 280 × 360 pixel. Using our ICT
analysis approach we have reconstructed a depth map and a 3D
model for the case of an optimized space sampling first. 35 million
3D points were evaluated. Compared to the uniform quantization,
the proposed sampling leads to a reduction of almost 50%. Fig. 7
shows the result. To show the effects of sample errors, the 3D
reconstruction was performed without interpolation. In contrast,
fig. 8 illustrates the reconstruction result for a non-optimized sam-
pling grid based on half of the required quantization grid sizes for
angular and hight quantization. For the second case, artifacts oc-
cur for vertical resolution in point A and for horizontal resolution
in point B. Note, that an oversampling of the 3D space leads to the
same result as presented in fig. 7 but increases the computational
time.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach for the optimized sam-
pling of the 3D space for the ICT analysis of a circular moving
camera. We have derived dependencies between the image resolu-
tion, the camera setup parameters and the position of discrete 3D
points in cylinder coordinates. The angular sampling is adapted
to the requirements of the ICT analysis approach. For circular
camera motion, only about half the trajectories need to be ana-
lyzed with the proposed optimized sampling positions. Our results
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Fig. 8. Tree sequence, non optimized, left) reconstructed depth
map, right) reconstructed 3D model.

were proved on theoretical simulations as well as on real image
sequences. For our future work we plan to consider more gen-
eral parameterized camera setups. Further, we plan to exploit the
sampling accuracy within the ICT matching process.
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