
CONTEXT-BASED ADAPTIVE BINARY ARITHMETIC CODING IN JVT/H.26L

Detlev Marpe, Heiko Schwarz, Gabi Blättermann, Guido Heising, and Thomas Wiegand

Image Processing Department, Heinrich-Hertz-Institute, 10587 Berlin, Germany
[marpe,hschwarz,blaetter,heising,wiegand]@hhi.de

ABSTRACT

In this paper a new adaptive entropy coding scheme for
video compression is presented. It utilizes an adaptive
arithmetic coding technique to better match the first order
entropy of the coded symbols and to keep track of non-
stationary symbol statistics. In addition, remaining symbol
redundancies will be exploited by context modeling to
further reduce the bit-rate. A novel approach for coding
of transform coefficients and a table look-up method for
probability estimation and arithmetic coding is presented.
Our new approach has been integrated in the current JVT
test model (JM) to demonstrate the performance gain, and
it was adopted as a part of the current JVT/H.26L draft.

1. INTRODUCTION

In our prior work [1], we demonstrated that the context-
based adaptive binary arithmetic coding (CABAC)
approach along with new techniques for fast adaptation is
well suited for the JVT/H.26L video codec [2] and that
large bit-rate reductions compared to the UVLC-based
entropy coding in H.26L are achievable. Thus, this scheme
was adopted for H.26L. In this paper, we present new
methods of adaptive entropy coding, which significantly
improve the performance both with respect to coding
efficiency and computational complexity.

First, we focus on an alternative scheme for coding of
transform coefficients within the CABAC entropy coding
framework. This approach further improves the coding
efficiency compared to the CABAC version of JVT/H.26L
Working Draft 2 (WD2) [2], and its main features can be
summarized as follows:
- Instead of using counts of significant, i.e. non-zero

coefficients and run-length coding for signaling of
insignificant coefficients, a one-bit coded block
pattern symbol CBP4 is transmitted for each block of
transform coefficients along with a significance map

- All significant levels are encoded in reverse scanning
order

- New context models are designed for all syntax
elements related to transform coefficient encoding

In the second part of this paper we tackle the problem
of low-complexity binary arithmetic coding within the
scope of JVT/H.26L. Computationally less demanding

variants of binary arithmetic coding such as the Q-Coder
[3] are well known and have been successfully established
in other image coding standards. However, simply
applying such coding engines to JVT/H.26L may result in
a significant degradation of coding efficiency. In this
paper, we will present a novel low-complexity method of
arithmetic coding and probability estimation, which is well
suited to the CABAC entropy coding framework and
which can be shown to have minor impact on coding
efficiency. Our proposed method has three distinguishing
properties:
- Probability estimation is performed by means of a

finite-state machine with a table-based transition
process between 64 representative probability states

- The process of interval subdivision is simplified by a
pre-quantization of the interval range and a sub-
sequent table look-up operation

- A separate encoding and decoding bypass for syntax
elements or parts thereof having an approximately
uniform probability distribution has been established

The paper is organized as follows. In the next section,
novel techniques for an improved coding of transform
coefficients are presented. In Section 3, our fast binary
arithmetic coding scheme is described in more details.
Simulation results in Section 4 validate the efficiency of
the new techniques.

2. IMPROVED CODING OF TRANSFORM
COEFFICIENTS

The new coding scheme for transform coefficients is a
three-step process. First, a one-bit symbol called CBP4 is
transmitted for each block of transform coefficients unless
the coded block pattern (CBP) on macroblock (16x16)
level indicates that the regarded block has no non-zero
coefficients. The CBP4 symbol is set to one, if there are
any significant, i.e. non-zero coefficients inside the
corresponding block. If it is zero, no further information is
transmitted for the block; otherwise, in a second coding
step, a significance map specifying the positions of
significant coefficients is encoded. Finally, the absolute
value as well as the sign is encoded for each significant
transform coefficient. These values are transmitted in
reverse scanning order. A more detailed description is
given in the subsequent sections.

Table 1: Basic block types with number of coefficients and their
related context types.

Block types # of coeff. Context type
Y-DC, INTRA16x16 16 0: Y-Intra16-DC
Y-AC, INTRA16x16 15 1: Y-Intra16-AC
Y-4x4, INTRA 16
Y-4x4, INTER 16 2: Y-4x4

U-DC, INTRA 4
V-DC, INTRA 4
U-DC, INTER 4
V-DC, INTER 4

3: C-DC

U-AC, INTRA 15
V-AC, INTRA 15
U-AC, INTER 15
V-AC, INTER 15

4: C-AC

2.1. Description of the Encoding Process for Trans-
form Coefficients

If the CBP4 symbol indicates that a block has significant
coefficients, a significance map is encoded. For each
coefficient in scanning order, a one-bit symbol SIG is
transmitted. If the SIG symbol is one, that is, if a non-zero
coefficient exists at this scanning position, a further one-
bit symbol LAST is sent. This symbol indicates if the
current significant coefficient is the last one inside the
block or if further significant coefficients follow.

Note that the significance information (SIG, LAST) for
the last scanning position of a block is never transmitted.
If the last scanning position is reached and the significance
map encoding was not already terminated by a LAST-
symbol of one, it is obvious that the last coefficient has to
be significant.

The encoded significance map determines the positions
of all significant coefficients inside a block of quantized
transform coefficients. The values of the significant
coefficients (levels) are encoded by two coding symbols:
ABS (representing the absolute value), and SIGN
(representing the sign). For encoding the absolute values
of the coefficients, a unary binarization scheme, as already
proposed in [1] is used. The levels are transmitted in
reverse scanning order (beginning with the last significant
coefficient of the block); this allows the usage of more
reasonable contexts, as will be described in the next
section.

2.2. Context Modeling

In JVT/H.26L coding, there are 12 different types of
transform coefficient blocks with different statistics of
transform coefficients (left column of Table 1). However,
for most sequences and coding conditions some of the
statistics are very similar. To reduce the dimensionality of
the modeling space used for coefficient coding, the block
types are classified into 5 categories: three for luminance

Figure 1: Two examples of context determination for encoding
the absolute value of significant coefficients

 (Y) and two for chrominance (C) data, as specified in the
right column of Table 1. For each of these categories, a
separate set of context models is used. For instance,
encoding of the CBP4 bit requires four different context
models for each of the five categories specified in Table 1.

The specific choice of the model ctx_cbp4 for encoding
the CBP4 bit of a given block C is done as follows:

ctx_cbp4 (C) = CBP4 (A) + 2 × CBP4 (B), (1)
where A and B represent the corresponding blocks of the
same type to the left and on the top of the regarded block
C. Note that only blocks of the same type (left column of
Table 1) are used for context determination, i.e. if no
neighboring block X of the same type exists the corres-
ponding CBP4(X) value in Equation (1) is replaced by a
default value.

For encoding the significance map, up to 15 context
models (depending on the block type category) are used
for both the SIG and the LAST symbols. Here the choice
of the context model is determined by the corresponding
scanning position, i.e. for a coefficient coeff[i], which was
scanned at the i-th position, the related context models
ctx_sig and ctx_last for the SIG and LAST symbol,
respectively, are chosen as follows:

 ctx_sig (coeff[i]) = ctx_last (coeff[i]) = i.
We use two different sets of context models for

encoding of the absolute value ABS of a significant
coefficient: one for the first bin and another one for all
remaining bins of the binarized absolute value. The
context model for the first bin of ABS is determined by the
number of successive coefficients (in reverse scanning
order) having an absolute value of 1 with saturation at the
number of three preceding coefficients having an absolute
value of 1. When a coefficient with an absolute value
greater 1 is encoded, a separate context model is used for
the first bin of all remaining coefficients of the regarded
block, as shown for two examples in Figure 1.

All remaining bins of the absolute value are encoded
using the context model, which is determined by the
number of transmitted coefficients having an absolute
value greater than 1 (in reverse scanning order) such that a
maximum number of four preceding coefficients with
absolute value greater than 1 is taken into account. Figure
1 shows two examples of the context determination for
encoding the absolute values of significant coefficients.

 Coefficients 14 0 - 5 3 0 0 - 1 0 1
ctx _abs_1bit 4 4 2 1 0
ctx _abs_rbits 2 1 0
Coefficients 18 - 2 - 1 6 4 - 5 1 -1 0 1 0 0 1 0 0 1
ctx _abs_1bit 4 4 4 4 4 3 3 3 2 1 0
ctx _abs_rbits 4 3 2 1 0

3
C

F
g
JV
e
a
w
th
g

b
L
a
m
g
o
p
c
sp
th
c
a
p
sy
v

c
e
o
e

where cLPS und cMPS denote the cumulative frequency
counts of the LPS and the most probable symbol (MPS),
respectively. To avoid the more costly operation of a
division, tabulated 16-bit values FRAC(ctot) corresponding
to the reciprocals of the total cumulative frequency count
ctot = cLPS + cMPS are used for the calculation of a 16-bit
representation of the estimated LPS probability in Eq. (2):

totLPSLPS ccP /= .
A second multiplication together with an additional

shift operation is required in the current WD2 binary
arithmetic coder to determine the subinterval range RLPS
for the LPS symbol in module GetRLPS (see Fig. 3):

 16)(>>∗= RPR LPSLPS . (3)

S==LPS

L=L+R-RLPS
R=RLPS

R=R-RLPS

Yes No

RenormE

Update Stat (S,CTX)
Rescale Stat (S,CTX)

Done

Encode (S,CTX)

Get LPS (CTX)

Get RLPS (CTX)
Figure 2: Flowchart of JVT/H.26L WD2 arithmetic encoder
3. FAST BINARY ARITHMETIC CODING

.1. Review of the Conventional Binary Arithmetic
oding Engine in JVT/H.26L WD2

igure 2 illustrates the arithmetic encoding process for a
iven symbol S in context CTX, as it is currently defined in

T/H.26L WD2 [2][4]. It consists of a sequence of 5
lementary steps, where two of them (GetLPS, UpdateStat
nd RescaleStat) are related to probability estimation and
here the remaining 3 steps are done in order to modify
e internal state of the coding engine according to the

iven symbol and its estimated probability.
The internal state of the coding engine is characterized

y two 16-bit quantities R and L: the range R and the base
 (lower endpoint) of the current subinterval. Encoding of
 binary symbol S∈{0,1} is done as follows: First, in
odule GetLPS(S,CTX) a probability estimation for the

iven context model CTX is performed such that the value
f the least probable symbol (LPS) and its estimated
robability PLPS is determined. Then, in a second step the
orresponding range RLPS of the LPS subinterval is
ecified (GetRLPS). Given the LPS subinterval range RLPS,
e third step of the encoding process corresponds to the

alculation of the values L and R of the new subinterval
ccording to the given symbol S. In the fourth step, the
robability estimation is updated using the encoded
mbol S. Finally, in module RenormE the new code inter-

al is rescaled to the range (214, 215] and bits are outputted.
Regarding computational complexity, the main short-

oming of this conventional binary arithmetic coding
ngine is the need for two multiplicative operations. One
f these multiplications is required for probability
stimation based on a scaled-count estimator [5]:

,5.02)(where),(
16









+

+
=∗=

MPSLPS
tottotLPSLPS cc

cFRACcFRACcP
 (2)
Figure 3: Probability states and their corresponding LPS
probabilities and transition rules for LPS (red dashed lines,
upwards) and MPS (black lines, downwards)

3.2. Table-driven Probability Estimation

To get rid of the multiplication in Eq. (2), we propose a
table-driven method of probability estimation. The
proposed estimator is realized by a finite-state machine
(FSM) consisting of a set of representative probability
states {Pk | 0≤ k <Nmax} together with some appropriately
defined state transition rules. In our presented approach,
we use a FSM with Nmax = 64 states, where the states and
transition rules have been chosen based on empirical
observations.

Figure 3 illustrates the LPS probabilities of the
individual states together with the transition rules for
adapting to a MPS or LPS decision. Note however that in
our proposed coding engine no explicit probability values
are used. Each state is only addressed by the current value
of the MPS and its state index, which is appropriately
changed to a new state index after the encoding of a MPS
or LPS symbol. In the case, where the current state
corresponds to a probability value of 0.5 (state
indices=0,6,10,12) and a LPS symbol is observed, the
meaning of MPS and LPS has to be interchanged.

Figure 2: Average bit-rate reduction relative to UVLC (in percent) over quantization parameter (QP): (left) intra frame coding
(progressive test set); (middle) inter frame coding (progressive test set); (right) overall coding performance for interlaced test set

3.2. Table-based Interval Subdivision

For substituting the multiplication in Eq. (3) that is
required for interval subdivision, we propose another ap-
proximation. Given the current interval range R in a 16-bit
representation, we first map R to a quantized value Q
using a small set of µ quantized representations of the
range of R∈(214, 215]. We propose to use µ=4, which was
found to provide a good trade-off between coding
efficiency and the resulting table size. The corresponding
mapping of R to Q is then realized by

Q=(R-0x4001)>>12.
Finally, given the (probability) state index state and the

quantized range Q, the (approximate) LPS subinterval
range RLPS can be determined by

RLPS=RTAB[state][Q], (4)
where the table RTAB has Nmax×µ=64×4 entries containing
all pre-computed product values Q×Pk in 8-bit precision.

3.3. Bypass for Equiprobable Coding Decisions

For syntax elements or binary decisions with an
approximately uniform probability distribution, i.e
p(0)=1−p(1)≈0.5, we propose to further simplify the en-
coding and decoding process. In this special case, which,
for instance, applies to encoding of the sign information
related to motion vectors or transform coefficients,
probability estimation is obsolete and interval subdivision
reduces to the simple operation R←(R>>1).

4. EXPERIMENTAL RESULTS

Three sets of experiments have been conducted. For this
purpose, our methods have been integrated into the JVT
test model, version JM 1.9, which also served as a
reference system. The first set of simulations was per-
formed using a test set of QCIF- and CIF-sequences such
that the first picture of each sequence was coded as an I-
picture and all successive pictures being coded as P-
pictures. The graphs on the left and in the middle of Fig. 4
show the average gain for all sequences relative to UVLC
coding for pure I-frame coding and coding of whole se-
quences, respectively. For the former case, a performance
gain in the range of 1-3% has been observed in favor of
the proposed transform coefficient coding scheme when

compared to the WD2 CABAC version, while additional
bit-rate savings of approx. 0-2% could be obtained for
coding of whole sequences. In a second experiment, the
performance of the new coding method was analyzed for a
set of interlaced sequences in field coding mode with a
regular I-field refresh every 500 milliseconds. As can be
seen from Fig. 4, about 1-3% of the corresponding UVLC
bit-rate can be additionally saved on average in that case.
Finally, an experiment was performed to evaluate the
performance degradation by using the fast arithmetic
coding engine instead of the original WD2 engine. The
corresponding results in Table 2 show that a negligible
amount of 0.4% average loss in bit-rate has been observed.

Table 2: Average bit-rate gains in % using the QP-range = 16,
20, 24, 28 for coding of I-frames (first row) and whole sequences

Cont.
QCIF

Fore.
QCIF

News
QCIF

Sile.
QCIF

Paris
CIF

Mob.
CIF

Tem.
CIF

Avg.

-0.05 -0.04 -0.22 -0.41 -0.54 -1.11 -0.41 -0.40
0.11 -0.41 -0.33 -0.60 -0.50 -0.49 -0.32 -0.36

5. CONCLUSIONS

Comparing the new context-based adaptive binary
arithmetic coding method for JVT/H.26L with the UVLC
entropy coding mode, average improvements of 11-26%
and 9-21% bit-rate savings can be obtained for I-frame
and P-frame coding, respectively. For coding of interlaced
material, average bit-rate savings are in the range from
15% to 27% in comparison to UVLC. At the expense of
minor increases in bit-rate, a table-based low-complexity
arithmetic coding engine has been incorporated in H.26L.

6. REFERENCES

[1] Marpe, D., Blättermann, G., Heising, G., Wiegand, T., “Video
Compression Using Context-Based Adaptive Arithmetic Coding”,
Proc. IEEE ICIP., pp. 558-561, 2001.

[2] Wiegand, T., “JVT Working Draft 2”, JVT-B118r7, April 2002.
[3] Pennebaker, W.B., Mitchell, J.L., Langdon, G.G., Arps, R.B., “An

Overview of the Basic Principles of the Q-Coder Adaptive Binary
Arithmetic Coder”, IBM J. Res. Dev., Vol. 32, pp. 717-726, 1988.

[4] Moffat, A., Neal, R.M., and Witten, I.H., “Arithmetic Coding
Revisited”, Proc. IEEE Data Comp. Conf., pp. 201-211, 1995.

[5] Duttweiler, D.L., Chamzas, Ch., “Probability Estimation in Arith-
metic and Adaptive-Huffman Entropy Coders”, IEEE Trans. on
Image Processing, Vol. 4, pp. 237- 246, 1995.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

322824201612840
QP value

R
at

e
sa

vi
ng

 re
la

tiv
e

to
 U

VL
C

 [%
]

CABAC in WD2

Improved CABAC

0

2

4

6

8

10

12

14

16

18

20

22

24

322824201612840
QP value

R
at

e
sa

vi
ng

 re
la

tiv
e

to
 U

VL
C

 [%
]

CABAC in WD2

Improved CABAC

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

322824201612840
QP value

Ra
te

 s
av

in
g

re
la

tiv
e

to
 U

VL
C

[%
]

CABAC in WD2

Improved CABAC

