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ABSTRACT 

 

In this paper a new adaptive entropy coding scheme for 
video compression is presented. It utilizes an adaptive 
arithmetic coding technique to better match the first order 
entropy of the coded symbols and to keep track of non-
stationary symbol statistics. In addition, remaining symbol 
redundancies will be exploited by context modeling to 
further reduce the bit-rate. A novel approach for coding 
of transform coefficients and a table look-up method for 
probability estimation and arithmetic coding is presented. 
Our new approach has been integrated in the current JVT 
test model (JM) to demonstrate the performance gain, and 
it was adopted as a part of the current JVT/H.26L draft. 
 

1. INTRODUCTION 
 

In our prior work [1], we demonstrated that the context-
based adaptive binary arithmetic coding (CABAC) 
approach along with new techniques for fast adaptation is 
well suited for the JVT/H.26L video codec [2] and that 
large bit-rate reductions compared to the UVLC-based 
entropy coding in H.26L are achievable. Thus, this scheme 
was adopted for H.26L. In this paper, we present new 
methods of adaptive entropy coding, which significantly 
improve the performance both with respect to coding 
efficiency and computational complexity. 

First, we focus on an alternative scheme for coding of 
transform coefficients within the CABAC entropy coding 
framework. This approach further improves the coding 
efficiency compared to the CABAC version of JVT/H.26L 
Working Draft 2 (WD2) [2], and its main features can be 
summarized as follows: 
- Instead of using counts of significant, i.e. non-zero 

coefficients and run-length coding for signaling of 
insignificant coefficients, a one-bit coded block 
pattern symbol CBP4 is transmitted for each block of 
transform coefficients along with a significance map 

- All significant levels are encoded in reverse scanning 
order 

- New context models are designed for all syntax 
elements related to transform coefficient encoding 

In the second part of this paper we tackle the problem 
of low-complexity binary arithmetic coding within the 
scope of JVT/H.26L. Computationally less demanding 

variants of binary arithmetic coding such as the Q-Coder 
[3] are well known and have been successfully established 
in other image coding standards. However, simply 
applying such coding engines to JVT/H.26L may result in 
a significant degradation of coding efficiency. In this 
paper, we will present a novel low-complexity method of 
arithmetic coding and probability estimation, which is well 
suited to the CABAC entropy coding framework and 
which can be shown to have minor impact on coding 
efficiency. Our proposed method has three distinguishing 
properties: 
- Probability estimation is performed by means of a 

finite-state machine with a table-based transition 
process between 64 representative probability states  

- The process of interval subdivision is simplified by a 
pre-quantization of the interval range and a sub-
sequent table look-up operation 

- A separate encoding and decoding bypass for syntax 
elements or parts thereof having an approximately 
uniform probability distribution has been established 

The paper is organized as follows. In the next section, 
novel techniques for an improved coding of transform 
coefficients are presented. In Section 3, our fast binary 
arithmetic coding scheme is described in more details. 
Simulation results in Section 4 validate the efficiency of 
the new techniques. 
 

2. IMPROVED CODING OF TRANSFORM 
COEFFICIENTS 

 

The new coding scheme for transform coefficients is a 
three-step process. First, a one-bit symbol called CBP4 is 
transmitted for each block of transform coefficients unless 
the coded block pattern (CBP) on macroblock (16x16) 
level indicates that the regarded block has no non-zero 
coefficients. The CBP4 symbol is set to one, if there are 
any significant, i.e. non-zero coefficients inside the 
corresponding block. If it is zero, no further information is 
transmitted for the block; otherwise, in a second coding 
step, a significance map specifying the positions of 
significant coefficients is encoded. Finally, the absolute 
value as well as the sign is encoded for each significant 
transform coefficient. These values are transmitted in 
reverse scanning order. A more detailed description is 
given in the subsequent sections.  



Table 1: Basic block types with number of coefficients and their 
related context types. 

Block types # of coeff. Context type 
Y-DC, INTRA16x16  16 0: Y-Intra16-DC 
Y-AC, INTRA16x16  15 1: Y-Intra16-AC 
Y-4x4, INTRA  16 
Y-4x4, INTER  16 2: Y-4x4 

U-DC, INTRA  4 
V-DC, INTRA  4 
U-DC, INTER  4 
V-DC, INTER 4 

3: C-DC 

U-AC, INTRA 15 
V-AC, INTRA 15 
U-AC, INTER 15 
V-AC, INTER  15 

4: C-AC 

 
 
2.1. Description of the Encoding Process for Trans-
form Coefficients 
 
If the CBP4 symbol indicates that a block has significant 
coefficients, a significance map is encoded. For each 
coefficient in scanning order, a one-bit symbol SIG is 
transmitted. If the SIG symbol is one, that is, if a non-zero 
coefficient exists at this scanning position, a further one-
bit symbol LAST is sent. This symbol indicates if the 
current significant coefficient is the last one inside the 
block or if further significant coefficients follow. 

Note that the significance information (SIG, LAST) for 
the last scanning position of a block is never transmitted. 
If the last scanning position is reached and the significance 
map encoding was not already terminated by a LAST-
symbol of one, it is obvious that the last coefficient has to 
be significant. 

The encoded significance map determines the positions 
of all significant coefficients inside a block of quantized 
transform coefficients. The values of the significant 
coefficients (levels) are encoded by two coding symbols: 
ABS (representing the absolute value), and SIGN 
(representing the sign). For encoding the absolute values 
of the coefficients, a unary binarization scheme, as already 
proposed in [1] is used. The levels are transmitted in 
reverse scanning order (beginning with the last significant 
coefficient of the block); this allows the usage of more 
reasonable contexts, as will be described in the next 
section.  

 
2.2. Context Modeling 
 
In JVT/H.26L coding, there are 12 different types of 
transform coefficient blocks with different statistics of 
transform coefficients (left column of Table 1). However, 
for most sequences and coding conditions some of the 
statistics are very similar. To reduce the dimensionality of  
the modeling space used for coefficient coding, the block 
types are classified into 5 categories: three for luminance 

Figure 1: Two examples of context determination for encoding 
the absolute value of significant coefficients 
 
 (Y) and two for chrominance (C) data, as specified in the 
right column of Table 1. For each of these categories, a 
separate set of context models is used. For instance, 
encoding of the CBP4 bit requires four different context 
models for each of the five categories specified in Table 1. 

The specific choice of the model ctx_cbp4 for encoding 
the CBP4 bit of a given block C is done as follows: 

ctx_cbp4 (C) = CBP4 (A) + 2 × CBP4 (B),      (1) 
where A and B represent the corresponding blocks of the 
same type to the left and on the top of the regarded block 
C. Note that only blocks of the same type (left column of 
Table 1) are used for context determination, i.e. if no 
neighboring block X of the same type exists the corres-
ponding CBP4(X) value in Equation (1) is replaced by a 
default value.  

For encoding the significance map, up to 15 context 
models (depending on the block type category) are used 
for both the SIG and the LAST symbols. Here the choice 
of the context model is determined by the corresponding 
scanning position, i.e. for a coefficient coeff[i], which was 
scanned at the i-th position, the related context models 
ctx_sig and ctx_last  for the SIG and LAST symbol, 
respectively, are chosen as follows: 

 ctx_sig (coeff[i]) = ctx_last (coeff[i]) = i. 
We use two different sets of context models for 

encoding of the absolute value ABS of a significant 
coefficient: one for the first bin and another one for all 
remaining bins of the binarized absolute value. The 
context model for the first bin of ABS is determined by the 
number of successive coefficients (in reverse scanning 
order) having an absolute value of 1 with saturation at the 
number of three preceding coefficients having an absolute 
value of 1. When a coefficient with an absolute value 
greater 1 is encoded, a separate context model is used for 
the first bin of all remaining coefficients of the regarded 
block, as shown for two examples in Figure 1.  

All remaining bins of the absolute value are encoded 
using the context model, which is determined by the 
number of transmitted coefficients having an absolute 
value greater than 1 (in reverse scanning order) such that a 
maximum number of four preceding coefficients with 
absolute value greater than 1 is taken into account. Figure 
1 shows two examples of the context determination for 
encoding the absolute values of significant coefficients. 

 Coefficients 14 0 - 5 3 0 0 - 1 0 1 
ctx _abs_1bit 4 4 2 1 0 
ctx _abs_rbits 2 1 0 
Coefficients 18 - 2 - 1 6 4 - 5 1 -1 0 1 0 0 1 0 0 1 
ctx _abs_1bit 4 4 4 4 4 3 3 3 2 1 0 
ctx _abs_rbits 4 3 2 1 0 
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where cLPS und cMPS  denote the cumulative frequency 
counts of the LPS and the most probable symbol (MPS), 
respectively. To avoid the more costly operation of a 
division, tabulated 16-bit values FRAC(ctot) corresponding 
to the reciprocals of the total cumulative frequency count 
ctot = cLPS + cMPS are used for the calculation of a 16-bit 
representation of the estimated LPS probability in Eq. (2): 

totLPSLPS ccP /= . 
A second multiplication together with an additional 

shift operation is required in the current WD2 binary 
arithmetic coder to determine the subinterval range RLPS 
for the LPS symbol in module GetRLPS (see Fig. 3): 

 16)( >>∗= RPR LPSLPS .   (3) 

S==LPS

L=L+R-RLPS
R=RLPS

R=R-RLPS

Yes No

RenormE

Update Stat (S,CTX)
Rescale Stat (S,CTX)

Done

Encode (S,CTX)

Get LPS (CTX)

Get RLPS (CTX)
Figure 2: Flowchart of JVT/H.26L WD2 arithmetic encoder 
3. FAST BINARY ARITHMETIC CODING 
 

.1. Review of the Conventional Binary Arithmetic 
oding Engine in JVT/H.26L WD2 

igure 2 illustrates the arithmetic encoding process for a 
iven symbol S in context CTX, as it is currently defined in 

T/H.26L WD2 [2][4]. It consists of a sequence of 5 
lementary steps, where two of them (GetLPS, UpdateStat 
nd RescaleStat) are related to probability estimation and 
here the remaining 3 steps are done in order to modify 
e internal state of the coding engine according to the 

iven symbol and its estimated probability. 
The internal state of the coding engine is characterized 

y two 16-bit quantities R and L: the range R and the base 
 (lower endpoint) of the current subinterval. Encoding of 
 binary symbol S∈{0,1} is done as follows: First, in 
odule GetLPS(S,CTX) a probability estimation for the 

iven context model CTX is performed such that the value 
f the least probable symbol (LPS) and its estimated 
robability PLPS is determined. Then, in a second step the 
orresponding range RLPS of the LPS subinterval is 
ecified (GetRLPS). Given the LPS subinterval range RLPS, 
e third step of the encoding process corresponds to the 

alculation of the values L and R of the new subinterval 
ccording to the given symbol S. In the fourth step, the 
robability estimation is updated using the encoded 
mbol S. Finally, in module RenormE the new code inter-

al is rescaled to the range (214, 215] and bits are outputted.   
Regarding computational complexity, the main short-

oming of this conventional binary arithmetic coding 
ngine is the need for two multiplicative operations. One 
f these multiplications is required for probability 
stimation based on a scaled-count estimator [5]:  
  

,5.02)(  where),(
16









+

+
=∗=

MPSLPS
tottotLPSLPS cc

cFRACcFRACcP
  (2) 
Figure 3: Probability states and their corresponding LPS
probabilities and transition rules for LPS (red dashed lines,
upwards) and MPS (black lines, downwards)  
 
3.2. Table-driven Probability Estimation 
 
To get rid of the multiplication in Eq. (2), we propose a 
table-driven method of probability estimation. The 
proposed estimator is realized by a finite-state machine 
(FSM) consisting of a set of representative probability 
states {Pk | 0≤ k <Nmax} together with some appropriately 
defined state transition rules. In our presented approach, 
we use a FSM with Nmax = 64 states, where the states and 
transition rules have been chosen based on empirical 
observations.  

Figure 3 illustrates the LPS probabilities of the 
individual states together with the transition rules for 
adapting to a MPS or LPS decision. Note however that in 
our proposed coding engine no explicit probability values 
are used. Each state is only addressed by the current value 
of the MPS and its state index, which is appropriately 
changed to a new state index after the encoding of a MPS 
or LPS symbol. In the case, where the current state 
corresponds to a probability value of 0.5 (state 
indices=0,6,10,12) and a LPS symbol is observed, the 
meaning of MPS and LPS has to be interchanged.  



  

 

Figure 2: Average bit-rate reduction relative to UVLC (in percent) over quantization parameter (QP): (left) intra frame coding 
(progressive test set); (middle) inter frame coding (progressive test set); (right) overall coding performance for interlaced test set

3.2. Table-based Interval Subdivision 
 

For substituting the multiplication in Eq. (3) that is 
required for interval subdivision, we propose another ap-
proximation. Given the current interval range R in a 16-bit 
representation, we first map R to a quantized value Q 
using a small set of µ quantized representations of the 
range of R∈(214, 215]. We propose to use µ=4, which was 
found to provide a good trade-off between coding 
efficiency and the resulting table size. The corresponding 
mapping of R to Q is then realized by  

Q=(R-0x4001)>>12. 
Finally, given the (probability) state index state and the 

quantized range Q, the (approximate) LPS subinterval 
range RLPS can be determined by 

RLPS=RTAB[state][Q],      (4) 
where the table RTAB has Nmax×µ=64×4 entries containing 
all pre-computed product values Q×Pk in 8-bit precision.  
 
3.3. Bypass for Equiprobable Coding Decisions 
 

For syntax elements or binary decisions with an 
approximately uniform probability distribution, i.e 
p(0)=1−p(1)≈0.5, we propose to further simplify the en-
coding and decoding process. In this special case, which, 
for instance, applies to encoding of the sign information 
related to motion vectors or transform coefficients, 
probability estimation is obsolete and interval subdivision 
reduces to the simple operation R←(R>>1).                                                            
 

4. EXPERIMENTAL RESULTS 
 

Three sets of experiments have been conducted. For this 
purpose, our methods have been integrated into the JVT 
test model, version JM 1.9, which also served as a 
reference system. The first set of simulations was per-
formed using a test set of QCIF- and CIF-sequences such 
that the first picture of each sequence was coded as an I-
picture and all successive pictures being coded as P-
pictures. The graphs on the left and in the middle of Fig. 4 
show the average gain for all sequences relative to UVLC 
coding for pure I-frame coding and coding of whole se-
quences, respectively. For the former case, a performance 
gain in the range of 1-3% has been observed in favor of 
the proposed transform coefficient coding scheme when 

compared to the WD2 CABAC version, while additional 
bit-rate savings of approx. 0-2% could be obtained for 
coding of whole sequences. In a second experiment, the 
performance of the new coding method was analyzed for a 
set of interlaced sequences in field coding mode with a 
regular I-field refresh every 500 milliseconds. As can be 
seen from Fig. 4, about 1-3% of the corresponding UVLC 
bit-rate can be additionally saved on average in that case. 
Finally, an experiment was performed to evaluate the 
performance degradation by using the fast arithmetic 
coding engine instead of the original WD2 engine. The 
corresponding results in Table 2 show that a negligible 
amount of 0.4% average loss in bit-rate has been observed.  
 

Table 2: Average bit-rate gains in % using the QP-range  = 16, 
20, 24, 28 for coding of I-frames (first row) and whole sequences  

Cont. 
QCIF 

Fore.
QCIF 

News 
QCIF 

Sile. 
QCIF 

Paris
CIF 

Mob. 
CIF 

Tem.
CIF  

Avg. 

-0.05 -0.04 -0.22 -0.41 -0.54 -1.11 -0.41 -0.40 
0.11 -0.41 -0.33 -0.60 -0.50 -0.49 -0.32 -0.36 

 
5. CONCLUSIONS 

 

Comparing the new context-based adaptive binary 
arithmetic coding method for JVT/H.26L with the UVLC 
entropy coding mode, average improvements of 11-26% 
and 9-21% bit-rate savings can be obtained for I-frame 
and P-frame coding, respectively. For coding of interlaced 
material, average bit-rate savings are in the range from 
15% to 27% in comparison to UVLC.  At the expense of 
minor increases in bit-rate, a table-based low-complexity 
arithmetic coding engine has been incorporated in H.26L. 
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