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Abstract— The computation of task-related spatial filters is a
prerequisite for a successful application of motor imagery-based
Brain-Computer Interfaces (BCI). However, in the presence
of artifacts, e.g., resulting from eye movements or muscular
activity, standard methods such as Common Spatial Patterns
(CSP) perform poorly. Recently, a divergence-based spatial
filter computation framework has been proposed which enables
significantly more robust computation with respect to artifacts
by using Beta divergence. In this paper we integrate two addi-
tional divergence measures, namely Bhattacharyya distance and
Gamma divergence, into the divergence-based CSP framework
and evaluate their robustness using simulations and data set
IVa from BCI Competition III.

I. INTRODUCTION

Brain-Computer Interfacing (BCI) [1] [2] serves as a
non-muscular communication system which detects brain
signals from the electroencephalogram (EEG) and translates
them into control commands for a computer device. People
affected by diseases such as amyotrophic lateral sclerosis
(ALS), brainstem stroke, multiple sclerosis or muscular dys-
trophies, and especially those who are completely locked-in,
could benefit from such technology, since it provides a way
to communicate without any muscular control. A popular
mental strategy is so-called motor imagery, which provides
a system based on imagined movements that cause significant
and detectable changes in EEG. The main challenge in
constructing a BCI device is extracting relevant features from
a high-dimensional EEG to translate brain signals efficiently
into control signals [3], [4], [5].

Common Spatial Patterns (CSP) is a well established
feature-extraction algorithm in motor imagery-based BClIs
[6] [7] that detects synchronization and desynchronization
processes and uses them to compute spatial filters which
make it possible to discriminate between different imagined
movements. Since the original version of CSP is sensitive
to nonstationarities, more robust CSP versions have been
proposed over the last few years [8] [9] [10] [11] [12].
Considering end users, BCI efficiency still needs to be
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enhanced so that it can work in an out-of-lab context. One
important issue is the robustness of the system. It has recently
been shown that CSP can be embedded in a divergence
framework using Beta divergence, which is robust to outliers
[13][14]. Divergence functions [15] are popular measures
of discrepancy between probability distributions. Integrating
them into machine learning methods is not entirely new,
as different algorithms have already been transformed using
divergence functions [16] [17] [18]. In this paper, we in-
tegrate Bhattacharyya distance and Gamma divergence into
the divergence-based CSP (divCSP) framework and evaluate
their robustness.
Detailed derivations and an

of the proposed algorithms are
www.divergence-methods.org.

implementation
available  at

II. DIVERGENCE-BASED FRAMEWORK FOR CSP

Spatial filtering is a common way to detect discriminative
features by enhancing the signal-to-noise ratio in motor im-
agery. As we have mentioned, a well-established spatial filter
algorithm is Common Spatial Patterns (CSP). Motor imagery
usually comes along with synchronization and desynchro-
nization effects (ERS/ERD) in mu and beta rhythms over the
sensorimotor cortex during and after imagined movements
[19]. CSP detects those effects by maximizing the variance
of class 1 while minimizing the variance of class 2 and
vice versa. This problem can be solved by a generalized
eigenvalue problem

lei = )\12211)1‘

where ¥; and X, € RP*P are the average covariance
matrices of class 1 and 2, w; are the spatial filters and \;
the corresponding eigenvalues. The obtained spatial filters
W = [wy,ws,...,wp] then have to be sorted according
to their contributing discriminative qualities [14]. In [13] it
was shown that the subspace spanned by these spatial filters
is equal to the span of filters that maximize the symmetric
Kullback-Leibler (KL) divergence between the probability
distribution of both classes:

span(W') = span(V™*)
V* = argmax Dy, (N (0, VT S,V) [| NV (0,VTE,V))
14
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TABLE I: Overview of the objective functions and properties of CSP divergence methods, with ! = VIIV and 3.
denoting the projected covariance matrix of trial ¢ and class ¢ and the class average. Note that p = %, /W.

| Method | Objective o(V) robust parameter
Csp 3 tr((B1) 71 (B2)) + 5 tr((Z2) 71 (Eh)) — d no no
Beta | pXoiy (14175 S5 (8 + DSBS + 25072 + S BBE 4+ BY7E) yes B
Bha 230 (In(|Z8 + 55) — s In|SY — £ In |24 — dIn(2)) yes no
Gamma | £= >0, (5 In(|7E] + B4]) + 5 In(|S] +933[) — In [2f] — In 5] — d1n(2)) yes 7y

where V'* maximizes the symmetric KL divergence between
the probability distribution of both classes and N'(u, )
denotes the Gaussian distribution, with mean p and covari-
ance Y. Symmetric KL divergence between two continuous
probability distributions, p(x) and g(z), is defined as

Dkl:/ (z)log E ;dl‘—l—/ (x)log E ;d:ﬁ

Since KL divergence is sensitive to outliers, we investigated
robust divergence measures to enhance classification accu-
racy.

III. ROBUSTNESS AND ROBUST DISCREPANCY MEASURES
A. Robustness Property

The goal of a robust CSP algorithm is to reliably compute
task-related spatial filters, /', even when data is heavily
contaminated. In the divergence framework, robustness can
be achieved by decomposing the divergence between the av-
erage class distributions into the sum of trialwise divergences
and limiting the influence of single (potentially outlier) terms
(see [13]). This changes the objective function into

V* =argmax Y Dy (N (0,VTEIV) |V (0,VTE5V))
\4 -

where ¥i refers to trialwise covariance matrices of class
c. Note that this approach assumes a balanced number of
trials for each class and also requires robust divergence
measures. We call a divergence function, D, robust if the
inclusion of a single additional outlier trial (e.g. Zf) does
not significantly increase the value of the objective function.
Mathematically, this translates into stating that the ratio «
between the objective functions (with and without the outlier
trial) is close to 1, that is

max {o(V) + D (M0, VTE V)| M0,V T55v)) )

o =
max a(V)

where o (V') is the corresponding objective function (see Ta-
ble I). If this ratio is very large (e.g., because it grows linearly
or exponentially with ||V T4 V||), then the outlier trial has
a significant influence on the spatial filter computation. In
other words, the algorithm focuses on the outlier trial instead
of considering the majority of the ’clean trials’.

B. Beta divergence

Beta divergence has been considered to be a robust re-
placement in the divCSP algorithm [13]. Beta divergence
[20] between two continuous probability distributions is

defined (for 5 > 0) as
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The objective function of the Beta divergence CSP algorithm
(B-divCSP) is defined in the second row of Table I, where
Dg denotes the symmetric Beta divergence and ¥ and 3,
are trial-wise covariance matrices of classes 1 and 2, respec-
tively. In the following, we will show that Beta divergence
is not the only well-suited robust distance measure in the
divCSP framework.

C. Bhattacharyya distance

Bhattacharyya distance, a divergence-type measure be-
tween two populations [21], is widely used in various fields,
such as computer vision [22], multiclass classification [23]
and bayesian classification [24]. The key advantages in
using the Bhattacharyya distance in the divCSP framework
are its easy evaluation and lack of parameters, which of-
ten make calculations significantly more complicated. The
Bhattacharyya distance between two continuous probability
distributions p(z), ¢(z) is defined as

Dinap(a) |l ) = ~n | Votarates).

Incorporating Bhattacharyya distance into the divCSP (bha-
divCSP) framework of [14] leads to the objective function
defined in the third row of Table I.

D. Gamma divergence

Gamma divergence, first defined in 2008 in [25], is con-
sidered to be a super robust' divergence measure. It has been
used in robust parameter estimation [25], robust blind source
separation [26] and clustering algorithms [27]. Symmetric

IThe phenomenon of the breakdown point of an estimator being larger
than 50% is termed super robustness.
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Fig. 1: Left: The impact of a single outlier on the objective
function ratio. If the ratio exceeds 1, then the method will not
extract the task-related source. Right: The objective function
ratio after contaminating various numbers of trials.

Gamma divergence between two continuous probability dis-
tributions, p(x) = p, q(x) = q, is defined (for v > 0) as

Dy(pllq) = %(dw(n q) — dy(p,p) + dy(q,p) — dy(q,9))

where

1 1
dy(p,q) = —;log </pq7dx> + T4 log </q1+7d;z:> .

The objective function of the Gamma divergence CSP (-
divCSP) algorithm is defined in the last row of Table I.

IV. EVALUATION
A. Simulations

In the first simulation experiment, we visualized the effect
of a single outlier on the presented divergence functions.
Therefore, we chose a two-dimensional example of covari-
ance matrices, where X1 is constant over 100 trials and 5 is
constant over 99 trials and includes one contaminated outlier
trial (33°9):

1:100 _ (10 0 o9 _ (1 0 w0_ (1 0O
= (0122012201:.

The correct discriminative source is the first one that would
be detected by spatial filter w; = (1,0)7. Depending on z, a
non-robust method would be influenced by this outlier such
that wy = (0,1)7 would be preferred over w;, meaning,
the method would detect the wrong source. In the left panel
of Figure 1, we visualize the ratio of the objective functions
when applying filters wo and w;: Z&ng One can see that the
standard CSP algorithm is not robust, because the ratio grows
very quickly and becomes larger than 1 (i.e., CSP quickly
prefers ws over w;). Beta divergence and the two robust
discrepancy measures proposed in this paper successfully
reduce the influence of the outlier and prefer the correct filter,
wi, even for very large outlier values of x.

In a second experiment, we evaluated the robustness of
the presented divergences when the number of outlier trials
increases. We used the same example as before, with an
outlier value (z) of 100. We added an increasing number of
outliers to the data and computed the ratio of the objective

functions. The right panel of Figure 1 depicts the results.
Here, we again observe a significant increase in robustness
when using the robust discrepancy measures. The standard
CSP algorithm broke down (ratio of objective functions
exceeds 1) when more than 10 outliers are contained in
the data, whereas the ~y-divCSP method withstood up to 70
contaminated outlier trials in this example. Note that we have
fixed the parameters S and ~ for 5-divCSP and ~y-divCSP
respectively to 0.2 in the presented simulation experiments.

B. BCI Competition Dataset

TABLE II: Mean classification accuracies for four CSP
methods

] | aa [ al | av | aw [ ay |
CSP 66.07 | 96.43 | 58.16 | 88.84 | 80.95
Beta 74.11 | 96.43 | 70.41 | 77.23 | 80.95
Bha 72.32 | 96.43 | 70.41 | 63.84 | 80.95

Gamma | 74.11 | 96.43 | 69.39 | 83.04 | 80.95
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Fig. 2: Trialwise KL divergences and Bhattacharyya dis-
tances of bha-divCSP projected data of participant av. The
divergences have been sorted, normed and accumulated.

The described methods were applied to data set IVa
[28] from BCI Competition III [29], which contains
EEG recordings from five healthy participants performing
right hand and foot motor imagery without getting any
feedback. The target class was visualized by letters
appearing behind a fixation cross and a randomly moving
object. The EEG signal was recorded from 118 Ag/AgCl
electrodes, band-pass filtered between 0.05 and 200 Hz
and downsampled to 100 Hz. We manually selected 68
electrodes, mainly those covering the motor cortex, and
divided the data into a training and a testing set according
to BCI Competition III. Parameters for Gamma and Beta
divergence were determined individually for each participant
by a 2-fold cross validation using the following values:
[0,0.0001,0.001,0.01,0.05,0.1,0.15,0.2,0.25,0.5,0.75,1,1.5,2,5],
where 0 is equivalent to original CSP and v = 1 in 7-divCSP
is equivalent to bha-divCSP.

Classification accuracies can be seen in Table II. Note, that
for al and ay parameter selection yielded 0, which means



that, at least during cross validation, CSP outperformed all
three divCSP methods.

It seems that the recordings of participants aa and av
were especially affected by artifacts, because all robust
divCSP methods have improved classification accuracy over
the standard CSP baseline. Due to the trade-off between
robustness and efficiency, not all users appear to benefit from
using robust divergence-based spatial filtering. Another effect
which certainly seems to play a role is the lack of data in
some experiments. Participants aw and ay only did 56 (26
foot, 30 right hand) and 28 (10 foot, 18 right) training trials,
respectively, where due to symmetry (see section III-A) even
only 52 and 20 were used. In the end they do not seem to
have benefited from applying robust divergence-based CSP.

In Figure 2 we seek to explain the reason for the perfor-
mance increase of user av by depicting the impact of single
trials on the sum in the objective function of the divCSP
algorithms (see Table I). We assume that, for Bhattacharyya
distance, outlier trials of greater distance have smaller im-
pacts on the total sum than for KL divergence. This effect of
downweighting becomes obvious when cumulating the sorted
and normed trialwise distances. Bhattacharyya distance is
closer to a linear function than KL divergence, which means
that those trials having greatest distance have a major impact
on the sum of KL divergences, such that outliers highly
influence the result.

V. CONCLUSION

The ability to control a BCI in the real world represents
a major challenge wherefore robustness plays an important
role. Since brain recordings are highly sensitive and differ
from brain to brain, it is difficult to balance the trade-
off between accuracy and robustness. Simulations and the
application to real data have shown that the proposed dis-
crepancy measures work significantly better than original
CSP in case of heavy contamination. Selecting the optimal
parameter highly complicates calculations, especially when
only few training data is available (e.g. participant aw).
Future work could focus on a preselection regarding different
CSP methods and enhancing the parameter selection.
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