Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations

Anna Hedström1,† Leander Weber2 Dilyara Bareeva1 Franz Motzkus2 Wojciech Samek2,3 Sebastian Lapuschkin2,† Marina M.-C. Höhne1,3,†

1 Understandable Machine Intelligence Lab, Technische Universität Berlin, 10587 Berlin, Germany
2 Department of Artificial Intelligence, Fraunhofer Heinrich-Hertz-Institute, 10587 Berlin, Germany
3 BIFOLD – Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany

Abstract

The evaluation of explanation methods is a research topic that has not yet been explored deeply, however, since explainability is supposed to strengthen trust in artificial intelligence, it is necessary to systematically review and compare explanation methods in order to confirm their correctness. Until now, no tool exists that exhaustively and speedily allows researchers to quantitatively evaluate explanations of neural network predictions. To increase transparency and reproducibility in the field, we therefore built Quantus — a comprehensive, open-source toolkit in Python that includes a growing, well-organised collection of evaluation metrics and tutorials for evaluating explainable methods. The toolkit has been thoroughly tested and is available under open source license on PyPi (or on https://github.com/understandable-machine-intelligence-lab/quantus/).

Keywords: explainability, responsible AI, reproducibility, open source, python

1 Introduction

Despite much excitement and activity in the field of Explainable Artificial Intelligence (XAI) [1, 2, 3, 4, 5], the evaluation of explainable methods still remains an unsolved problem [6, 7, 8, 9, 10]. Unlike in traditional Machine Learning (ML) the task of explaining inherently lacks “ground-truth” data — there is no universally accepted definition of what constitutes a “correct” explanation and less so, which properties an explanation ought to fulfill [11]. Due to this lack of standardised evaluation procedures in XAI researchers frequently conceive new ways to experimentally examine explanation methods [6, 12, 13, 11, 14], oftentimes employing different parameterisations and various kinds of preprocessing and normalisations, each leading to different or even contrasting results, making evaluation outcomes difficult to interpret and compare. Critically, we note that it is common for XAI papers to base their conclusions on one-sided, sometimes methodologically questionable evaluation procedures — which we fear is hindering access to the current State-of-the-art (SOTA) in XAI and potentially may hurt the perceived credibility of the field over time.

For these reasons, researchers often rely on a qualitative evaluation of explanation methods e.g., [15, 16, 17], assuming that humans know what an “accurate” explanation would look like (or rather should look like, often disregarding the role that the explained model plays in the explanation process). However, the assumption that humans are able to recognise a correct explanation is generally not justified: not only does the notion of an “accurate” explanation often depend on the specifics of the task at hand, humans are also questionable judges of quality [18, 19]. To make matters more challenging, recent studies suggest that even quantitative evaluation of explainable methods is far from fault-proof [9, 20, 21, 22].

† anna.hedstroem@tu-berlin.de, marina.hoehe@tu-berlin.de, sebastian.lapuschkin@hhi.fraunhofer.de
In response to these issues, we developed **Quantus**, to provide the community with a versatile and comprehensive toolkit that collects, organises, and explains a wide range of evaluation metrics proposed for explanation methods. The library is designed to help automate the process of **XAI quantification** — by delivering speedy, easily digestible, and at the same time holistic summaries of the quality of the given explanations. As we see it, **Quantus** concludes an important, still missing contribution in today’s **XAI** research by filling the gap between what the community produces and what it currently needs: a more quantitative, systematic and standardised evaluation of **XAI** methods.

2 Toolkit overview

Quantus provides its intended users — practitioners and researchers interested in the domains of **ML** and **XAI** — with a steadily expanding list of 25+ reference metrics to evaluate explanations of **ML** predictions. Moreover, it offers comprehensive guidance on how to use these metrics, including information about potential pitfalls in their application.

The library is thoroughly documented and includes in-depth tutorials covering multiple use-cases and tasks — from a comparative analysis of **XAI** methods and attributions, to quantifying to what extent evaluation outcomes are dependent on metrics’ parameterisations. In Figure 1 we demonstrate some example analysis that can be produced with **Quantus**. Moreover, the library provides an abstract layer between APIs of deep learning frameworks e.g. **PyTorch** and **tensorflow** and can be employed iteratively both during- and after model training in the **ML** lifecycle. Code quality is ensured by thorough testing, using **pytest** and continuous integration (CI), where every new contribution is automatically checked for sufficient test coverage. We employ syntax formatting with **flake8** under various Python versions.

Unlike other **XAI**-related libraries, **Quantus** has its primary focus on evaluation and as such, supports a breadth of metrics, spanning various different categories (see **Table 1**). Detailed descriptions of the different evaluation categories are documented in the repository. The first iteration of the library mainly focuses on attribution-based explanation techniques for (but not limited to) image classification. In planned future releases, we are working towards extending the applicability of the library further e.g., by developing additional metrics and functionality that will enable users to perform checks, verifications and sensitivity analyses on top of the metrics.

3 Library design

The user-facing API of **Quantus** is designed with the aim of replacing an oftentimes lengthy and open-ended evaluation procedure with structure and speed — with a single line of code, the user

1 The full experiment can be reproduced (and obtained) at the repository, under the tutorials folder.

2 Related libraries were selected with respect to the **XAI** evaluation capabilities. Packages including no metrics for evaluation of explanation methods, e.g., **Alibi** [25], **inInvestigate** [26], **dalex** [27] and **zennit** [28] were excluded.

3 This category of explainable methods aims to assign an importance value to the model features and arguably, is the most studied group of explanation.
Simple qualitative comparison of XAI methods is often not sufficient to distinguish which gradient-based method — Saliency [17], Integrated Gradients [31], GradientShap [32] or FusionGrad [33] is preferred. With Quantus, we can obtain richer insights on how the methods compare by holistic quantification on several evaluation criteria and by providing sensitivity analysis of how a single parameter e.g. pixel replacement strategy of a faithfulness test influences the ranking of explanation methods.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{a) Simple qualitative comparison of XAI methods is often not sufficient to distinguish which gradient-based method — Saliency [17], Integrated Gradients [31], GradientShap [32] or FusionGrad [33] is preferred. With Quantus, we can obtain richer insights on how the methods compare by holistic quantification on several evaluation criteria and c) by providing sensitivity analysis of how a single parameter e.g. pixel replacement strategy of a faithfulness test influences the ranking of explanation methods.}
\end{figure}

can gain quantitative insights of how their explanations are behaving under various criteria. In the following code snippet, we demonstrate one way for how Quantus can be used to evaluate pre-computed explanations via a PixelFlipping experiment [12] — by simply calling the initialised metric instance. In this example, we assume to have a pre-trained model (model), a batch of input- and output pairs (x_batch, y_batch) and a set of attributions (a_batch).

\begin{verbatim}
import quantus

pixelflipping = quantus.PixelFlipping(perturb_baseline="black", normalise=False, features_in_step=28)
scores = pixelflipping(model, x_batch, y_batch, a_batch, **params)
[0.6653, 0.4972, 0.4343, ...]
pixelflipping.plot(y_batch=y_batch, scores=scores)
\end{verbatim}

Needing to say, XAI evaluation is intrinsically difficult and there is no one-size-fits-all metric for all tasks — evaluation of explanations must be understood and calibrated from its context: the application, data, model, and intended stakeholders [10] [34]. To this end, we designed Quantus to be highly customisable and easily extendable — documentation and examples on how to create new metrics as well as how to customise existing ones are included. Thanks to the API, any supporting functions of the evaluation procedure, e.g., perturb_baseline — that determines with what value patches of the input shall be iteratively masked — can flexibly be replaced by a user-specified function to ensure that the evaluation procedure is appropriately contextualised.

It is practically well-known but not yet publicly recognised that evaluation outcomes of explanations
can be highly sensitive to the parameterisation of metrics \[20, 35\] and other confounding factors introduced in the evaluation procedure \[9, 36\]. Therefore, to encourage a thoughtful and responsible selection and parameterisation of metrics, we added mechanisms such as warnings, checks and user guidelines, cautioning users to reflect upon their choices. Great care has to be taken when interpreting the quantification results and to this end, we provide additional functionality on potential interpretation pitfalls.

4 Broader impact

We built Quantus to raise the bar of XAI quantification — to substitute an ad-hoc and sometimes ineffective evaluation procedure with reproducibility, simplicity and transparency. From our perspective, Quantus contributes to the XAI development by helping researchers to speed up the development and application of explanation methods, dissolve existing ambiguities and enable more comparability. As we see it, steering efforts towards increasing objectiveness of evaluations and reproducibility in the field will prove rewarding for the community as a whole. We are convinced that a holistic, multidimensional take on XAI quantification will be imperative to the general success of (X)AI over time.

Acknowledgments

This work was partly funded by the German Ministry for Education and Research through project Explaining 4.0 (ref. 01IS20055) and BIFOLD (ref. 01IS18025A and ref. 01IS18037A), the Investitionsbank Berlin through BerDiBA (grant no. 10174498), as well as the European Union’s Horizon 2020 programme through iToBoS (grant no. 965221).

References

