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Abstract. For a machine learning model to generalize well, one needs
to ensure that its decisions are supported by meaningful patterns in the
input data. A prerequisite is however for the model to be able to explain
itself, e.g. by highlighting which input features it uses to support its
prediction. Layer-wise Relevance Propagation (LRP) is a technique that
brings such explainability and scales to potentially highly complex deep
neural networks. It operates by propagating the prediction backward in
the neural network, using a set of purposely designed propagation rules.
In this chapter, we give a concise introduction to LRP with a discussion
of (1) how to implement propagation rules easily and efficiently, (2) how
the propagation procedure can be theoretically justified as a ‘deep Taylor
decomposition’, (3) how to choose the propagation rules at each layer
to deliver high explanation quality, and (4) how LRP can be extended
to handle a variety of machine learning scenarios beyond deep neural
networks.
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10.1 Introduction

Machine learning techniques such as deep neural networks have reached many
successes in scientific [9, 33, 45, 14, 17] and industrial (e.g. [2, 20, 32]) applications.
A main driver for the adoption of these techniques is the rise of large datasets,
enabling the extraction of complex real-world correlations and nonlinearities.

Large datasets, however, are often plagued by the presence of spurious cor-
relations between the different variables [13]. Spurious correlations leave the
learning machine perplexed when having to decide which of the few correlated
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Fig. 10.1. Illustration of the problem of spurious correlations often encountered in
high-dimensional data. In this example, both x1 and x2 predict the current data, but
only x1 generalizes correctly to the true distribution.

input variables should be used to support the prediction. A simple example is
given in Fig. 10.1. The model classifies the data perfectly by using either fea-
ture x1, feature x2, or both of them, yet only the first option will generalize
correctly to new data. Failure to learn the correct input features may lead to
‘Clever Hans’-type predictors [30].

Feature selection [19] offers a potential solution by presenting to the learning
machine only a limited number of ‘good’ input features. This approach is however
difficult to apply e.g. in image recognition, where the role of individual pixels is
not fixed.

Explainable machine learning [52, 8, 37] looks at the problem in the other
direction: First, a model is trained without caring too much about feature selec-
tion. Only after training we look at which input features the neural network has
learned. Based on this explanatory feedback, ‘bad’ features can be removed and
the model can be retrained on the cleaned data [15, 57]. A simple method, Taylor
Decomposition [11, 7], produces explanations by performing a Taylor expansion
of the prediction f(x) at some nearby reference point �x :

f(x) = f(�x) +�d
i=1 (xi − �xi) · [∇f(�x)]i + . . .

First-order terms (elements of the sum) quantify the relevance of each input fea-
ture to the prediction, and form the explanation. Although simple and straight-
forward, this method is unstable when applied to deep neural networks. The
instability can be traced to various known shortcomings of deep neural network
functions:

– Shattered gradients [10]: While the function value f(x) is generally accurate,
the gradient of the function is noisy.

– Adversarial examples [53]: Some tiny perturbations of the input x can cause
the function value f(x) to change drastically.

These shortcomings make it difficult to choose a meaningful reference point �x
with a meaningful gradient ∇f(�x). This prevents the construction of a reliable
explanation [37].

Numerous explanation techniques have been proposed to better address the
complexity of deep neural networks. Some proposals improve the explanation
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by integrating a large number of local gradient estimates [49, 51]. Other tech-
niques replace the gradient by a coarser estimate of effect [60], e.g. the model
response to patch-like perturbations [58]. Further techniques involve the opti-
mization of some local surrogate model [41], or of the explanation itself [18].
All these techniques involve multiple neural network evaluations, which can be
computationally expensive.

In the following, we place our focus on Layer-wise Relevance Propagation
[7], a technique that leverages the graph structure of the deep neural network to
quickly and reliably compute explanations.

10.2 Layer-Wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) [7] is an explanation technique appli-
cable to models structured as neural networks, where inputs can be e.g. images,
videos, or text [7, 3, 5]. LRP operates by propagating the prediction f(x) back-
ward in the neural network, by means of purposely designed local propagation
rules.

The propagation procedure implemented by LRP is subject to a conservation
property, where what has been received by a neuron must be redistributed to the
lower layer in equal amount. This behavior is analogous to Kirchoff’s conserva-
tion laws in electrical circuits, and shared by other works on explanations such
as [27, 46, 59]. Let j and k be neurons at two consecutive layers of the neural
network. Propagating relevance scores (Rk)k at a given layer onto neurons of the
lower layer is achieved by applying the rule:

Rj =
�

k

zjk�
j zjk

Rk.

The quantity zjk models the extent to which neuron j has contributed to make
neuron k relevant. The denominator serves to enforce the conservation prop-
erty. The propagation procedure terminates once the input features have been
reached. If using the rule above for all neurons in the network, it is easy to
verify the layer-wise conservation property

�
j Rj =

�
k Rk, and by extension

the global conservation property
�

i Ri = f(x). The overall LRP procedure is
illustrated in Fig. 10.2.

Although LRP clearly differs from the simple Taylor decomposition approach
mentioned in the introduction, we will observe in Section 10.2.3 that each step
of the propagation procedure can be modeled as an own Taylor decomposition
performed over local quantities in the graph [36].

LRP was applied to discover biases in commonly used ML models and
datasets [28, 30]. It was also applied to extract new insights from well-functioning
ML models, e.g. in face expression recognition [4, 29]. LRP was used to find rel-
evant features for audio source localization [39], to identify points of interest
in side channel traces [21], and to identify EEG patterns that explain decisions
in brain-computer interfaces [50]. In the biomedical domain, LRP was used to
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Fig. 10.2. Illustration of the LRP procedure. Each neuron redistributes to the lower
layer as much as it has received from the higher layer.

identify subject-specific characteristics in gait patterns [24], to highlight relevant
cell structure in microscopy [12], as well as to explain therapy predictions [56].
Finally, an extension called CLRP was applied to highlight relevant molecular
sections in the context of protein-ligand scoring [23].

10.2.1 LRP Rules for Deep Rectifier Networks

We consider the application of LRP to deep neural networks with rectifier
(ReLU) nonlinearities, arguably the most common choice in today’s applications.
It includes well-known architectures for image recognition such as VGG-16 [48]
and Inception v3 [54], or neural networks used in reinforcement learning [35].
Deep rectifier networks are composed of neurons of the type:

ak = max
�
0,
�

0,j ajwjk

�
. (10.1)

The sum
�

0,j runs over all lower-layer activations (aj)j , plus an extra neuron
representing the bias. More precisely, we set a0 = 1 and define w0k to be the
neuron bias. We present three propagation rules for these networks and describe
their properties.

Basic Rule (LRP-0) [7]. This rule redistributes in proportion to the contri-
butions of each input to the neuron activation as they occur in Eq. (10.1):

Rj =
�

k

ajwjk�
0,j ajwjk

Rk

This rule satisfies basic properties, such as (aj = 0) ∨ (wj: = 0) ⇒ Rj = 0,
which makes coincide concepts such as zero weight, deactivation, and absence of
connection. Although this rule looks intuitive, it can be shown that a uniform
application of this rule to the whole neural network produces an explanation
that is equivalent to Gradient× Input (cf. [47]). As we have mentioned in the
introduction, the gradient of a deep neural network is typically noisy, therefore
one needs to design more robust propagation rules.
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Epsilon Rule (LRP-�) [7]. A first enhancement of the basic LRP-0 rule
consists of adding a small positive term � in the denominator:

Rj =
�

k

ajwjk

�+
�

0,j ajwjk
Rk

The role of � is to absorb some relevance when the contributions to the activation
of neuron k are weak or contradictory. As � becomes larger, only the most salient
explanation factors survive the absorption. This typically leads to explanations
that are sparser in terms of input features and less noisy.

Gamma Rule (LRP-γ). Another enhancement which we introduce here is
obtained by favoring the effect of positive contributions over negative contribu-
tions:

Rj =
�

k

aj · (wjk + γw+
jk)�

0,j aj · (wjk + γw+
jk)

Rk

The parameter γ controls by how much positive contributions are favored. As γ
increases, negative contributions start to disappear. The prevalence of positive
contributions has a limiting effect on how large positive and negative relevance
can grow in the propagation phase. This helps to deliver more stable explana-
tions. The idea of treating positive and negative contributions in an asymmetric
manner was originally proposed in [7] with the LRP-αβ rule (cf. Appendix 10.A).
Also, choosing γ → ∞ lets LRP-γ become equivalent to LRP-α1β0 [7], the z+-
rule [36], and ‘excitation-backprop’ [59].

10.2.2 Implementing LRP Efficiently

The structure of LRP rules presented in Section 10.2.1 allows for an easy and
efficient implementation. Consider the generic rule

Rj =
�

k

aj · ρ(wjk)

�+
�

0,j aj · ρ(wjk)
Rk, (10.2)

of which LRP-0/�/γ are special cases. The computation of this propagation rule
can be decomposed in four steps:

∀k : zk = �+
�

0,j aj · ρ(wjk) (forward pass)

∀k : sk = Rk/zk (element-wise division)

∀j : cj =
�

k ρ(wjk) · sk (backward pass)

∀j : Rj = aj cj (element-wise product)

The first step is a forward pass on a copy of the layer where the weights and
biases have been applied the map θ �→ ρ(θ), to which we further add the small
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increment �. The second and fourth steps are simple element-wise operations.
For the third step, one notes that cj can also be expressed as the gradient
computation:

cj =
�
∇
��

k zk(a) · sk
��

j

where a = (aj)j is the vector of lower-layer activations, where zk is a function of
it, and where sk is instead treated as constant. This gradient can be computed
via automatic differentiation, which is available in most neural networks libraries.
In PyTorch6, this propagation rule can be implemented by the following code:

def relprop(a,layer,R):
z = epsilon + rho(layer).forward(a)
s = R/(z+1e-9)
(z*s.data).sum().backward()
c = a.grad
R = a*c
return R

The code is applicable to both convolution and dense layers with ReLU acti-
vation. The function “rho” returns a copy of the layer, where the weights and
biases have been applied the map θ �→ ρ(θ). The small additive term 1e-9 in the
division simply enforces the behavior 0/0 = 0. The operation “.data” lets the
variable “s” become constant so that the gradient is not propagated through it.
The function “backward” invokes the automatic differentiation mechanism and
stores the resulting gradient in “a”. Full code for the VGG-16 network is available
at www.heatmapping.org/tutorial. When the structure of the neural network to
analyze is more complex, or when we would like to compare and benchmark dif-
ferent explanation techniques, it can be recommended to use instead an existing
software implementation such as iNNvestigate [1].

10.2.3 LRP as a Deep Taylor Decomposition

Propagation rules of Section 10.2.1 can be interpreted within the Deep Taylor
Decomposition (DTD) framework [36]. DTD views LRP as a succession of Taylor
expansions performed locally at each neuron. More specifically, the relevance
score Rk is expressed as a function of the lower-level activations (aj)j denoted
by the vector a, and we then perform a first-order Taylor expansion of Rk(a) at
some reference point �a in the space of activations:

Rk(a) = Rk(�a) +
�

0,j(aj − �aj) · [∇Rk(�a)]j + . . . (10.3)

First-order terms (summed elements) identify how much of Rk should be redis-
tributed on neurons of the lower layer. Due to the potentially complex relation
between a and Rk, finding an appropriate reference point and computing the
gradient locally is difficult.

6 http://pytorch.org
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Relevance Model. In order to obtain a closed-form expression for the terms
of Eq. (10.3), one needs to substitute the true relevance function Rk(a) by a

relevance model �Rk(a) that is easier to analyze [36]. One such model is the
modulated ReLU activation:

�Rk(a) = max
�
0,
�

0,j ajwjk

�
· ck.

The modulation term ck is set constant and in a way that �Rk(a) = Rk(a) at
the current data point. Treating ck as constant can be justified when Rk results
from application of LRP-0/�/γ in the higher layers (cf. Appendix 10.B). A Taylor

expansion of the relevance model �Rk(a) on the activation domain gives:

�Rk(a) = �Rk(�a) +
�

0,j(aj − �aj) · wjk ck.

Second- and higher-order terms are zero due to the linearity of the ReLU function
on its activated domain. The zero-order term can also be made arbitrarily small
by choosing the reference point near the ReLU hinge. Once a reference point is
chosen, first-order terms can be easily computed, and redistributed to neurons
in the lower layer. Figure 10.3 (a-c) illustrates how deep Taylor decomposition
is applied at a given neuron.

Rk

a

(a) DTD relevance model

(b) Taylor expansion

(c) relevance propagation
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Fig. 10.3. Illustration of DTD: (a) graph view of the relevance model, (b) function view
of the relevance model and reference point at which the Taylor expansion is performed,
(c) propagation of first-order terms on the lower layer.

Relation to LRP-0/�/γ. Each choice of reference point �a leads to a different
way of redistributing relevance. Interestingly, specific choices of reference points
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reduce to the LRP propagation rules defined in Section 10.2.1. LRP-0 is recovered
by choosing �a = 0. LRP-� is recovered by choosing �a = � · (ak + �)−1 a. LRP-γ
is recovered by choosing �a at the intersection between the ReLU hinge and the
line {a − t · a � (1 + γ · 1wk�0) | t ∈ R}, where 1{·} is an indicator function
applied element-wise. The relation between LRP and DTD root points is further
illustrated on simple two-dimensional neurons in Fig. 10.3 (d). For all three
LRP propagation rules, one can show that the DTD reference points always
satisfy �a � 0, and therefore match the domain of ReLU activations received as
input [36]. A further property of reference points one can look at is the distance
��a − a�. The smaller the distance, the more contextualized the explanation
will be, and the lower the number of input variables that will appear to be in
contradiction. LRP-0 has the highest distance. LRP-� and LRP-γ reduce this
distance significantly.

10.3 Which LRP Rule for Which Layer?

As a general framework for propagation, LRP leaves much flexibility on which
rule to use at each layer, and how the parameters � and γ should be set. Selecting
LRP parameters optimally would require a measure of explanation quality. How
to assess explanation quality is still an active research topic [43, 16, 40, 38], and
a full discussion is beyond the scope of this chapter. Instead, we discuss LRP in
the light of two general and well-agreed desirable properties of an explanation:
fidelity and understandability [52]. In other words, an explanation should be
an accurate representation of the output neuron of interest, and it should also
be easy to interpret for a human. Note that to visually assess the fidelity of
an explanation, one needs to assume that the network has solved the task in
a “ground-truth” manner, i.e. using the correct visual features to support its
prediction, and ignoring distracting factors in the image.

Figure 10.4 shows for a given input image (of size 224×224), various LRP
explanations of the VGG-16 [48] output neuron ‘castle’. These explanations are
either obtained by uniform application of a single propagation rule at all layers,
or by a composite strategy [29] where different rules are used at different layers.

We observe strong differences in the explanations. Uniform LRP-0 picks
many local artifacts of the function. The explanation is overly complex and
does not focus sufficiently on the actual castle in the image. The explanation is
neither faithful nor understandable. Uniform LRP-� removes noise elements in
the explanation to keep only a limited number features that match the actual
castle in the image. It is a faithful explanation, but too sparse to be easily under-
standable. Uniform LRP-γ is easier for a human to understand because features
are more densely highlighted, but it also picks unrelated concepts such as the
lamp post, making it unfaithful. Composite LRP overcomes the disadvantages of
the approaches above. The features of the castle are correctly identified and fully
highlighted, thereby making the explanation both faithful and understandable.
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Fig. 10.4. Input image and pixel-wise explanations of the output neuron ‘castle’ ob-
tained with various LRP procedures. Parameters are � = 0.25 std and γ = 0.25.

The reason why Composite LRP delivers a better explanation can be traced
to the qualitative differences between the various layers of the VGG-16 neural
network:

Upper layers have only approximately 4 000 neurons (i.e. on average 4 neurons
per class), making it likely that the many concepts forming the different
classes are entangled. Here, a propagation rule close to the function and its
gradient (e.g. LRP-0) will be insensitive to these entanglements.

Middle layers have a more disentangled representation, however, the stacking
of many layers and the weight sharing in convolutions introduces spurious
variations. LRP-� filters out these spurious variations and retains only the
most salient explanation factors.

Lower layers are similar to middle layers, however, LRP-γ is more suitable
here, as this rule tends to spread relevance uniformly to the whole feature
rather than capturing the contribution of every individual pixel. This makes
the explanation more understandable for a human.

Overall, in order to apply LRP successfully on a new task, it is important to
carefully inspect the properties of the neural network layers, and to ask the
human what kind of explanation is most understandable for him.
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10.3.1 Handling the Top Layer

The quantity we have explained so far is the score zc for class c, computed from
lower-layer activations (ak)k as:

zc =
�

0,k akwkc.

It is linked to the predicted class probability via the softmax function P(ωc) =
exp(zc)/

�
c� exp(zc�). Fig. 10.5 (middle) shows an explanation of the score

zpassenger car for some image containing a locomotive, a passenger car and other
elements in the background. The explanation retains the passenger car features,
but also features of the locomotive in front of it. This shows that the quantity
zc is not truly selective for the class to explain.

z p
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r

Input LRP explanations

´ p
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se
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r

Fig. 10.5. Explanations obtained for the output neuron ‘passenger car’ and for the
actual probability of the class ‘passenger car’. The locomotive switches from positive
to negatively relevant.

Alternately, we can opt for explaining ηc = log[P(ωc)/(1−P(ωc))], which can
be expressed by the sequence of layers:

zc,c� =
�

0,k ak(wkc − wkc�)

ηc = − log
�

c� �=c exp(−zc,c�).

The first layer represents the log-probability ratios log[P(ωc)/P(ωc�)], and the
second layer performs a reverse log-sum-exp pooling over these ratios. A prop-
agation rule for this type of pooling layer was proposed in [26]: Relevance
is redistributed on the pooled neurons following a min-take-most strategy:
Rc,c� = zc,c� · exp(−zc,c�)/

�
c�� �=c exp(−zc,c��). These scores can then be further

propagated into the neural network with usual LRP rules. Figure 10.5 (right)
shows the explanation for ηpassenger car. Positive evidence becomes sparser, and
the locomotive turns blue (i.e. negatively relevant). This reflects the fact that
the presence of the locomotive in the image raises the probability for the class
‘locomotive’ and thus lowers it for the class ‘passenger car’.
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10.3.2 Handling Special Layers

Practical neural networks are often equipped with special layers that facilitate
optimization, incorporate some predefined invariance into the model, or handle
a particular type of input data. We briefly review how to handle some of these
layers within the LRP framework.

Spatial Pooling Layers are often used between convolution layers to promote
local translation invariance in the model. A sum-pooling layer applied to positive
activations can be easily rewritten as a standard linear-ReLU layer. Thus all LRP
rules we have presented here can also be applied to sum-pooling layers. Max-
pooling layers, on the other hand, can either be handled by a winner-take-all
redistribution scheme [7], or by using the same rules as for the sum-pooling case
[36, 37]. In this chapter, we have used the second option.

Batch Normalization Layers are commonly used to facilitate training and
improve prediction accuracy. At test time, they simply consist of a centering
and rescaling operation. These layers can therefore be absorbed by the adjacent
linear layer without changing the function. This allows to recover the canonical
neural network structure needed for applying LRP.

Input Layers are different from intermediate layers as they do not receive
ReLU activations as input but pixels or real values. Special rules for these layers
can also be derived from the DTD framework [36] (cf. Appendix 10.A). In this
chapter, we made use of the zB-rule, which is suitable for pixels.

10.4 LRP Beyond Deep Networks

Deep neural networks have been particularly successful on tasks involving clas-
sification and regression. Other problems such as unsupervised modeling, time
series forecasting, and pairwise matching, have been traditionally handled by
other types of models. Here, we discuss various extensions that let LRP be ap-
plied to this broader class of models.

Unsupervised Models. Unsupervised learning algorithms extract structures
from unlabeled data from which properties such as membership to some cluster
or degree of anomaly can be predicted. In order to explain these predictions, a
novel methodology called Neuralization-Propagation (NEON) was proposed [25,
26]: The learned unsupervised model is first ‘neuralized’ (i.e. transformed into
a functionally equivalent neural network). Then, an LRP procedure is built in
order to propagate the prediction backward in the neural network.

In one-class SVMs [44], predicted anomaly could be rewritten as a min-
pooling over support vector distances [25]. Similarly, in k-means, predicted clus-
ter membership could be rewritten as pooling over local linear discriminants
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between competing clusters [26]. For each extracted neural network, suitable
LRP rules could be designed based on the DTD methodology. Overall, the pro-
posed Neuralization-Propagation approach endows these unsupervised models
with fast and reliable explanations.

Time Series Prediction. To predict the next steps of a time series, one must
ideally be able to identify the underlying dynamical system and simulate it
forward. A popular model for this is the LSTM [22]. It uses product interactions
of the type

hk = sigm(
�

jajvjk + ck) · g
��

jajwjk + bk
�
.

The first term is a gate that regulates how the signal is transferred between
the internal state and the real-world. The second term is the signal itself. A
successful strategy for applying LRP in these models is to let all relevance flow
through the second term [6, 40, 42, 56]. Furthermore, when g is chosen to be a
ReLU function, and if the gating function is strictly positive or locally constant,
this strategy can also be justified within the DTD framework.

Pairwise Matching. A last problem for which one may require explanations is
when predicting if two vectors x ∈ X and y ∈ Y match. This problem arises, for
example, when modeling the relation between an image and a transformed ver-
sion of it [34], or in recommender systems, when modeling the relation between
users and products [55]. An approach to pairwise matching is to build product
neurons of the type ak = max(0,

�
i xiwik) · max(0,

�
j yjvjk). A propagation

rule for this product of neurons is given by [31]:

Rij =
�

k

xiyjwikvjk�
ij xiyjwikvjk

Rk.

This propagation rule can also be derived from DTD when considering second-
order Taylor expansions. The resulting explanation is in terms of pairs of input
features i and j from each modality.

10.5 Conclusion

We have reviewed Layer-wise Relevance Propagation (LRP), a technique that
can explain the predictions of complex state-of-the-art neural networks in terms
of input features, by propagating the prediction backward in the network by
means of propagation rules. LRP has a number of properties that makes it
attractive: Propagation rules can be implemented efficiently and modularly in
most modern neural network software and a number of these rules are further-
more embeddable in the Deep Taylor Decomposition framework. Parameters of
the LRP rules can be set in a way that high explanation quality is obtained even
for complex models. Finally, LRP is extensible beyond deep neural network
classifiers to a broader range of machine learning models and tasks. This makes
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it applicable to a large number of practical scenarios where explanation is needed.
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Appendices

10.A List of Commonly Used LRP Rules

The table below gives a non-exhaustive list of propagation rules that are com-
monly used for explaining deep neural networks with ReLU nonlinearities. The
last column in the table indicates whether the rules can be derived from the
deep Taylor decomposition [36] framework.

Name Formula Usage DTD

LRP-0 [7] Rj=
�

k

ajwjk�
0,j ajwjk

Rk upper layers �

LRP-� [7] Rj=
�

k

ajwjk

�+
�

0,j ajwjk
Rk middle layers �

LRP-γ Rj=
�

k

aj(wjk + γw+
jk)�

0,j aj(wjk + γw+
jk)

Rk lower layers �

LRP-αβ [7] Rj=
�

k

�
α

(ajwjk)
+

�
0,j(ajwjk)+

−β
(ajwjk)

−
�

0,j(ajwjk)−

�
Rk lower layers ×�

flat [30] Rj=
�

k

1�
j 1

Rk lower layers ×

w2-rule [36] Ri=
�

j

w2
ij�

i w
2
ij

Rj
first layer

(Rd)
�

zB-rule [36] Ri=
�

j

xiwij − liw
+
ij − hiw

−
ij�

i xiwij − liw
+
ij − hiw

−
ij

Rj
first layer
(pixels)

�

(� DTD interpretation only for the case α = 1,β = 0.)

Here, we have used the notation (·)+ = max(0, ·) and (·)− = min(0, ·). For the
LRP-αβ rule, the parameters α,β are subject to the conservation constraint
α = β+1. For the zB-rule the parameters li, hi define the box constraints of the
input domain (∀i : li ≤ xi ≤ hi).
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10.B Justification of the Relevance Model

We give here a justification similar to [36, 37] that the relevance model �Rk(a) of
Section 10.2.3 is suitable when relevance Rk results from applying LRP-0/�/γ
in the higher layers. The generic propagation rule

Rk =
�

l

ak · ρ(wkl)

�+
�

0,k ak · ρ(wkl)
Rl,

of which LRP-0/�/γ are special cases, can be rewritten as Rk = akck with

ck(a) =
�

l

ρ(wkl)
max

�
0,
�

0,k ak(a) · wkl

�

�+
�

0,k ak(a) · ρ(wkl)
cl(a),

where the dependences on lower activations a have been made explicit. Assume
cl(a) to be approximately locally constant w.r.t. a. Because other terms that
depend on a are diluted by two nested sums, it is plausible that ck(a) is again
locally approximately constant, which is the assumption made by the relevance
model �Rk(a).
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K.R.: Machine learning of accurate energy-conserving molecular force fields. Sci-
ence Advances 3(5), e1603015 (may 2017)

15. Clark, P., Matwin, S.: Using qualitative models to guide inductive learning. In:
Proceedings of the 10th International Conference on Machine Learning. pp. 49–56
(1993)

16. Doshi-Velez, F., Kim, B.: Considerations for Evaluation and Generalization in In-
terpretable Machine Learning, pp. 3–17. Springer International Publishing (2018)

17. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.:
Dermatologist-level classification of skin cancer with deep neural networks. Nature
542(7639), 115–118 (2017)

18. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful
perturbation. In: IEEE International Conference on Computer Vision. pp. 3449–
3457 (2017)

19. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of machine learning research 3(Mar), 1157–1182 (2003)

20. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering.
In: Proceedings of the 26th International Conference on World Wide Web. pp. 173–
182 (2017)
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45. Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.:
Quantum-chemical insights from deep tensor neural networks. Nature Commu-
nications 8, 13890 (jan 2017)

46. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: Proceedings of the 34th International Con-
ference on Machine Learning. pp. 3145–3153 (2017)

47. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box:
Learning important features through propagating activation differences. CoRR
abs/1605.01713 (2016)

48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations
(2015)

49. Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: Smoothgrad:
removing noise by adding noise. CoRR abs/1706.03825 (2017)

50. Sturm, I., Lapuschkin, S., Samek, W., Müller, K.R.: Interpretable deep neural
networks for single-trial EEG classification. Journal of Neuroscience Methods 274,
141–145 (2016)

51. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks.
In: Proceedings of the 34th International Conference on Machine Learning. pp.
3319–3328 (2017)

52. Swartout, W.R., Moore, J.D.: Second generation expert systems. chap. Explanation
in Second Generation Expert Systems, pp. 543–585. Springer-Verlag New York, Inc.
(1993)

53. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: 2nd International Confer-
ence on Learning Representations (2014)

54. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 2818–2826 (2016)

55. Xue, H., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models
for recommender systems. In: Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence. pp. 3203–3209 (2017)

56. Yang, Y., Tresp, V., Wunderle, M., Fasching, P.A.: Explaining therapy predictions
with layer-wise relevance propagation in neural networks. In: IEEE International
Conference on Healthcare Informatics. pp. 152–162 (2018)

57. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: Attacks and defenses for
deep learning. IEEE Transactions on Neural Networks and Learning Systems pp.
1–20 (2019)

58. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In:
Proc. of European Conference on Computer Vision (ECCV). pp. 818–833. Springer
(2014)

59. Zhang, J., Bargal, Sarah Adeland Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-
down neural attention by excitation backprop. International Journal of Computer
Vision 126(10), 1084–1102 (2018)



212 G. Montavon et al.

60. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network
decisions: Prediction difference analysis. In: International Conference on Learning
Representations (2017)


