
STATIONARY COMMON SPATIAL PATTERNS:
TOWARDS ROBUST CLASSIFICATION OF NON-STATIONARY EEG SIGNA LS

Wojciech Wojcikiewicz†‡, Carmen Vidaurre†, Motoaki Kawanabe‡†

†Technical University of Berlin, Franklinstr. 28 / 29, 10587Berlin, Germany
‡Fraunhofer Institute FIRST, Kekuléstr. 7, 12489 Berlin, Germany

ABSTRACT

Brain-Computer Interfaces (BCIs) allow a user to control a
computer application by brain activity as acquired, e.g., by
EEG. A standard step in a BCI system is to project the EEG
signals to a low-dimensional subspace using Common Spa-
tial Patterns (CSP). However, non-stationarities in the data
can negatively affect the performance of CSP, i.e. variation of
the signal properties within and across experimental sessions
coming from electrode artefacts, alpha or muscular activity,
or fatigue may result in suboptimal projection directions.We
alleviate this problem by regularizing CSP towards stationary
subspaces and show that this especially increases classifica-
tion accuracy of people who are not able to control a BCI i.e.
have more than 30% of error. These users very often show
non-stationarities in their EEG signals.

Index Terms— Brain-Computer Interface, Common Spa-
tial Patterns, Non-Stationarity

1. INTRODUCTION

Brain-Computer Interface (BCI) systems aim to provide users
control over a computer application by their brain activity.
Many EEG-BCIs [1, 2] use the motor imagery paradigm for
translating the user’s intentions into commands. Commonly,
subjects using these systems are asked to perform the imagi-
nation of movements with their hands, feet or mouth. Motor
imagery alters the rhythmic activity that can be measured in
the EEG over the sensorimotor cortex. The locations over the
sensorimotor cortex are related to corresponding parts of the
body. For example, left and right hand are localized in the
contralateral hemisphere, i.e., right and left motor cortex, re-
spectively. By using Common Spatial Patterns (CSP) [1] we
can extract the relevant features from the EEG signal and thus
distinguishing motor imagery tasks of different body parts.
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One challenge of EEG-based BCIs is to solve the problem
of lack of efficiency of BCI systems, which is that BCI control
does not work for a non-negligible portion of users (estimated
15 to 30%), (c.f. Vidaurre et al. 2009 [3]). One reason for bad
performance in BCI are non-stationarities in the EEG signal
i.e. variation of the signal properties (e.g. covariances)within
and across experimental sessions coming from electrode arte-
facts, alpha or muscular activity, or fatigue. Most machine
learning algorithms implicitly assume stationarity in thedata
thus non-stationarities can negatively affect performance.

Recently, several approaches were performed to reduce
the impact of non-stationarities in the data by co-adaptivity
[3], channel selection [4], by including extra measurement
(model-based) [1, 5] or by covariate shift adaptation [6]. In
this paper we extend Common Spatial Patterns (CSP) to ex-
plicitly measure non-stationarities and regularize it towards
stationary subspaces.

This paper is organized as follows. In Section 2 we
present the stationary Common Spatial Patterns method
(sCSP). After describing our experimental setup in Section
3, we compare the performance between CSP and sCSP and
analyse the reasons for the performance gain on a specific
subject. Section 5 concludes with a short summary and future
research ideas.

2. STATIONARY COMMON SPATIAL PATTERNS

Common Spatial Patterns (CSP) has been widely used in BCI
systems [2, 1] as they maximize the variance of signals of one
class and at the same time minimize the variance of signals of
another class, thus they are well suited to discriminate mental
states that are characterized by ERD/ERS effects. The CSP
spatial filterw can be obtained by maximizing / minimizing
the Rayleigh coefficient

max
w

w
⊤
Σ+w

w⊤{Σ+ +Σ−}w
, (1)

whereΣ+ andΣ− are the average covariance matrices from
class 1 and 2 respectively.

We extend CSP by regularizing it towards stationary sub-
spaces. Our basic idea is the following:



• we consider local chunks of BCI data sequences in or-
der to measure non-stationarity over time,

• we add a regularization term in the CSP optimization
criterion 1 as invariantCSP [5, 7] in order to penalize
non-stationary features.

Let Σ(k)
+ andΣ

(k)
−

be the covariance matrices of thek-th
chunk. A chunk is a collection of consecutive trials i.e. if
the chunk size is one, we consider individual trials, otherwise
we consider the mean covariance matrix of the trials in chunk
k. Non-stationarity can be measured by comparing the co-
variance matrices of each chunks with the global averageΣ+

andΣ−,

∆
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whereP is an operator to make symmetric matrices be pos-
itive definite. More precisely, if a symmetric matrixM has
eigen decompositionM = R diag(di)R

⊤, the operator re-
turnsP(M) = R diag(|di|)R

⊤, i.e. the signs of all the neg-
ative eigenvalues are flipped. By doing so, the penalty term
becomes (always) positive even in the case that power of a
feature in thek-th chunk is smaller than its global average.
We propose to use the averages of the difference matrices for
regularization towards stationary subspaces
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In other words we project data in directionsw computed as

max
w

w
⊤
Σ+w

w⊤{Σ+ +Σ− + λ(∆+ +∆−)}w
, (6)

max
w

w
⊤
Σ−w

w⊤{Σ+ +Σ− + λ(∆+ +∆−)}w
. (7)

The regularization terms in the denominators penalize non-
stationary features, where the constantλ balances discrimi-
nativity (of the data at hand) and stationarity of features.

3. EXPERIMENTAL SETUP

In our experiments we use data recorded from 80 subjects per-
forming motion imagery tasks with the left and right hand
or with the feet. For each subject we select the best binary
combination i.e. left hand vs. feet, right hand vs. feet or left
hand vs. right hand in a calibration session consisting of 150
trials per combination. No feedback is provided in the cal-
ibration session. After that we perform a test session con-
sisting of 300 trials using the best combination. In the test

session we provide 1D feedback e.g. a cursor moves left and
right on the screen based on the classification decision. All
subjects in our study are BCI novices. We use recordings
of 68 preselected electrodes, log-variance features, a Linear
Discriminant Analysis (LDA) classifier and error rate or area
over receiver operating characteristic (ROC) to measure per-
formance. We select three directions of CSP / sCSP per class
(i.e. use six-dimensional features), but also consider thecase
of using only one direction per class as this simplifies the vi-
sualization and analysis of results.

For sCSP we need to set theλ parameter and the chunk
size. We select the bestλ from the set of candidates{0, 0.1,
0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 10} by 5-fold
cross-validation (CV) on the calibration data. Furthermore we
consider chunk sizes of 1, 3, 5 and 8 and select the best com-
bination ofλ and chunk size using cross-validation for each
subject individually. Apart from that we also run experiments
with a priori fixed chunk size and selectλ by cross-validation.

4. RESULTS

We compare the performance of CSP and sCSP using two dif-
ferent error measures, error rate and area over ROC. The latter
measure make sure that the performance difference between
CSP and sCSP is not only due to a bias shift but comes from a
better feature representation1. Figure 1 shows a scatter plot of
CSP and sCSP performances and we can see that our method
in most cases lies below the black dotted line i.e. it performs
better than CSP. This is especially obvious for subjects which
perform poorly with CSP. We also see that there is not much
difference between using error rate (top panels) and area over
ROC (bottom panels) as error measure. This indicates that
sCSP provides better separable features or in other words itis
less affected by noise and non-stationarities than CSP.

Since we want to know whether sCSP is significantly bet-
ter than CSP, we apply an one-sided t-test to the experiment
which uses three CSP directions. Table 1 shows the p-values
for different fixed chunk sizes and the case where chunk size
was selected by cross-validation. Furthermore we divide the
subjects into three groups according to their performances:
good performers, medium performers and subjects lacking
BCI efficiency. We clearly see that our method is signifi-
cantly better than CSP in the group of subjects lacking BCI
efficiency and in total irrespectively of the chunk size.

In the following we would like to analyse the reasons for
the performance gain of subject 20. We consider the experi-
ment with one CSP direction per class because it is better for
visualization. Subject 20 has an error rate of 39.3 when us-
ing CSP and 19.3 when sCSP is used, we selectedλ as 0.5
and a chunk size of 8 by cross-validation. Subject 20 uses
motion imagery of left vs. right hand in order to discriminate

1Changes in bias can be alleviated by shifting the classification boundary,
whereas a better separability of feature is much harder to obtain.
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c) Three CSP directions per class
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d) One CSP direction per class

Fig. 1. Scatter plot of CSP and sCSP performances using
error rate (top) or area over ROC curve measure (bottom) for
three (left) and one (right) CSP direction per class.

Chunk size Error rate
0− 15 15− 30 > 30 all

CV selected 0.0599 0.6642 0.0069 0.0068
1 0.0567 0.5194 0.0085 0.0066
3 0.1749 0.3547 0.0121 0.0087
5 0.1568 0.6690 0.0076 0.0091

Chunk size Area over ROC
0− 0.15 0.15− 0.3 > 0.3 all

CV selected 0.3084 0.2337 0.0122 0.0091
1 0.3940 0.2629 0.0151 0.0122
3 0.3766 0.3001 0.0271 0.0178
5 0.2336 0.4183 0.0133 0.0113

Table 1. Overview of p-values for different chunk sizes and
different error regions when using one-sided t-test with the
hypothesis that sCSP performs better than CSP. Bold values
are significant whenα = 0.05.

between classes. So the question is why do we have such a
large improvement when using sCSP ?

In order to answer the question we at first visualize the
training and test features and the classification boundary of
CSP and sCSP (see Figure 3). Inspecting Figure 3, one can
observe that the features of class 2 suffer a considerable
change between calibration and test phase, whereas this is
not the case for the stationary features. We also see that
the separability of the sCSP features is much better than the
separability of the CSP features.

If we want to understand why the sCSP projection is much
better than the CSP one, we should look at the activation pat-
terns of CSP and sCSP in Figure 2. Since subject 20 is per-
forming a left vs. right hand motion imagery, we should see an
activation in the right and left hemisphere respectively. This
is exactly what we obtain when using sCSP (bottom), the pat-
tern in the left panel corresponds to right-hand motor imagery
and the one in the right panel to left hand motor imagery. Un-

fortunately, we do not get these patterns in the CSP case (top),
instead of the right hand motion imagery pattern we obtain
an artefact in electrode CCPC3 (according to extended 10-
20 system of electrode placement). This explains the change
of class 2 features in Figure 3 which was mentioned above
as class 2 corresponds to right hand motion imagery and a
CSP filter which concentrates on electrode artefact insteadof
the underlying right-hand motor imagery pattern will produce
very non-stationary and noisy features. From that we con-
clude that subject 20 has such a high error rate when using
CSP as one CSP filter is affected by an electrode artefact, thus
is not optimal.
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Fig. 2. Activation patterns of left hand (right panels) and right
hand (left panels) motion imagery of subject 20. CSP pattern
(top panels) contains electrode artefact at CCPC3, which is
not present in sCSP pattern (bottom panels).
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Fig. 3. Comparison of training (triangle) and test (circle) fea-
tures of CSP (left) and sCSP (right) for subject 20.

We can prove our artefact hypothesis when analysing the
band-passed filtered signal at CCPC3. Figure 4 shows the
concatenated EEG signals at CCPC3 and CCPC4. Both sig-



λ eR λ eR λ eR
0 and 0.01 39.3 0.1 28 1 25.7

0.025 40.7 0.25 20 2.5 37.7
0.05 41.7 0.5 19.3 5 41.7
0.075 38.7 0.75 23.3 10 42.7

Table 2. Error rateeR of subject 20 for differentλ.

nals should look more or less similar, but CCPC3 (top panel)
seems to be more non-stationary and it contains a clear out-
lier in trial 15 (around0.5 × 104). This may be due to e.g. a
loose electrode. So the reason why sCSP performs so well in
subjects which perform poorly with CSP is simply that it is
more robust to noise and non-stationarities in the data.

Although the performance of sCSP is not highly affected
by the chunk size (as shown in Table 1), it is very sensitive
to the selection ofλ. Table 2 shows the test performances of
differentλ for subject 20. The performance curve has an U-
shape with a minimum atλ = 0.5, which is also theλ value
selected by cross-validation. The most popular value selected
by cross-validation in all subjects isλ = 0.25. The selection
frequencies ofλ for all subjects can be seen in Figure 5.
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Fig. 4. Comparison of EEG signals over CCPC3 (top) and
CCPC4 (bottom). The upper one contains an electrode arte-
fact which deteriorate performance.
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Fig. 5. Selection frequencies ofλ using 5-fold CV.

5. CONCLUSION

We presented an extension of CSP which explicitly measures
non-stationarities and regularizes the CSP directions towards
stationary subspaces. We showed that sCSP significantly out-
performs CSP in subjects with high error rates since their sig-
nals often contains a lot of noise and non-stationarities.

We also showed that sCSP is able to extract meaningful
neurophysiological filters even when the data in use is noisy.
We have also demonstrated that the stationary features suffer
less shift than the ones computed using the usual CSP method,
thus are easier to discriminate.

Furthermore, unlike other methods, such as invariantCSP,
our approach is completely data-driven and does not require
additional recordings or models of the expected change that
occurs in the EEG.

In future research we would like to combine stationarity
features like sCSP with classifier adaptation to further im-
prove classification performance on non-stationary and noisy
BCI data.
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