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ABSTRACT One challenge of EEG-based BCls is to solve the problem
) of lack of efficiency of BCI systems, which is that BCI control
Brain-Computer Interfaces (BCls) allow a user to control ay,eq not work for a non-negligible portion of users (estedat
computer application by brain activity as acquired, .g., b 154, 300) (c.f. Vidaurre etal. 2009 [3]). One reason for bad
E,EG' A standard §tep ina BCI system is t? project the EEfgerformance in BCI are non-stationarities in the EEG signal
signals to a low-dimensional subspace using Common Sp .e. variation of the signal properties (e.g. covarianges)in

tial Pattems I(CSﬁP). |‘r|]OW€erI', non-statf|onar|t|_es In t_ha;oda and across experimental sessions coming from electroele art
can negatively affect the performance of CSP, i.e. vaiad facts, alpha or muscular activity, or fatigue. Most machine

the signal properties within and across experimental 8essi o ing algorithms implicitly assume stationarity in theta
coming from eIectrodp artefac_ts, alphg or mus_culgr aYIVIt 145 non-stationarities can negatively affect perforneanc
orfatllgue may resultin suboptlma_ll projection dlrectlow_ke Recently, several approaches were performed to reduce
alleviate this problem by regularizing CSP towards statign . impact of non-stationarities in the data by co-adaytivi

§ubspaces and show that this especially increases class_ifi(ts]’ channel selection [4], by including extra measurement
tion accuracy of people who are not able to control a BCl i.e model-based) [1, 5] or by covariate shift adaptation [6]. |
have more thg_n 3.0% OT error. These users very often sho is paper we extend Common Spatial Patterns (CSP) to ex-
hon-stationarities in their EEG signals. plicitly measure non-stationarities and regularize it doss
Index Terms— Brain-Computer Interface, Common Spa- stationary subspaces.
tial Patterns, Non-Stationarity This paper is organized as follows. In Section 2 we
present the stationary Common Spatial Patterns method
(sCSP). After describing our experimental setup in Section
3, we compare the performance between CSP and sCSP and

Brain-C Intert BCI , id analyse the reasons for the performance gain on a specific
rain-Computer Interface ( ,) systems aim to provi egsersubject. Section 5 concludes with a short summary and future
control over a computer application by their brain activity research ideas

Many EEG-BCIs [1, 2] use the motor imagery paradigm for
translating the user’s intentions into commands. Commonly
subjects using these systems are asked to perform the imagi2- STATIONARY COMMON SPATIAL PATTERNS

nation of movements with their hands, feet or mouth. Motor ) ) )
imagery alters the rhythmic activity that can be measured ifFommon Spatial Patterns (CSP) has been widely used in BCI
the EEG over the sensorimotor cortex. The locations over theYStems [2, 1] as they maximize the variance of signals of one
sensorimotor cortex are related to corresponding partseof t class and at the same time minimize the var-|an$:e.of signals of
body. For example, left and right hand are localized in theédnother class, thus they are well suited to discriminatetahen
contralateral hemisphere, i.e., right and left motor ognie- ~ States that are characterized by ERD/ERS effects. The CSP
spectively. By using Common Spatial Patterns (CSP) [1] weshpatial fllt_erw can_b_e obtained by maximizing / minimizing
can extract the relevant features from the EEG signal arel thiih® Rayleigh coefficient
distinguishing motor imagery tasks of different body parts

1. INTRODUCTION
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tained herein. spaces. Our basic idea is the following:




e we consider local chunks of BCI data sequences in orsession we provide 1D feedback e.g. a cursor moves left and
der to measure non-stationarity over time, right on the screen based on the classification decision. All
e we add a regularization term in the CSP optimizationSUbjects in our study are BCI novices. We use recordings
criterion 1 as invariantCSP [5, 7] in order to penalize®f 68 preselected electrodes, log-variance features, @akin
Discriminant Analysis (LDA) classifier and error rate orare
over receiver operating characteristic (ROC) to measure pe
Let Zf) and =*) pe the covariance matrices of tieth  formance. We select three directions of CSP / SCSP per class
chunk. A chunk is a collection of consecutive trials i.e. if (i.e. use six-dimensional features), but also considec#se
the chunk size is one, we consider individual trials, othisew of using only one direction per class as this simplifies the vi
we consider the mean covariance matrix of the trials in chunkualization and analysis of results.
k. Non-stationarity can be measured by comparing the co- For sCSP we need to set theparameter and the chunk
variance matrices of each chunks with the global aveBage size. We select the beatfrom the set of candidatg®, 0.1,

non-stationary features.

andX_, 0.025, 0.05, 0.075,0.1,0.25,0.5,0.75, 1, 2.5, §,dp5-fold
(k) *) cross-validation (CV) on the calibration data. Furtherenwe
A =P (E+ - E+) ; (2)  consider chunk sizes of 1, 3, 5 and 8 and select the best com-
(k) (k) bination of A and chunk size using cross-validation for each
Al P (2* o 2*) ? (3) subject individually. Apart from that we also run experirteen

. . . with a priori fixed chunk size and seletby cross-validation.
whereP is an operator to make symmetric matrices be pos-

itive definite. More precisely, if a symmetric mati has

eigen decompositioM = R diag(d;) R", the operator re- 4. RESULTS

turnsP(M) = R diag(|d;|) R, i.e. the signs of all the neg-

ative eigenvalues are flipped. By doing so, the penalty termve compare the performance of CSP and sCSP using two dif-
becomes (always) positive even in the case that power of fgrent error measures, error rate and area over ROC. Tke latt
feature in thek-th chunk is smaller than its global average.measure make sure that the performance difference between
We propose to use the averages of the difference matrices f@'Sp and sCSP is not only due to a bias shift but comes from a

regularization towards stationary subspaces better feature representatforrigure 1 shows a scatter plot of
K CSP and sCSP performances and we can see that our method
A, = 1 Z AS{@), (4) in most cases lies below the black dotted line i.e. it perorm
K Pt better than CSP. This is especially obvious for subjectsiwhi

1% perform poorly with CSP. We also see that there is not much
A = 1 Z AP (5) difference between using error rate (top panells) .an<_j area ov
K= ROC (bottom panels) as error measure. This indicates that
) o sCSP provides better separable features or in other wagds it
In other words we project data in directionscomputed 8 g5 affected by noise and non-stationarities than CSP.

w S, w Since we want to know whether sCSP is significantly bet-
max — == , (6) ter than CSP, we apply an one-sided t-test to the experiment
T )
vowi{E 2’: AMAL+A)w which uses three CSP directions. Table 1 shows the p-values
max w 272 __ . for different fixed chunk sizes and the case where chunk size
w wi{E, +3_+MAL+A)}w was selected by cross-validation. Furthermore we divide th

The regularization terms in the denominators penalize nons—ubJectS Into three groups according to their performances

stationary features, where the constarttalances discrimi- good performers, medium performers and subjects lacking

- . . BCI efficiency. We clearly see that our method is signifi-
nativity (of the data at hand) and stationarity of features. cantly better than CSP in the group of subjects lacking BCI

efficiency and in total irrespectively of the chunk size.
3. EXPERIMENTAL SETUP In the following we would like to analyse the reasons for

| . i dat ded 80 subiect the performance gain of subject 20. We consider the experi-
hourexperiments we use data recorded from oY SUDIECLS P&lq i \vith one CSP direction per class because it is better for

forming motion imagery tasks with the left and right handvisualization. Subject 20 has an error rate of 39.3 when us-
or with the feet. For each subject we select the best binarp(1g CSP and 19.3 when sCSP is used. we selektas 0.5

Eomdbinati(_)nhit.ﬁ. Ie(;t_hand \I/Sb f?_et' right _hand Vs fte_et %rf|185and a chunk size of 8 by cross-validation. Subject 20 uses
andvs. right hand in a cafibration Session consisting motion imagery of left vs. right hand in order to discrimiaat
trials per combination. No feedback is provided in the cal-

it_)l‘élf[iOﬂ SeSSion_- After_ that we perform a te_St session con- 1Changes in bias can be alleviated by shifting the classificatoundary,
sisting of 300 trials using the best combination. In the testvhereas a better separability of feature is much hardertairob




a) Three CSP directions per class

SCSP error rate
N @
S 3

. ‘x‘.

o

.'a. °

40
CSP error rate

©) Three CSP directions per class

SCSP area over ROC curve
.
L)
)

0.1 0.2 0.3 0.4 05
CSP area over ROC curve

0.6

b) One CSP direction per class

SCSP error rate

el

e

I,.f‘;s‘;

0 10

20 30 40 50 60
CSP error rate

d) One CSP direction per class

o

°
=

o
o

SCSP area over ROC curve

Oﬁf?i‘. ° .. .

. g._.‘.":‘
.‘-:‘r o
o370 o L]
e .-
"0.’. ® .

0.1

0.2 0.3 0.4 05 0.6
CSP area over ROC curve

fortunately, we do not get these patterns in the CSP cask (top
instead of the right hand motion imagery pattern we obtain
an artefact in electrode CCPC3 (according to extended 10-
20 system of electrode placement). This explains the change
of class 2 features in Figure 3 which was mentioned above
as class 2 corresponds to right hand motion imagery and a
CSP filter which concentrates on electrode artefact instéad
the underlying right-hand motor imagery pattern will pradu
very non-stationary and noisy features. From that we con-
clude that subject 20 has such a high error rate when using
CSP as one CSP filter is affected by an electrode artefast, thu

is not optimal.

Fig. 1. Scatter plot of CSP and sCSP performances uvein~

error rate (top) or area over ROC curve measure (bottorn

three (left) and one (right) CSP direction per class.

Table 1. Overview of p-values for different chunk sizes and o _ _
different error regions when using one-sided t-test with th Fig. 2. Activation patterns of left hand (right panels) and right

hypothesis that sSCSP performs better than CSP. Bold valué&and (left panels) motion imagery of subject 20. CSP pattern
(top panels) contains electrode artefact at CCPC3, which is

are significant whem. = 0.05.

between classes. So the question is why do we have s

large improvement when using sCSP ?

1.5576
0.7788

Chunk size Error rate 0
0—15 15— 30 > 30 all ~0.7788
CV selected| 0.0599 0.6642 0.0069 0.0068 15576
1 0.0567 0.5194 0.0085 0.0066
3 0.1749 0.3547 0.0121 0.0087
5 0.1568 0.6690 0.0076 0.0091
Chunk size Area over ROC 10948 1042
0-0.15 0.15—0.3 >0.3 all Z'S“” 2'521
CVselected 0.3084  0.2337 0.0122 0.0091 e .
1 0.3940  0.2629 0.0151 0.0122 oo oo
3 0.3766 0.3001 0.0271 0.0178
5 0.2336 0.4183 0.0133 0.0113

not present in sSCSP pattern (bottom panels).
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In order to answer the question we at first visualize
training and test features and the classification boundg
CSP and sCSP (see Figure 3). Inspecting Figure 3, on
observe that the features of class 2 suffer a conside
change between calibration and test phase, whereas 1
not the case for the stationary features. We also see
the separability of the sCSP features is much better tha
separability of the CSP features.

If we want to understand why the sCSP projectionis m
better than the CSP one, we should look at the activation pat-
terns of CSP and sCSP in Figure 2. Since subject 20 is peFig. 3. Comparison of training (triangle) and test (circle) fea-
forming a left vs. right hand motion imagery, we should see anures of CSP (left) and sCSP (right) for subject 20.
activation in the right and left hemisphere respectivelisT
is exactly what we obtain when using sCSP (bottom), the pat- We can prove our artefact hypothesis when analysing the
tern in the left panel corresponds to right-hand motor inmage band-passed filtered signal at CCPC3. Figure 4 shows the
and the one in the right panel to left hand motor imagery. Uneoncatenated EEG signals at CCPC3 and CCPC4. Both sig-




A €R A €R A €R 5. CONCLUSION
0and0.01 39.3 0.1 28 | 1 257

0.025 40.7) 0.25 20 | 25 37.7 We presented an extension of CSP which explicitly measures
0.05 417 05 19.3| 5 417 non-stationarities and regularizes the CSP directionaitdsy
0.075 38.7| 0.75 23.3| 10 427 stationary subspaces. We showed that sCSP significantly out
performs CSP in subjects with high error rates since thgir si
Table 2. Error ratee of subject 20 for differen. nals often contains a lot of noise and non-stationarities.

We also showed that SCSP is able to extract meaningful
neurophysiological filters even when the data in use is noisy
e have also demonstrated that the stationary features suff

nals shouild look more or less similar, but CCPC3 (top panel ss shift than the ones computed using the usual CSP method,

seems to be more non-stationary and it contains a clear OL{E—US are easier to discriminate
lier in trial 15 (around).5 x 10%). This may be due to e.g. a '

. Furthermore, unlike other methods, such as invariantCSP,
loose electrode. So the reason why SCSP performs so well Sur approach is completely data-driven and does not require
subjects which perform poorly with CSP is simply that it is P P y q

more robust to noise and non-stationarities in the data. additional recordings or models of the expected change that

. : ccurs in the EEG.
b tAhZhg#l?:ktZ?de(ggrggrxf icr)1f1s'§bSI: 1'? r;:)itsh\l/gef:ly;;‘fr?sc;:i?/dp In future research we would like to combine stationarity

y . ’ y Seatures like SCSP with classifier adaptation to further im-
to the selection oA. Table 2 shows the test performances of e . .

. . prove classification performance on non-stationary angynoi
different\ for subject 20. The performance curve has an U-BCI data
shape with a minimum at = 0.5, which is also the\ value '
selected by cross-validation. The most popular value sslec
by cross-validation in all subjects Js= 0.25. The selection 6. REFERENCES
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