Unified Coding Style for the H.26L Reference Software
Karsten Sühring (suehring@hhi.de)

Heinrich Hertz Institute
At the Santa Barbara meeting we agreed on the use of a common coding style (documents VCEG-N46 and VCEG-N47, except rule #6 in N46).
The use of the following rules is mandatory for all software implementation work. Changes that don’t comply with these rules will not be accepted by the software coordinator.

Common Rules

Rule 1: Indentation

All code blocks that are included into braces have to be indented by two (2) space characters.

Example:

	void function ()
{
 <code here>
}

Rule 2: Braces

The opening brace is placed on a new line on the same indentation level as the defining keyword (e.g. void, if, for, while, etc.). The included code block starts at the following line and is intended (see Rule 1). The closing brace is placed on the same indentation level as the opening brace.

Example:

	void function ()
{
 if (<expression>)
 {
 <code here>
 }
}

Rule 3: TAB characters

Due to the different possible size settings of the tabulator (typically between 2 and 6) in source code editors no tabulator characters are used. All indentation is achieved using space characters.

Rule 4: Comments I (Documentation System)

A common style of comments will be achieved by the use of the documentation system doxygen. The system provides a special set of documentation commands that are used to extract the information for the external documentation. Therefore a unified documentation structure is enforced by these comments. As an additional feature we will get a complete project documentation in a clearly arranged format.

For a further description of doxygen see document VCEG-N47 and the author’s homepage at http://www.doxgen.org.

Example:

	
/*! A documentation comment (in C style) */
//! Another documentation comment (in C++ style)

/*! Documenting the following variable */

int i;

char c; /*!< Documenting the variable before */

The generated documentation of the current TML software is available at: http://bs.hhi.de/~suehring/tml/doc
Rule 5: Comments II (File and Function Heads)

A comment header will be placed at the beginning of each file and in front of each function definition. Use the following templates and fill in appropriate information:

File Header:

	/*!

 * \file <filename>
 *
 * \brief
 * <short description>
 *
 * \date
 * <creation date>
 *
 * \author
 * Main contributors (see contributors.h for copyright, address and
 * affiliation details)
 * - <Author name> <email@host.com>

 */

	\file
	Name of source file

	\brief
	Short description

	\date
	Creation date

	\author
	Names of authors

The fields \date and \author are optional.

Function Header:

	/*!

 * \brief
 * <short description>
 *
 * \param <parameter>
 * <parameter description>
 *
 * \return
 * <return values>
 *
 * \note
 * <notes>
 *
 * \para <title>
 * <paragraph>
 *
 * \para
 * <another paragraph>

 */
void myfunction()

	\brief
	Short description

	\param
	Parameter description

	\return
	Description of return values

	\note
	Notes

	\para
	A paragraph with the given title. If no title is given the paragraph is placed under the last given heading.

The fields \param, \return, \note and \para are optional.

Rule 6: Header multiple include safety

All header files will include a mechanism to prevent multiple inclusion by using a #define. The name of the #define is created using the name of the header file in capital letters with a preceding and a trailing underscore. All non-letter characters in the file name are replaced by underscores.

For a header file named myheader.h the structure would be the following:

	/*! <file header according to rule 5> */

#ifndef _MYHEADER_H_
#define _MYHEADER_H_

<content of header file>

#endif

Rule 7: Unused code

Unused code will be completely removed from the source code. Commenting out is not allowed.

Some Recommendations for a Better Coding Style

Recommendation 1: Line length

Lines should not exceed 80 characters (including spaces).

Recommendation 2: Variable declaration

Variables that are not declared inside of functions (global or file local) should be declared at the beginning of the corresponding file preceding all function definitions.

Recommendation 3: Switch

The code following a case label should always be terminated with a break statement. Also every switch statement should contain a default branch that handles unexpected cases.

Technical hints

MS Visual Studio

The following settings for MS Visual Studio will assist you using the formatting rules. This menu can be found in
Tools->Options.

[image: image1.png]oorons 21X

B Tabs | Debug | Compaibity | Buid | Diectores | | (1[5

Eile ype:

Tab size: Inset spaces

Indent size: © Kesptabs
-Auto indent Smart indent options

© None I Indent gpen brace:

© Default I~ Indent closing brace

& Smat Previous nes used for context

Cance

After applying these setting you can use
Edit->Advanced->Untabify Selection
to remove TAB characters and
Edit->Advanced->Format Selection
to format the selected section.

Note: There is a severe bug in MS Visual Studio that leads to a wrong indentation if nested ‘for’-loops are used without braces.

Diff / Windiff

If you want to compare modified files against the reformatted files you can set options for diff and windiff to ignore space/TAB changes. In windiff (Visual Studio Tools) this option is called
Options->Ignore Blanks.
For the command line (Unix) diff the appropriate option is ‘-w’.

File:coding_style.doc
Page: 1
Date Printed: 10/2/2001

